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Abstract Since the publication of the sequence of the factor VIII (F8) gene in 1984, a large number

of mutations that cause hemophilia A have been identified and a significant progress has been made

in translating this knowledge for clinical diagnostic and therapeutic purposes. Molecular genetic

testing is used to determine the carrier status, for prenatal diagnosis, for prediction of the likelihood

of inhibitor development, and even can be possibly used to predict responsiveness to immune tol-

erance induction. Phenotypic heterogeneity of hemophilia is multifactorial, mainly related to F8

mutation but other factors contribute especially to coinheritance of prothrombotic genes. Inhibitor

development is mainly related to F8 null mutations, but other genetic and non genetic factors could

contribute. This review will focus on the genetic aspects of hemophilia A and their application in the

clinical setting and the care of patients and their families.
� 2010 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
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Table 1 Clinical conditions suggestive of a coagulation

disorder defect [6].

� Hemarthrosis, especially with mild or no antecedent trauma

� Deep-muscle hematomas

� Intracranial bleeding in the absence of major trauma

� Neonatal cephalohematoma or intracranial bleeding

� Prolonged oozing or renewed bleeding after initial bleeding

stops following tooth extractions, mouth injury, or

circumcision*

� Prolonged bleeding or renewed bleeding following surgery or

trauma*

� Unexplained GI bleeding or hematuria*

� Menorrhagia, especially at menarche*

� Prolonged nosebleeds, especially recurrent and bilateral*

� Excessive bruising, especially with firm, subcutaneous

hematomas

* Any severity, especially in more severely affected persons.
1. Introduction

Hemophilia A (HA, OMIM 306700) is an X-linked bleeding
disorder caused by heterogeneous mutations in the factor VIII

gene (F8). The FVIII protein is required for propagation of the
intrinsic coagulation pathway [1]. Hemophilia A, or congenital
factor VIII deficiency, is the most common of the inherited

bleeding disorders, its incidence is estimated to be between
1:5,000 and 1:10,000 in men [2,3].

Factor VIII (F8) is the only gene known to be associated
with hemophilia A. F8 maps to the distal end of the long

arm of the X-chromosome (Xq28) and spans 186 kb of geno-
mic DNA. It consists of 26 exons that encode a 2351 amino
acid precursor polypeptide [4]. The mature FVIII protein con-

sists of three homologous A domains, two homologous C
domains and the unique B domain, which are arranged in
the order A1-A2-B-A3-C1-C2 from the amino terminus to

the carboxyl-terminal end. The different domains play an
important role in the function of FVIII as each domain con-
tains specific binding sites for different components of the clot-
ting cascade [5,6]. Genetic defects can affect these interaction

sites and cause HA [7].
Since the publication of the sequence of the F8 gene in

1984, a large number of mutations that cause HA have been

identified. The most common is the intron 22 inversion and
intron 1 inversion of the F8 gene, which occur in 40–50%
and 5–7% of patients with severe HA, respectively [8,9]. The

remaining cases are caused by numerous different mutations
spread throughout the gene. The majority of these are point
mutations or small rearrangement [9,10]. Over the last decades,

rapidly increasing numbers of causative gene alterations have
been described in different ethnic groups [11–16]. At present,
more than 1209 mutations within the F8 coding and untrans-
lated regions have been identified and listed in the F8 HAM-
STeRS mutation database: a comprehensive international

database, HAMSTeRS (The Hemophilia A Mutation, Struc-
ture, Test and Resource Site), which lists hundreds of muta-
tions yielding the hemophilia phenotype established and
maintained in the United Kingdom [URL: http://euro-

pium.csc.mrc.ac.uk/].

2. Hemophilia A: diagnostic workup

A specific diagnosis of coagulation factor defect cannot be
made on clinical findings. Clinical conditions suggestive of a

coagulation disorder defect are demonstrated in Table 1. Lab-
oratory tests are mandatory for specific diagnosis [2,17].

http://europium.csc.mrc.ac.uk/
http://europium.csc.mrc.ac.uk/


Table 2 Severity classification of hemophilia A and related

symptoms [6,20,21].

Severity Clotting factor

level % activity

(IU/ml)

Symptoms Usual age of

diagnosis

Severe <1%

(<0.01)

Spontaneous bleeding,

predominantly in joints

and muscles

1st year

of life

Moderately

severe

1–5%

(0.01–0.05)

Occasional

spontaneous

bleeding.

Severe bleeding with

trauma, surgery

Before age

5–6 years

Mild >5–40%

(0.05–0.40)

Severe bleeding with

major trauma

or surgery

Often later

in life

Clinical severity does not always correlate with the in vitro assay

result.
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3. Laboratory diagnosis of hemophilia A

3.1. Coagulation screening tests

Evaluation of an individual with a suspected bleeding disorder

includes: platelet count and platelet function analysis (PFA
closure times) or bleeding time, activated partial thrombo-
plastin time (APTT), and prothrombin time (PT). Thrombin

time and/or plasma concentration of fibrinogen can be useful
for rare disorders [18].

In individuals with hemophilia A, the above screening tests

are normal, except prolonged APTT [6,19]. However, in mild
hemophilia A, the APTT may be normal [20,21].

Other tests recently suggested for the assessment of the
overall clotting function include the thrombin generation test,

thromboelastogram and the clot wave form analysis [22].

3.2. Coagulation factor assays

Individuals with a history of a lifelong bleeding tendency
should have specific coagulation factor assays performed even

if all the coagulation screening tests are in the normal range
[19,20]. Patients with mild hemophilia A may have normal
FVIII coagulant levels by one stage clotting or chromogenic

assay which may give five times higher than two stage assay
test [23,24]. The normal range for factor VIII clotting activity
is 50–150%. In hemophilia A, the factor VIII clotting activity
is usually lower than 30–40% with a normal, functional von

Willebrand factor level [6,18,25].
Classification of the severity of hemophilia A is based on

in vitro clotting activity as shown in Table 2. Approximately

70% of hemophilics is classified as severe, though this number
may represent an overestimate since severe hemophilics are
more likely to seek medical care [2].

4. Approach to genetic diagnosis of hemophilia A

There are two different approaches to the genetic evaluation of
hemophilia A [5,26–28].

1. Analysis of single nucleotide polymorphism or microsatel-

lite variable number tandem repeat markers in the FVIII
gene to track the defective X-chromosome in the family

(linkage analysis).
2. Identification of the mutation in the FVIII or FIX gene

(direct mutation detection).
4.1. Linkage analysis

This can be reliable in up to 99% when applied to those with
more than one affected member (familial hemophilia) but can

only exclude the carrier status in a female when applied to a
family with no prior history of hemophilia (sporadic hemo-
philia) [29]. The key requirement for linkage analysis is the het-

erozygosity of the polymorphic marker in the mother of the
index case. This requires a strategy for sequential analysis of
different polymorphisms in FVIII gene depending on heterozy-

gosity rates in the population [5,7]. In view of considerable eth-
nic and geographical variation in the allele frequencies of these
polymorphisms, it is necessary to establish the informativeness
of these polymorphisms in different populations [4,5,9,28].

4.2. Direct mutation detection

Direct detection of disease causing mutation is being increas-
ingly used for genetic diagnosis of hemophilia. This approach
has a near 100% accuracy and is informative in over 95% of

families with hemophilia A [29]. It is equally efficient and sen-
sitive in detecting mutations in both familial and sporadic
hemophilia, even in the absence of a proband [30].

The strategy employed includes amplification of the FVIII

gene by polymerase chain reaction (PCR) followed by detec-
tion of mutations by various screening methods or/and DNA
sequencing [7,28,31].

For reasons of cost and wide applicability, a simple muta-
tion screening method prior to sequencing provides a powerful
and accurate tool for genetic diagnosis. Abnormal PCR prod-

uct profiles are sequenced to identify the nucleotide change [5]
.Various mutation screening techniques can be used, such as
long distance polymerase chain reaction, multiplex ligation-

dependent probe amplification, denaturing high performance
liquid chromatography and direct sequencing [7,28–31]. Using
combined strategy, the detection rate can be as high as 100%,
86% and 89% in patients with severe, moderate and mild HA,

respectively [14].

5. Molecular genetic testing in hemophilia A

5.1. Targeted mutation analysis

� An F8 intron 22-A gene inversion is described in nearly half
of families with severe hemophilia A [6,8,11]. Lower values
are reported in non Caucasians [9]. This inversion can be

detected by Southern blotting or, more recently, by long-
range or inverse PCR [11,31].
� An F8 intron 1 gene inversion accounts for 2–3% of severe

hemophilia A in Caucasians and up to 7% in Asian popula-
tion [9].This inversion is typically detected by PCR [8,11,31].
5.2. Mutation scanning or sequence analysis

� The mutation detection rate in individuals with hemophilia

A who do not have one of the two common inversions
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varies from 75% to 98%, depending on the screening

method used [6,29].
� In severe hemophilia A, gross gene alterations (including
large deletions or insertions, frameshift and splice junction

changes, and nonsense and missense mutations) of F8
account for approximately 50% of mutations detected
[10,11,32,33].
� In mild to moderately severe hemophilia A, missense muta-

tions within the exons coding for the three A domains or the
two C domains account for most of the mutations detected
[8,10,11,32,34].
6. Clinical value of molecular genetic testing of hemophilia A

Establishing the diagnosis of hemophilia A in a proband

requires measurement of factor VIII clotting activity, molecu-
lar studies are not indicated for diagnosis of hemophilia A [6].
The indications of molecular genetic diagnosis of hemophilia

A and, their clinical applications are summarized in Table 3.

7. Genotype–phenotype relation in hemophilia A

All males with a F8 disease-causing mutation will be affected
and will have approximately the same severity of disease as
other affected males in the family. However, other genetic

and environmental effects may modify the clinical severity
[6,35].

It has been long recognized that 10–15% of patients with

‘‘phenotypically characterized’’ severe hemophilia (<1% clot-
ting factor activity) have relatively mild disease clinically
[30,36,37]. Not all these patients have frequent spontaneous

bleeding, and even among those who bleed, the extent of joint
Table 4 Molecular genetic testing and phenotype /genotype relatio

Test method Mutations detected

Targeted mutation analysis F8 intron 22-A gene inversio

F8 intron 1 gene inversion

Mutation scanning or sequence analysis F8 sequence variants

Deletion analysis F8 exonic and large gene del

Table 3 Clinical applications of hemophilia A molecular

genetic testing [4,11,15].

� Molecular genetic testing is performed on a proband to detect

the family-specific mutation in F8 in order to obtain

information for genetic counseling of at-risk family members

� It is indicated for prognostication in individuals who represent

a simplex case (i.e., who are the only affected member in a

family), identification of the specific F8 mutation can help

predict the clinical phenotype and assess the risk of developing

a factor VIII inhibitor

� Carrier testing for at-risk relatives requires prior identification

of the disease-causing mutations in the family

� Prenatal diagnosis and preimplantation diagnosis for at-risk

pregnancies require prior identification of the disease-caus-

ing mutation in the family
damage tends to vary considerably. The basis for this differ-

ence has not been completely understood [21,35,38].

7.1. Factor 8 gene mutation and clinical phenotype

The Factor 8 gene mutation is the most important determinant
of the phenotype in hemophilia A [38,39]. Other contributing
determinants of the clinical phenotype are summarized in

Table 4.
Generally, it has been demonstrated that the most frequent

mutations in F8C are intron 22 and 1 inversions, which occur

in approximately 50% and 5% of patients, respectively, with a
severe phenotype. Large gene deletions are observed in
approximately 5% of alleles from patients with severe hemo-

philia A. The remaining severe cases and all moderate and mild
cases result from numerous point mutations and small inser-
tions/deletions, which are de novo mutations in one-third of
cases [30,40]. Point mutations leading to new stop codons are

all essentially associated with a severe phenotype, as are most
frameshift mutations. (An exception is the insertion or deletion
of adenosine bases resulting in a sequence of eight to ten ade-

nosines, which may result in moderately severe hemophilia A
[40,41]. Splice site mutations are often severe but may be mild,
depending on the specific change and location [5,6,8]. Missense

mutations occur in fewer than 20% of individuals with severe
hemophilia A but nearly all of those with mild or moderately
severe bleeding tendencies [8,32,42].

Severe hemophilia with mild bleeding phenotype is

described in non-null F8 mutations [39].
The data suggest that the spectrum of gene defects in differ-

ent populations is heterogeneous. There is no hotspot of muta-

tion in the F8 gene, except the intron 22 and intron 1 inversion,
even in patients from different areas of a same country [15].
Different non inversion mutations in F8 gene have been de-

scribed in different populations, and these relatively frequent,
population-specific, mutations mainly missense mutations,
together with the de novo alterations can lead to significant

differences in the spectrum of F8 mutations among different
populations [43].

Published data of the The Italian AICE-Genetics hemo-
philia A database [8] where the factor VIII gene (F8) was ana-

lyzed in 1296 unrelated patients with hemophilia A revealed
that F8 mutations were identified in 874 (89%), 146 (89%),
and 133 (94%) families with severe, moderate, or mild hemo-

philia A, respectively. Mutations predicting a null allele were
responsible for 80%, 15%, and less than 1% of cases of severe,
moderate, or mild hemophilia A, respectively. In severe HA,

F8 intron 22 and 1 inversions occurred in 52% and 2%,
respectively, large and small deletions in 1% and 10%, respec-
tively, non sense mutations in 9%, splice site mutation in 4%
n in hemophilia A [6].

Mutation detection frequency by test method

Probands with severe

hemophilia A

Probands with mild to

moderately severe hemophilia A

n 48% 0%

3% 0%

43% 98%

etions 6% <1%



Table 5 Genetic and non-genetic factors influencing the

development of inhibitors in hemophilia A patients [59–63].

Genetic risk factors

� Type of F8 mutation

� HLA class II polymorphism

� Ethnicity
� Immunogenecity

� Family history of inhibitors

Non-genetic risk factors

� –Immunological factors

� –Surgery and trauma

� –Treatment-related factors

–Age at 1st exposure

–Modality of FVIII infusion (continuous infusion)

–Intensive treatment with FVIII concentrates

–Type of FVIII given

–Changes of FVIII concentrates
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and small insertions in 6%. Missense mutations accounted for

68% and 80% of F8 mutations in moderate and severe HA,
respectively.

Chen et al. 2010 [9] tested 115 HA patients from 91 unre-
lated families in Taiwan, found Intron 22 inversion in 27.8%

of the total and 36.7% of severe HA patients while intron 1
inversion comprised of 7.6% of severe patients, values differ-
ent from Caucasian population. The only female patient with

severe HA was found to have heterozygous non-sense muta-
tion (c.6683G> A) of exon 24.

7.2. Coinheritance of thrombophilia genes and clinical phenotype
in hemophilia A

In severe hemophilia, heterozygosity for thrombophilic genes
may play a role in the milder clinical presentation [35,44].
Coinheritance of prothrombotic genes in hemophilia resulting
in milder phenotype has been described including protein C,

protein S and antithrombin deficiencies, heterozygosity for fac-
tor V Leiden, PT20210A and for tethylenetetrahydrofolate
reductase (MTHFR) gene C677T polymorphisms [44–46].

Ettingshausen et al. 2001 [47] studied 92 patients with
severe hemophilia A, and reported 10 cases with associated ge-
netic thrombophilic factors (6 FV Leiden, 3 PT20210A, 1pro-

tein C type I deficiency), they had delayed onset of symptoms
(0.9 vs. 1.6 years). Other studies described protective effect of
gain-of-function gene mutations (factor V Leiden [48] and
prothrombin G20210A mutation [48–50]) for annual bleeding

frequency and severity of the hemophilic arthropathy.
It has been suggested that the prothrombotic mutation may

compensate for the low factor VIII level, resulting in more effi-

cient thrombin generation and ensuing attenuation of clinical
symptoms [44,46].

However, significant association between co-inheritance of

prothrombotic genes and mild hemophilia phenotype has not
been confirmed by other studies [37,51]. Prothrombotic risk
factors seem to influence phenotype but they can account for

only a small part of the heterogeneity .It is suggested that
the origin of the large heterogeneity of phenotypes in severe
hemophilia is multifactorial [35].

On the other hand, the association of this prothrombotic

mutation with other acquired or inherited thrombophilic fac-
tors might overcome the congenital bleeding tendency in
hemophiliacs, thereby increasing the risk of thrombotic com-

plications [46].

7.3. Other possible hemophilia A phenotype modifiers

Inter-individual variance in the pharmacokinetics (PK) of
FVIII is well described. In patients with hemophilia a clear

association was demonstrated between blood group and von
Willebrand factor level and their FVIII half-life. Patients with
blood group O and a low von Willebrand antigen level have a
significantly decreased FVIII half-life and significantly lower

annual clotting factor consumption [25,52].
The role of the fibrinolytic pathway in the clinical heteroge-

neity of hemophilia phenotype have been suggested [53,54].

Grünewald et al. 2002 [53] hypothesized that ineffective hemo-
philic hemostasis in response to trauma evokes a protracted
stimulation of the entire hemostatic system, including costimu-

lation of fibrinolysis. The association of a more intensely hem-
orrhagic phenotype with a paradoxical hyperstimulation of the
fibrinolytic system resembles a vicious circle, where bleeding

seems to cause predisposition to more bleeding. Whether these
differences can also explain the heterogeneity of phenotypes
has not yet been established [25,54].

Other authors [38] suggested that mediators of the inflam-

matory response in the synovium are likely to impact the sever-
ity of joint damage and partially contribute to the variability in
the severity of arthropathy in hemophilia patients.

8. Genetic aspects of inhibitor development in hemophilia A

The production of neutralising antibodies in response to in-
fused factor VIII has always been of considerable interest,
principally because it is a major complication of replacement

treatment [55]. The cumulative risk of inhibitor development
in previously untreated patients (PUPS) was reported to range
from 0% to 38.7% depending on type of factor VIII product

used [56,57]. Inhibitors develop more commonly in severe
hemophilia than in mild/moderate disease, and it is potentially
a major complication of gene therapy [8,5].

Evidently, the mutation underlying the hemophilia is

important [5,8]. Mutations of F8 gene associated with the ab-
sence of a gene product, such as deletions or nonsense muta-
tions, confer a high risk for inhibitor production; mutations

associated with the presence of a gene product (even very
low amounts of the protein) confer a low risk for inhibitor pro-
duction [8,59,63–65]. However, in reality, the situation is not

so clear cut. Among patients with identical mutations, some
may produce inhibitors and others may not. Clearly other fac-
tors are implicated [5,63,64]. Margaglione et al. 2008 [8]
reported that patients who had severe hemophilia A and muta-

tions predicting a null allele developed inhibitors more
frequently (22% to 67%) than patients with missense muta-
tions (5%). Both genetic and non genetic factors could be

involved in inhibitor development in HA (Table 5).

8.1. Genetic factors involved in inhibitor development

Several genetic factors, such as a positive family history of
inhibitors, ethnicity, FVIII genotype, and certain polymor-

phisms in immune modulatory genes, are associated with the
risk of inhibitor development [35,64].
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Studies of the correlation of the genetic defects with the

clinical course revealed that the type of F8 mutation represents
the most important genetic predisposing factor for inhibitor
formation, the most severe complication of treatment with fac-
tor VIII concentrates [36]. Large deletions, nonsense mutations

and inversions are associated with a higher risk of inhibitor
development in an Italian study [65], explaining increased risk
in patients with inhibitor family history.

Another large study in the Netherlands [58] found that, in
patients with severe HA, splicing errors presented the highest
frequency of inhibitors, ahead of inversion of intron 1 and of

intron 22, nonsense mutations and large deletions. The lowest
inhibitor frequency in severe HA was found in patients with
missense mutations and small deletions/insertions. Their

results suggest that complete absence of FVIII because of null
mutations, including splice site mutations, or the absence of a
second transcript result in an increased risk of inhibitor
development.

However, concordance family studies showed that factors
other than F8 mutations are involved. An emerging role is
investigated for polymorphisms of immune-regulatory genes

that may increase (IL-10 and TNF-alpha) or reduce (CTLA-
4) inhibitor risk and whose heterogeneous ethnic distribution
may correlate to the higher inhibitor risk in non-caucasian

patients [61,62,66,67].
A role for FVIII haplotypes, particularly in black hemo-

philiacs, has been recently proposed. Viel et al. [68] suggested
that mismatched factor VIII replacement therapy may be a

risk factor for the development of anti-factor VIII alloantibod-
ies in black population.

A weak association between human MHC (HLA) class II

genotype and the development of inhibitor antibodies against
factor VIII was reported; slightly more pronounced in patients
with the intron 22 inversion [5]. The interaction between F8

genotype and HLA haplotype has been suggested as possible
determinant factor of inhibitor development in hemophilia
[69]. Other studies failed to demonstrate relation between

HLA class I and II and inhibitor development in hemophilia
A [70].
8.2. Non genetic factors involved in inhibitor development

Some clinical features of inhibitors in hemophiliacs remain
incompletely explained by genetic predisposition [71].

The observation of hemophilic monozygotic twins discor-
dant for inhibitors points out the interplay of non-genetic fac-
tors. Theoretically, challenges of the immune system brought

about by infections, vaccinations, and tissue damage in associ-
ation with FVIII exposure have the potential to generate
signals that activate the antigen-presenting cells [71,72], ulti-

mately promoting the immune response against FVIII. The
influences of treatment-related cofactors, such as age at first
exposure, type of product used, mode of delivery, intensity
of replacement, and treatment modality, have been reported

in clinical studies [60,70,73].
8.3. Genetic factors and response to immune tolerance in
hemophilia patients with inhibitors

Immune tolerance induction (ITI) is an important line of man-

agement of inhibitor development in hemophilia patients [57].
The role of F8 genetic profile in predicting response to immune

tolerance induction (ITI) in inhibitor patient is suggested [40].
Recently, an Italian Study Group [65] (AICE PROFIT)

proved that F8 mutations known to be associated with a high
risk of inhibitor development (large deletions, inversions, non-

sense mutations and splice site mutations) had significantly
lower ITI success rate than patients with lower-risk F8 defects
(small insertions/deletions and missense mutations). On multi-

variate analysis, the mutation risk class remained a significant
predictor of success, as were inhibitor titer at ITI start, and
peak titer during ITI. The study concluded that ITI success

is influenced by F8 genotype.
9. Diagnosis and morbidity of female carrier of hemophilia A

Approximately 10% of females with one F8 disease-
causing mutation and one normal allele has a mild bleeding

disorder [4,6]. It has been estimated that for each male with
hemophilia, there are five potential female carriers [74].

Pedigree analysis and clotting factor VIII levels were previ-
ously used to diagnose carriership for hemophilia [4]. By pedi-

gree, a ‘‘definite’’ carrier is the daughter of a hemophiliac, the
mother of two hemophiliacs and the mother of a hemophiliac
with family history of hemophilia traceable in the female line

[27]. In the early 1980s, it became possible to ascertain the car-
rier status by means of DNA analysis, which has evolved from
haplotyping to mutation analysis offering certainty about the

carrier status [75]. During the last 3 decades, genetic counsel-
ing, carrier testing, and prenatal diagnosis of hemophilia have
become an integrated part of the comprehensive care for
hemophilia [4,74].

Female carriers are expected to have a plasma concentration
of factor VIII corresponding to half the concentration found in
healthy individuals, which is generally sufficient for normal

hemostasis. However, in carriers a wide range in clotting factor
levels is seen, from very low, resembling affected males, to the
upper limit of normal [76]. This range has been attributed to

the phenomenon of lyonization, random X-chromosome inac-
tivation, which takes place in the early embryonic life [1,27].

In the study of Plug at al 2006 [77], the median clotting fac-

tor level of carriers was 60% (range, 5–210%) and in non-
carriers 102% (range, 45–328%). Their findings suggest that
not only clotting factor levels are at the extreme of the distri-
bution, resembling mild hemophilia, but also mildly reduced

clotting factor levels between 40% and 60% are associated
with bleeding. Ay et al. [76] reported that FVIII levels are low-
er in carriers compared to non-carriers [74%(51–103)vs.

142%(109–169)]. The type of FVIII gene mutation do not
influence FVIII levels and Carrier status is the major determi-
nant of a carrier’s FVIII plasma level. Factors known to influ-

ence FVIII levels in the general population do not significantly
affect FVIII activity in carriers.

Carrier women will benefit from knowledge of both their

genetic (mutation present or not) and their phenotype (level
of plasma factor activity) status [4,74]. Carriers of hemophilia
A with clotting factor levels of less than 60% often have an in-
creased bleeding tendency. When a FVIII level of less than

60% is found, a carrier should be considered and treated as
a (mild) hemophilia patient. Carriers with clotting factor levels
of less than 30% should be regularly seen at a hemophilia

treatment centre [78].
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The heterogeneity in FVIII levels is particularly important

for the pregnant carrier for at least two major reasons: First,
hemophilia carriers have been reported to be at a significantly
higher risk for primary and secondary postpartum hemor-
rhage. Second, the risk for hemorrhage also extends to a hemo-

philiac infant born to the carrier, particularly with respect to
scalp and intracranial bleeds [79].

10. Prenatal diagnosis of hemophilia A

As the severity of hemophilia remains stable within an individ-

ual family, the partners can base their decision on their own
experience with the disease, while they are informed by a clini-
cian about progress in hemophilia treatment. Prenatal testing

is generally indicated in families with severe or moderate forms
of hemophilia. In families with the mild disease such indication
is rare [27,80].

10.1. Molecular genetic testing

Prenatal testing can be done for carrier women if the mutation

is identified in a family member or if linkage has been estab-
lished in the family [4]. The fetal sex is identified by chromo-
some analysis of fetal cells obtained by chorionic villus

sampling (CVS) at approximately 10–12 weeks’ gestation or
by amniocentesis usually performed at approximately 15–18
weeks’ gestation. If the karyotype is 46, XY, DNA extracted

from fetal cells can be analyzed for the known F8 disease-caus-
ing mutation or for the informative markers [6].

10.2. Percutaneous umbilical blood sampling (PUBS)

If the disease-causing F8 mutation is not known and if linkage
is not informative, prenatal diagnosis is possible using a fetal

blood sample obtained by PUBS at approximately 18–21
weeks’ gestation for assay of factor VIII clotting activity [6,27].

Invasive sampling such as chorionic villus sampling (CVS)

or amniocentesis (AMC) carries about 1–2% risk of fatal
and non-fatal complications to the fetus [27]. Hence, efforts
are on to develop prenatal diagnostic strategies either by using

circulating fetal cells or fetal DNA from maternal blood [80].
Fetal sex assessment by detecting specific Y chromosome

sequences in maternal blood has high accuracy from the sev-
enth week of gestation [81]. Recently, Cell-free fetal nucleic

acids (cffNA) detected in the maternal circulation during preg-
nancy, potentially offer an excellent method for early non-
invasive prenatal diagnosis (NIPD) of the genetic status of a

fetus. Using molecular techniques, fetal DNA and RNA can
be detected from 5 weeks gestation. This method can be used
for non invasive fetal sex determination [82,83].

10.3. Preimplantation genetic diagnosis (PGD)

PGD is recently available for families in which the disease-

causing mutation has been identified in an affected family
member [84,85]. Although financial implication is consider-
able, yet for couples who do not want to go through the trials

and tribulations of termination of pregnancy in case of an af-
fected fetus, these techniques remain the techniques of choice
for prenatal diagnosis [80].

Factor VIII DNA microarray analysis is reported as an
alternative gene mutation analysis approach that has a high
sensitivity and reproducibility in molecular diagnosis of hemo-

philia, however, expensive the technique is [86]. A recent study
[80] suggested the advantage of gene microarray analysis in
prenatal diagnosis of hemophilia, not only by identifying the
highly heterogeneous mutations but may also be useful in

studying the effect of various ameliorating or epistatic genetic
mutations/polymorphisms simultaneously, providing a wide
range of options to the genetic counselors, and the couples opt-

ing for prenatal diagnosis.
11. Gene therapy in hemophilia A

Hemophilia is a very good candidate for use of gene therapy
protocols because it is a monogenic disease, and even low

expression is able to achieve reversion from a severe to a mod-
erate phenotype [56,87]. Gene therapy for hemophilia is justi-
fied because it is a chronic disease and because a very regular

factor infusion is required that may involve fatal risks and be-
cause it is very expensive [87].

Several strategies have been proposed for gene therapy for
hemophilia. These strategies are based on both in vivo and

ex vivo approaches. The in vivo delivery studies using non-viral
or viral vectors, such as, AAV(adeno-associated viral vector),
and retroviral have demonstrated very encouraging preclinical

data and early-phase clinical trials were safe [87–89]. However,
to achieve the therapeutic success of these strategies, there re-
main challenges on both efficacy and safety issue such as po-

tential side effects related to vector-mediated cytotoxicity,
unwanted immunological responses and the risk of insertional
mutagenesis [90,91].

Ex vivo delivery of therapeutic transgenes provides a safer

strategy by avoiding systemic distribution of viral vectors
[90]. A clinical trial that used autologous skin fibroblasts,
genetically modified with the FVIII transgene, implanted into

the greater omentum of severe hemophilia A patients, was
well tolerated and a safe procedure [92]. However, elevation
of FVIII levels was modest and short term, it was suggested

that the viability of the transplanted cells as well FVIII
expression levels is a major obstacle of this strategy.
The use of hematopoietic stem cells (HSC) [93,94] and autol-

ogous endothelial progenitor cells [95] provides an alternative
strategy to deliver the therapeutic coagulation factor [90,
96].

Recently suggested new approaches of gene therapy in

hemophilia are Platelet-based gene therapy aiming at delivery
of clotting factors to vessel injury sites by platelets [97,98], and
intraarticular gene therapy targeting protein expression in af-

fected hemophilic joints [90].
A recent approach is the novel concept of continuous expres-

sion of activated FVII from a donated gene for the treatment of

hemophilia, based on the fact that infusion of recombinant hu-
man activated factor VII (FVIIa), proved effective in inducing
hemostasis in severe hemophilia [99,100]. Compared to factor

VIII, FVIIa as a potential transgene, is unlikely to induce a
harmful immune response because all hemophilia patients
should be fully tolerant to it, and it controls hemostasis regard-
less of F8 inhibitors status. The use of FVIIa as the transgene

and gene therapy as the delivery method is suggested as future
therapy [101,102].

Gene therapy has recently been investigated for the man-

agement of the problem of inhibitor development in hemo-
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philia patients, yet animal studies are still in early phases

[56,103].
In conclusion, the rapidly proceeding advances in the tech-

nology of genetic diagnosis of hemophilia in the last decades
give the patients and their treating physicians better options

to anticipate disease severity and the possibility of complica-
tions. This offers better options for genetic counseling, disease
prevention, planning of patient therapy, and better detection

rate and care of carriers and their offsprings.
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