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Random volumes under a general matrix-variate model
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Abstract

The convex hull generated by p linearly independent points in Euclidean n-space, n � p will almost
surely determine a p-simplex and the corresponding p-parallelotope. The volume of this p-parallelotope is

v = |XX′| 1
2 where the rows of the p × n, n � p matrix of rank p represent the p linearly independent points.

If the points are random points in some sense then v becomes a random volume. The distribution of this
random volume v when the matrix X has a very general real rectangular matrix-variate density is the topic of
this paper. The complicated classical procedures based on integral geometry techniques for dealing with such
problems are replaced by a simpler procedure based on Jacobians of matrix transformations and functions of
matrix argument. Apart from the distribution of v under this general model, arbitrary moments of v, connection
to the likelihood ratio statistic or λ-criterion for testing hypotheses on the parameters of multivariate normal
distributions, connections to Mellin–Barnes integrals and Meijer’s G-function, connection to the concept of
generalized variance, various structural decompositions of v and special cases are also examined here.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let the matrix X =
[

X1
.
.
.

Xp

]
, Xi = (xi1, xi2, . . ., xin), i = 1, 2, . . ., p, n � p be of full rank p.

Then the p linearly independent rows X1, . . ., Xp can be considered as p points in n-dimensional
Euclidean space. If O denotes the origin of a rectangular coordinate system then the convex
hull generated by the p linearly independent vectors OXi, i = 1, . . ., p can create a p-simplex

and the corresponding p-parallelotope. Then the determinant, v = |XX′| 1
2 gives the volume of

this p-parallelotope, where X′ denotes the transpose of X. If the points X1, . . ., Xp are random
points in some sense then v is a random volume. Classical approach to distributional aspects of
random volumes is based on the assumptions that the random points X1, . . ., Xp are statistically
independently distributed and further that they are isotropic random points in the sense that their
densities remain invariant under orthogonal transformations or rotations of the rectangular coor-
dinate system. The technique from differential and integral geometry become readily applicable
when the points are statistically independent and isotropic, see for example [11–16]. A canonical
decomposition of the probability measure of isotropic random points is given in [15] where it
is shown that some three types of densities are feasible, namely, special cases of type-1 beta,
which includes uniform also, special case of type-2 beta and Gaussian. A description of the
classical approach is available in Chapter 3 of [3]. In [4–6] it is shown that the restrictions of
the random points being statistically independent and isotropic are unnecessary, that the matrix
X can have general distributions in the categories of real rectangular matrix-variate Gaussian,
generalized type-1 and type-2 beta, and that the much simpler procedure based on Jacobians of
matrix transformations can be used instead of integral geometry techniques.

In the present paper we will show that the random points can have rectangular matrix-variate
densities under a very general framework, connecting the models in [7,9], and still the random
volumes can be studied. Also it will be shown that the volume of the p-parallelotope can be
connected to the likelihood ratio test statistics for testing various types of hypotheses on the
parameters of one or more multivariate Gaussian distributions, to sample generalized variance
when the population is Gaussian and to Mellin–Barnes type integrals, and that, structurally, the
volume of the p-parallelotope can be viewed as a product of independently distributed real scalar
random variables belonging to the categories of type-1, type-2 betas and gamma variables.

2. Random volume under a general model

Let the p × n, n � p matrix X, representing the p linearly independent points in Euclidean
n-space have a general density of the following form:

f (X) = c|XX′|δ|I − a(1 − α)XX′| γ
1−α (2.1)

for I − a(1 − α)XX′ > 0, a > 0, γ > 0, −∞ < α < ∞ where a, γ, δ and α are scalar quanti-
ties, and |(·)| denotes the determinant of (·). This is a variant and generalization of the model in
Chapter 3 of [3], and a particular case of the model in [7]. A more general model would be to

replace XX′ by A
1
2 (X − M)B(X − M)′A 1

2 where A = A′ > 0, p × p, B = B ′ > 0, n × n are
constant matrices and M is a p × n constant matrix. Here M will act as a relocation parameter
matrix or as the mean value or expected value of X, that is, E(X) = M . Then the relocated

re-scaled volume of the p-parallelotope will be v1 = |A 1
2 (X − M)B(X − M)′A 1

2 | 1
2 . Since the

derivations are parallel we will deal with the model in (2.1). For α < 1 the model in (2.1) will
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act as a generalized real rectangular matrix-variate type-1 beta model and for α > 1, writing
1 − α = −(α − 1) the model in (2.1) will be a real rectangular matrix-variate type-2 beta model.
Observe that, when α approaches 1 from the left or from the right, we have,

lim
α→1

|I − a(1 − α)XX′| γ
1−α = e−aγ tr(XX′), (2.2)

where tr(·) denotes the trace of (·). Therefore, when α → 1 the model in (2.1) is a real rectangular
matrix-variate gamma model. For a discussion of rectangular matrix-variate distributions, see
[9]. The normalizing constant c in (2.1) can be evaluated separately for the three cases α <

1, α > 1, α → 1. Let S = XX′ then from Theorem 2.16 and Remark 2.13 of [2], we have, after
integrating out over the Stiefel manifold Vp,n,

dX = |S| n
2 − p+1

2
π

np
2

�p

(
n
2

)dS, (2.3)

where, for example, dX denotes the wedge product of the pn differentials in X, that is,

dX = dx11 ∧ · · · ∧ dx1n ∧ dx21· · · ∧ dx2n ∧ · · · ∧ dxpn (2.4)

and �p(·) is the real matrix-variate gamma function defined by

�p(α) = π
p(p−1)

4 �(α)�

(
α − 1

2

)
· · · �

(
α − p − 1

2

)
, �(α) >

p − 1

2
, (2.5)

where �(·) denotes the real part of (·). From (2.1) and (2.3) we have,

1 =
∫

X

f (X)dX

= c
π

np
2

�p

(
n
2

) ∫
S

|S|δ+ n
2 − p+1

2 |I − a(1 − α)S| γ
1−α dS (2.6)

= c[a(1 − α)]−p(δ+ n
2 ) π

np
2

�p

(
n
2

) ∫
S

|S|δ+ n
2 − p+1

2 |I − S| γ
1−α dS for α < 1 (2.7)

= c[a(1 − α)]−p(δ+ n
2 ) π

np
2

�p

(
n
2

) �p(δ + n
2 )�p

(
γ

1−α
+ p+1

2

)
�p(δ + n

2 + γ
1−α

+ p+1
2 )

, α < 1 (2.8)

for � (
δ + n

2

)
>

p−1
2 , �

(
γ

1−α
+ p+1

2

)
>

p−1
2 , and the integral is evaluated by using a matrix-

variate type-1 beta integral, see for example [2]. In statistical problems usually the parameters
are real and hence we will assume that the parameters are real. Then for α < 1 the conditions are
δ > −n

2 + p−1
2 ,

γ
1−α

> −1 and then

c =
[a(1 − α)]p(δ+ n

2 )�p

(
δ + n

2 + γ
1−α

+ p+1
2

)
�p

(
n
2

)
�p

(
δ + n

2

)
�p

(
γ

1−α
+ p+1

2

)
π

np
2

, α < 1. (2.9)

For α > 1, 1 − α = −(α − 1) and then the integral corresponding to the one in (2.6) can be
evaluated with the help of a real matrix-variate type-2 beta integral, see [2], and then in this case,

c =
[a(α − 1)]p(δ+ n

2 )�p

(
γ

1−α

)
�p

(
n
2

)
�p

(
δ + n

2

)
�p

(
γ

α−1 − δ − n
2

)
π

np
2

, α > 1 (2.10)
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for δ > −n
2 + p−1

2 ,
γ

α−1 > δ + n
2 + p−1

2 . For α → 1 the integration can be done with the help
of a real matrix-variate gamma integral and then

c = (aγ )p(δ+ n
2 )�p

(
n
2

)
�p

(
δ + n

2

)
π

np
2

, α → 1, δ > −n

2
+ p − 1

2
. (2.11)

3. Arbitrary moments

Consider the hth moment of the volume of the p-parallelotope for arbitrary h. As an expected
value, the hth moment is given by

E(vh) = E
[
|XX′| 1

2

]h = E
[
|XX′| h

2

]
=

∫
X

|XX′| h
2 f (X)dX, (3.1)

where f (X) is the density in (2.1). Then the hth moment is available by replacing δ by δ + h
2

and then taking the ratio c(δ)/c(δ + h
2 ) where c(δ) is the normalizing constant c. This is then

available from (2.9)–(2.11). That is,

E(vh)=E
[
|XX′| h

2

]

= 1

[a(1 − α)] ph
2

�p

(
δ + n

2 + h
2

)
�p(δ + n

2 )

�p

(
δ + n

2 + γ
1−α

+ p+1
2

)
�p

(
δ + n

2 + γ
1−α

+ p+1
2 + h

2

) , α < 1 (3.2)

= 1

[a(α − 1)] ph
2

�p

(
δ + n

2 + h
2

)
�p

(
δ + n

2

) �p

(
γ

α−1 − δ − n
2 − h

2

)
�p

(
γ

α−1 − δ − n
2

) , α > 1 (3.3)

= 1

(aγ )
ph
2

�p

(
δ + n

2 + h
2

)
�p

(
δ + n

2

) , α → 1. (3.4)

Let

u1 =|a(1 − α)XX′| 1
2 for α < 1,

u2 =|a(α − 1)XX′| 1
2 for α > 1, (3.5)

u3 =|aγXX′| 1
2 for α → 1.

Then from (3.2)–(3.4) we have, by opening up �p(·) in terms of gammas,

E[uh
1] = c1(h)

c1(0)
, c1(h) =

p∏
j=1

�
(
δ + n

2 − j−1
2 + h

2

)
�

(
δ + n

2 + γ
1−α

+ p+1
2 + h

2 − j−1
2

) . (3.6)

Thus we can write E(u2
1)

h = E(x1)
hE(xh

2 )· · ·E(xp)h or structurally

u2
1 = x1x2· · ·xp, (3.7)

where x1, . . ., xp are statistically independently distributed real scalar type-1 beta random vari-

ables with the parameters
(
δ + n

2 − j−1
2 ,

γ
1−α

+ p+1
2

)
, j = 1, . . ., p.
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E(uh
2)= c2(h)

c2(0)
,

(3.8)

c2(h)=
p∏

j=1

[
�

(
δ + n

2
+ h

2
− j − 1

2

)
�

(
γ

α − 1
− δ − n

2
− h

2
− j − 1

2

)]
.

Hence,

E(u2
2)

h = E(yh
1 )E(yh

2 )· · ·E(yh
p)

or structurally

u2
2 = y1· · ·yp, (3.9)

where y1, . . ., yp are statistically independent and further, yj is a real scalar type-2 beta random

variable with the parametes
(
δ + n

2 − j−1
2 ,

γ
α−1 − δ − n

2 − j−1
2

)
, j = 1, . . ., p. Similarly

u2
3 = z1z2· · ·zp, (3.10)

where zj is a real gamma variable with the paramters (δ + n
2 − j−1

2 , 1), j = 1, . . ., p and z1, . . .,

zp are statistically independently distributed.

4. Connection to likelihood ratio test statistics

One of the procedures for testing statistical hypotheses on the parameters of one or more
populations is the likelihood ratio principle, resulting in what is known as the λ-criterion. When
testing hypotheses on the parameters of multivariate Gaussian populations the λ-criterion or one
to one function of λ has the following structure:

λ = |G1|
|G1 + G2| , (4.1)

where G1 and G2 are independently distributed Wishart matrices with different degrees of free-
dom. Wishart density is a particular case of a general real matrix-variate gamma density. A real
matrix-variate gamma density has the following form:

g(S) = |B|α
�p(α)

|S|α− p+1
2 e−tr(BS), S = S′ > 0, B = B ′ > 0, �(α) >

p − 1

2
, (4.2)

where the p × p real positive definite matrix S is the matrix-variate gamma variable and the
real p × p positive definite matrix B is a constant parameter matrix, α is a scalar parameter and
�p(α) is the real matrix-variate gamma function. When B = 1

2V −1, V = V ′ > 0 and α = n
2 , n =

p, p + 1, . . . the matrix S is said to have a Wishart density with n degrees of freedom where V

is usually a nonsingular covariance matrix.
In (2.1) when α → 1 the variable XX′ there has a real matrix-variate gamma density and

X there is said to have a real rectangular matrix-variate gamma distribution. Let Y1 and Y2 be
p × n1, n1 � p and p × n2, n2 � p matrices of rank p having real rectangular matrix-variate
gamma densities of the following form:

gi(Yi) = ci

∣∣∣∣A 1
2
i YiBiY

′
i A

1
2
i

∣∣∣∣
δi

e−tr
[
A

1
2
i YiBiY

′
i A

1
2
i

]
, (4.3)

where Ai = A′
i > 0, i = 1, 2 are p × p, Bi = B ′

i > 0 is ni × ni and Ai, Bi, i = 1, 2 are con-
stant matrices, c1, c2 are normalizing constants and let Y1 and Y2 be statistically independently
distributed. Let
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Vi = A
1
2
i YiBiY

′
i A

1
2
i , i = 1, 2, V = V1 + V2

and
W = V − 1

2 V1V
− 1

2 . (4.4)
Let us evaluate the density of W from the given densities gi(Yi), i = 1, 2 and by using the fact that
they are statistically independently distributed. Due to statistical independence the joint density
of Y1 and Y2, denoted by g(Y1, Y2) is the product of g1(Y1) and g2(Y2). That is,

g(Y1, Y2)dY1 ∧ dY2 =g1(Y1)g2(Y2)dY1 ∧ dY2

=c1c2

⎧⎨
⎩

2∏
j=1

∣∣∣∣A 1
2
j YjBjY

′
jA

1
2
j

∣∣∣∣
δj

⎫⎬
⎭ e−tr(V )dY1 ∧ dY2. (4.5)

Let Zi = A
1
2
i YiB

1
2
i , i = 1, 2. Then from Theorem 1.18 of [2] we have

dYi = |Ai |−
ni
2 |Bi |− p

2 dZi, i = 1, 2.

Let Vi = ZiZ
′
i , i = 1, 2. Then from Theorem 2.16 of [2], and after integrating over the Stiefel

manifolds Vp,ni
, i = 1, 2 we have

dZi = π
nip

2

�p

(
ni

2

) |Vi |
ni
2 − p+1

2 dVi, i = 1, 2.

Hence the joint density of V1 and V2, denoted by g∗(V1, V2), is given by

g∗(V1, V2) = c1c2

{
2∏

i=1

|Ai |−
ni
2 |Bi |− p

2
π

nip

2

�p(
ni

2 )
|Vi |δi+ ni

2 − p+1
2

}
e−tr(V1+V2). (4.6)

The normalizing constants c1 and c2 are available from the following observations. From g∗(V1,

V2) the density of V1, denoted by g∗
1(V1), is given by

g∗
1(V1) = c1|A1|−

n1
2 |B1|− p

2
π

n1p

2

�p(n1
2 )

|V1|δ1+ n1
2 − p+1

2 e−tr(V1)

and integrating over V1 by using a real matrix-variate gamma integral we have

c1 = |A1|
n1
2 |B1| p

2
�p

(
n1
2

)
π

n1p

2

1

�p

(
δ1 + n1

2

) .

Now, substituting for c1 and c2 in (4.6) we have

g∗(V1, V2) =
⎧⎨
⎩

2∏
j=1

|Vj |δj + nj
2 − p+1

2

�p(δj + nj

2 )

⎫⎬
⎭ e−tr(V1+V2). (4.7)

In g∗(V1, V2) put V = V1 + V2 ⇒ |V2| = |V − V1| = |V |∣∣I − V − 1
2 V1V

− 1
2
∣∣ and W = V − 1

2

V1V
− 1

2 ⇒ dW ∧ dV = |V |− p+1
2 dV1 ∧ dV . Then the joint density of V and W , denoted by

g̃(V , W), is given by

g̃(V , W) =
⎧⎨
⎩

2∏
j=1

1

�p(δj + nj

2 )

⎫⎬
⎭ |V |δ1+δ2+ n1

2 + n2
2 − p+1

2 e−tr(V )

× |W |δ1+ n1
2 − p+1

2 |I − W |δ2+ n2
2 − p+1

2 . (4.8)
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Integrating over V we have the density of W , denoted by h(W), where

h(W) = �p

(
δ1 + δ2 + n1

2 + n2
2

)
�p

(
δ1 + n1

2

)
�p(δ2 + n2

2 )
|W |δ1+ n1

2 − p+1
2 |I − W |δ2+ n2

2 − p+1
2 , O < W < I,

(4.9)

for δi + ni

2 >
p−1

2 , i = 1, 2. Hence W has a real matrix-variate type-1 beta distribution. Oberve
that

|W | = |V1|
|V1 + V2| =

∣∣∣∣A 1
2
1 Y1B1Y

′
1A

1
2
1

∣∣∣∣∣∣∣∣A 1
2
1 Y1B1Y

′
1A

1
2
1 + A

1
2
2 Y2B2Y

′
2A

1
2
2

∣∣∣∣
(4.10)

has the structure in (4.1) but with a more general format in terms of independently distributed real
rectangular matrix-variate gamma variables Y1 and Y2. For A1 = A2 = Ip, B1 = In1 , B2 = In2 ,
we have, by writing W = XX′,

|W | = |Y1Y
′
1|

|Y1Y
′
1 + Y2Y

′
2|

= |XX′| = v2. (4.11)

Hence the random volume v of the p-parallelotope for α < 1 can be given a representation in
terms of real rectangular matrix-variate gamma variables, which in turn, can be connected to
the structure of the λ-criteria for testing hypotheses on the parameters of multivariate Gaussian
distribution. The author has given the exact null and non-null distributions and the exact percentage
points of a large number of λ-criteria in multivariate statistical analysis and some of these may be
found in [8,10]. For computational purposes of the distributions of random volumes one can make
use of the results on λ-criteria in the case of type-1 beta distributed random points by identifying
the moment structure in (3.6) with that of the various λ-criteria.

5. Connection to Mellin–Barnes integrals

The structure of the arbitrary moments in (3.2)–(3.4) suggests that the densities of u1, u2, u3
in (3.5) can be represented in terms of Mellin–Barnes integrals in the categories of Meijer’s G-
functions. Let the densities of u2

1 = t1, u
2
2 = t2, u

2
3 = t3 in (3.5) be denoted by hi(ti), i = 1, 2, 3

respectively. Then from (3.6)–(3.10),

h1(t1)= t−1
1

c1(0)

1

2π i

∫
L

p∏
j=1

�
(
δ + n

2 + h − j−1
2

)
�

(
δ + n

2 + γ
1−α

+ p+1
2 − j−1

2 + h
) t−h

1 dh, i = √−1,

= t−1
1

c1(0)
G

p,0
p,p

[
t1|

γ
1−α

+ p+1
2 +δ+ n

2 − j−1
2 , j=1,...,p

δ+ n
2 − j−1

2 , j=1,...,p

]
, 0 < t1 < 1, (5.1)

h2(t2)= t−1
2

c2(0)
G

p,p
p,p

[
t2|1+δ+ n

2 + j−1
2 − γ

α−1 , j=1,...,p

δ+ n
2 − j−1

2 , j=1,...,p

]
, 0 < t2 < ∞, (5.2)

and

h3(t3) = t−1
3

c3(0)
G

p,0
0,p

[
t3|δ+ n

2 − j−1
2 , j=1,...,p

]
, 0 < t3 < ∞, (5.3)

where L is a suitable contour and the G-function is defined by the Mellin–Barnes integral
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G(z) = Gm,n
p,q

[
z|a1,...,ap

b1,...,bq

]
= 1

2πi

∫
L

φ(s)z−sds, i = √−1, (5.4)

where

φ(s) =
{∏m

j=1 �(bj + s)
} {∏n

j=1 �(1 − aj − s)
}

{∏q

j=m+1 �(1 − bj − s)
} {∏p

j=n+1 �(aj + s)
} , (5.5)

aj , j = 1, . . ., p and bj , j = 1, . . ., q are complex quantities. The integral in (5.4) is convergent
for all z /= 0 when q � 1, q > p, for |z| < 1 when q = p, for all z /= 0 when p � 1, p > q and
|z| > 1 when p = q. Detailed conditions and properties of G-function are given in [1]. Many
special cases of G-functions are listed in [1]. By using these special cases one can write the
density of the volume of the random parallelotope in terms of elementary functions in many
special cases.

The behavior of the G-function G(z) for large and small values of z are given in [1]. Hence
with the help of these results one can approximate the density of v2 for large and small values of v.

6. Connection to generalized variance

Another interesting connection of the volume of the random parallelotope can be seen from
(3.10). The structure in (3.10), namely that of the product of independent real scalar gamma
variables, is the same structure appearing for a constant multiple of the sample generalized var-
iance in multivariate analysis when the population is Gaussian. Distributional aspects and other
properties of generalized variance may be seen from this author’s papers listed in [1,2]. Hence
when α → 1 the square of the volume of the random p-parallelotope is structurally the same
as a constant multiple of a generalized sample variance coming from a multivariate Gaussian
population. Hence the results available on the concept of generalized variance can be made use
of in studying random volumes when α → 1.
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