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Abstract

We show that two embeddings and g of a finite graphG into the 3-space are spatial-graph-
homologous if and only if for each subgraphof G that is homeomorphic to a disjoint union of two
circles, the restriction maps| iy andg| g have the same linking number, and for each subg¥ayuti
G that is homeomorphic to a complete grakig or a complete bipartite grapkiz 3, the restriction
mapsf |y andg|y have the same Simon invariant.
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1. Introduction

Throughout this paper we work in the piecewise linear category. We consider a graph
as a topological space as well as a combinatorial object.d_éte a finite graph and
f:G — R® an embedding o& into the three-dimensional Euclidean spate We call
such an embedding a spatial embedding of a graph or simply a spatial graph. In [8] the
second author showed that two spatial embeddings are spatial-graph-homologous if and
only if they have the same Wu invariant. Wu invariant coincides with linking number
whenG is homeomorphic to a disjoint union of two circles, and it coincides with Simon
invariant whenG is homeomorphic to a complete graph on five vertikgr a complete
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bipartite graph on three—three verticks 3. Note that both linking number and Simon
invariant are integral invariants that are easily calculated from a regular diagram of a spatial
graph. The purpose of this paper is to show tfiednd g are spatial-graph-homologous

if and only if all of their linking numbers and Simon invariants coincides. Namgly
and g are spatial-graph-homologous if and only if for each subgréplof G that is
homeomorphic to a disjoint union of two circles, the restriction maps andg|y have

the same linking number, and for each subgrapbf G that is homeomorphic t&s or

K3 3, the restriction map¥ |y and g|x have the same Simon invariant. Spatial-graph-
homology is an equivalence relation of spatial graphs introduced in [7]. We note that in
[7,8] spatial-graph-homology is simply called homology. See [7] or [8] for the definition
of spatial-graph-homology. It is shown in [4] that two spatial embeddings are spatial-graph-
homologous if and only if they are transformed into each other by delta-moves. It is known
that a delta-move does not change any order 1 finite type invariant of spatial graph in the
sense of [5]. Therefore we have that linking number and Simon invariant determine all of
order 1 finite type invariants of spatial graph.

Now we state the definition of Wu invariant. See [8] for more detail. For a topological
spaceX let C2(X) be the configuration space of ordered two pointsXarLet o be an
involution onC2(X) that is the exchange of the order of two points, ogx, y) = (y, x).

Let f:G — R® be an embedding. Lef?2:C2(G) — C2(R%) be a map defined by
F2(x,y) = (f(x), f(»)). Then f2 induces a homomorphism

(£3)": H?(C2(R3), 0) — H3(C2(G), o),

where H?(C2(X), o) denotes the skew-symmetric second cohomology of the pair
(C2(X), 0). It is known thatH?%(C2(R®), o) is an infinite cyclic group. Let be a fixed
generator ofH?(C2(R3), o). Then Wu defined an invariant of by (f2)#(r) [10]. We
denote this element df2(C2(G), o) by £(f) and call it the Wu invariant of .

Theorem 1.1 [8, Main Theorem].Two spatial embeddingg, g:G — R® are spatial-
graph-homologous if and only #(f) = L(g).

Thus Wu invariant classifies spatial graphs up to spatial-graph-homology. See [11] for
another spatial-graph-homology classification using disk-band surface of spatial graph.

Inthe summer of 1990, Jonathan Simon gave a lecture at Tokyo. In the lecture he defined
an invariant for spatial embeddings & and K3 3 as follows.

We give an orientation of the edges as illustrated in Fig. 1.

Let G = K5 or K3 3. For two disjoint edges, y, we define the siga(x, y) = e(y, x)
as follows:

slei,ej)=1, e(d;,dj))=-1 and e(¢;,dj)=—-1 fori,je{l,23,45},
e(ci,cj)=1, elbr,b))=1 and

1 if ¢; andby are parallel in Fig. 1
—1 if ¢; andby are anti-parallel in Fig. 1

fori, j e{1,2,3,4,5,6} k1 e (1,2, 3}.

8(Ci,bk)={
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Fig. 1.

Fig. 2.

Let f: G — R® be a spatial embedding amd R — R? a natural projection. Suppose
that 7 o f is a regular projection. For disjoint oriented edgesand y of G, let
L(f(x), f(y)) be the sum of the signs of the mutual crossingsf (x) N o f(y) where
the sign of a crossing is defined by Fig. 2.

Now we define an integdt( /) by

L(f)= Y &b, nE(fx), (),

xNy=0

where the summation is taken over all unordered pairs of disjoint edge@s of

It is known that two regular projections represent ambient isotopic embeddings if and
only if they are connected by a sequence of generalized Reidemeister moves [3]. Then itis
easy to check that (f) is invariant under these moves. Therefargf) is a well-defined
ambient isotopy invariant. We call( /) the Simon invarianof f.

The followings are known in [8]. Wheis is homeomorphic to a disjoint union of
two circles, Ks or K3 3 the groupH?(C2(G), o) is an infinite cyclic group. Then we
may suppose thaf(f) is an integer. WherG is homeomorphic to a disjoint union of
two circlesL(f) is equal to twice the linking number of (G) up to sign. WhenG is
homeomorphic tKs or K33 L(f) is equal toL(f) up to sign. In [7, Theorem C] it is
shown that if a graplt; does not contain any subgraph that is homeomorphic to a disjoint
union of two circles,Ks or K3 3 then any two spatial embeddings@fare spatial-graph-
homologous. Corresponding to this result it is shown in [8] that the gié&{C>(G), o)
is trivial for suchG. Namely if G is a planar graph that does not contain disjoint circles
thenH2(C2(G), o) =0.

In [6] the following is shown.



56 R. Shinjo, K. Taniyama / Topology and its Applications 134 (2003) 53-67

Theorem 1.2 [6, Theorem 2].Let G be a connected planar graph anflg:G — R®
spatial embeddings af. Thenf and g are spatial-graph-homologous if and only if for
any subgrapt of G thatis homeomorphic to a disjoint union of two circles the restriction
mapsf |y andg|y have the same linking number.

In this paper we generalize Theorem 1.2 to an arbitrary finite graph.

Main Theorem. Let G be a finite graph andf, g: G — R3 spatial embeddings of.
Then f and g are spatial-graph-homologous if and only if for each subgraghof G
that is homeomorphic to a disjoint union of two circles the restriction mapsandg|y
have the same linking number, and for each subgraipbf G that is homeomorphic to
Ks or K33 the restriction mapsf|z and g|y have the same Simon invariant. In other
words L(f) = L(g) if and only if L(f|y) = L(g|x) for each subgraptH of G that is
homeomorphic to a disjoint union of two circless or K3 3.

In [8, 82] a method of calculation of Wu invariant from a regular diagram of a spatial
graph is explained. By using this calculation it is easily seen that Wu invariant is an
order 1 finite type invariant in the sense of [5]. It is shown in [9] that two spatial
embeddings have the same order 1 finite type invariants if they are transformed into
each other by delta-moves. Since spatial-graph-homologous embeddings are transformed
into each other by delta-moves [4] we have that every order 1 finite type invariant is
determined by linking numbers and Simon invariants. Namely we have the following
theorem.

Theorem 1.3. Let G be a finite graph andf, g : G — R spatial embeddings af. Then
the following conditions are equivalent

(1) f andg are spatial-graph-homologous,

(2) L(f)=L(»),

(3) v(f) =v(g) for any orderl finite type invariant,

(4) for each subgraptH of G that is homeomorphic to a disjoint union of two circles the
restriction mapsf |y andg|y have the same linking number, and for each subgraph
H of G that is homeomorphic t&s or K3 3 the restriction maps'|z andg|y have
the same Simon invariant.

Remark. In [8, Theorem 4.9] it is shown tha#?(C2(G), o) is torsion free. This fact is
essentially used in the proof of the ‘if’ part of Theorem 1.1. In this paper we give a new
proof of this fact as a corollary to Theorem 2.1 in Section 2.

We say that two spatial embeddingsg: G — R® are minimally differentif f and
g are not ambient isotopic and for each proper subgrpbf G, the restriction maps
flg and g|y are ambient isotopic. LeG be a planar graph and: G — R® a spatial
embedding whose image is contained in a Euclidean plaRé.ifthen a spatial embedding
f:G — R3is calledminimally knottedf f andu are minimally different. A graplt is
called ageneralized bouqudtthere is a vertex of G such thatG — {v} contains no simple
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closed curves. It is shown in [2] that a minimally knotted embedding is not isotopic to
unlessG is a generalized bouquet. Note that isotopy is an equivalence relation of spatial
graphs that is weaker than ambient isotopy, but stronger than spatial-graph-homology [7].
As an application of Main Theorem we have the following result that is a contrast to the
result stated above.

Theorem 1.4. Let G be a graph which is homeomorphic to none of a disjoint union of
two circles,Ks and K3 3. Then any two minimally different embedding<oére spatial-
graph-homologous.

Proof. Let f,¢:G — R® be minimally different embeddings. Léf be a subgraph of
G that is homeomorphic to/, K5 or K33. By the assumption we have that is a
proper subgraph ofG. Then we havef|y and g|y are ambient isotopic. Therefore
L(flg) = L(glg). Then by Main Theorem we have thgt and g are spatial-graph-
homologous. O

Note that each of a disjoint union of two circle§s and K3 3 has minimally different
embeddings that are not spatial-graph-homologous. Examples are illustrated in Fig. 3.
Since they have different linking numbers or different Simon invariants they are not spatial-
graph-homologous. Then it is easily checked that they are minimally different.

2. Proof

For the simplicity we denote the group?(C2(G), o) by L(G). Let H be a subgraph
of G then the inclusiorC2(H) ¢ C2(G) induces a homomorphispy : L(G) — L(H).
By J = C1 U C2 we denote a disjoint union of two circl€y andCa.
Theorem 2.1. Let G be a finite graph. Letr, y be elements of.(G). Suppose that
or(x) = ¢n (y) for any subgraphH of G that is homeomorphic td, Ks or K3 3. Then

x=y.

Corollary 2.2[8, Theorem 4.9]Let G be a finite graph. TheA(G) is torsion free.
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Proof. Let x be an element of.(G) andn an integer greater than one such that= 0.
Suppose that a subgraph of G is homeomorphic to/, Ks or K3 3. ThenL(H) is an
infinite cyclic group. Therefore we have9¢y (0) = ¢y (nx) = nepy (x). Thus we have
@r(x) = 0. Thus we havey (x) = ¢u(0) when H is homeomorphic to/, K5 or K3 3.
Then by Theorem 2.1 we hawe= 0. This completes the proof.C

Proof of Main Theorem. Suppose thaf(f|y) = L(g|y) for each subgrapW of G that
is homeomorphic td, K5 or K3 3. SinceL(f|n) = ¢u(L(f)) andL(g|n) = ¢ (L(g))
we havepy (L(f)) = en(L(g)). Then by Theorem 2.1 we hav f) = L(g). O

For a graphG we denote the set of the vertices@fby V(G) and the set of the edges
of G by E(G). Let W be a subset oV (G). By G — W we denote the maximal subgraph
of G with V(G — W) = V(G) — W. Let F be a subset of (G). By G — F we denote the
subgraph of; with V(G — F) = V(G) andE(G — F) = E(G) — F. By | X| we denote the
number of the elements of a finite s€t A graphG is n-connectedf |V (G)| > n + 1 and
for any subsew of V(G) with |[W| < n — 1 the graphG — W is connected. We say that a
graph istopologicallyn-connectedf the graph is homeomorphic to anconnected graph.
A simple graphis a graph without loops and multiple edges. A graphogologically
simpleif it is not homeomorphic to any non-simple graph.cicleis a graph that is
homeomorphic to a circle. &ycle of G is a subgraph o& that is a cycle. Apathis a
graph that is homeomorphic to a closed intervapaih of G is a subgraph o; that is a
path. Therefore we consider an edge as a pathv lbet a vertex ofz. Then the degree of
vin G, denoted by de@, G), is the number of the edges 6fincident tov where a loop
is counted twice. For other standard terminology of graph theory, see [1], for example.

We prove Theorem 2.1 step by step. First we prove Theorem 2.1 @hiera simple
3-connected graph. This case is the core of Theorem 2.1.

Proposition 2.3. Theoren®.1is true whenG is a simple3-connected graph.

For the proof of Proposition 2.3 we prepare some lemmasPLb¢ a path. Let: and
v be the degree one vertices 8f We callu andv the end points ofP. Then we say
that P joinsu andv and bya P we denote the sdi, v}. Let P and Q be paths ofG. If
Q C P then we say tha@ is asubpathof P. A subpath ofP joining u andv is denoted
by (u,v; P). Let H be a subgraph of;. Let u and v be vertices ofH. Let X andY
be subsets o¥/ (H). Suppose that there uniquely exists a p&tlof H joining u andv
such thatv(P) > X andV (P) NY = @. Then we denoté by (u, v, H,in X, exY). We
denote(u, v, H,in@,exY) by (u, v, H,exY), (u,v, H,in X, ex?) by (u,v, H,in X) and
(u,v, H,in@, ex@) by (u, v, H) for simplicity. The following Lemma 2.4 is well-known
in graph theory. See [1], for example.

Lemma 2.4. Let G be a2-connected graph aney ande; disjoint edges o&. Then there
is a cycle ofG containing both ot1 ande,.

Lemma 2.5. Let G be a finite graph ande; and e disjoint edges ofG. Suppose
that G — {e1}, G — {e2} and G — {e1, e2} are topologically simple and topologically
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3-connected. Note that then is topologically3-connected. However is not necessarily
topologically simple. Then there is a subgraph of G satisfying one of the following
conditions

(1) There is a homeomorphisin / — H such that:(C;) containse; (i =1, 2).

(2) There is a homeomorphisin Ks — H such thatk(d;) containse; (i = 1, 2) where
d1 andds are disjoint edges oK.

(3) There is a homeomorphisin K3 3 — H such thatz(d;) containse; (i =1, 2) where
d1 andd; are disjoint edges oK 3 3.

Proof.
Claim 1. There is a cycle? of G containinge; andex.
SincegG is 2-connected this is an immediate consequence of Lemma 2.4.

Claim 2. There is a subgraplif of G, disjoint edgesf; and f» of a complete graph on
four verticesK 4, and a homeomorphisit K4 — H such that; C A(f1) andez C h(f2).

Letesz andes be edges o2 such thak, ez, e2, ea are lying ons2 in this cyclic order.
SinceG — {e1, e2} is 2-connected there is a cycleof G — {e1, e2} containinges andey.
Then it is not hard to see that either the condition (1) holds or there is a subgraph
£2 U A that satisfies the desired conditions.

Claim 3. Suppose that the conditiqft) does not hold. Then there is a subgrafihof G,
disjoint edgesf1 and f> of a complete graph on four verticéds, and a homeomorphism
h:K4— H suchthate1 = h(f1) andez = h(f2).

Suppose that; is a proper subset df(f;) for somei € {1, 2}, sayi = 1. Letu and
v be the end points of(f1). Since(G — {e2}) — {u, v} is connected there is a path of
(G — {e2}) — {u, v} joining a vertex ofa( f1) and a vertex ofH — i(f1). Then we either
have the condition (1) or find/’ and a homeomorphisiil : K4 — H’ with ey C 1/ (f1)
andez C h'(f2) such thath'(f1 U f2) is a proper subset df(f1 U f»). By repeating this
replacement we finally have the desired situation.

Letu; andv; be the vertices incident tg fori =1, 2. LetI" be the cycleH — {e1, e2}.
Since(G — {e1, e2}) — {u2, v2} is connected there is a path of G — {e1, e2} joining a
vertex, sayws, in (v2, uz, I', in{u1}) — {uz, v2} and a vertex, sawy, in (u2, vz, I, in{v1}) —
{uz, v2}. We may suppose tha@t N H = 9 P. Up to the symmetry ofd it is sufficient to
consider the following two cases.

Casel. wy € (u1, u2, I',ex{v1}) — {u1} andws € (v1, vo, I', eX{u1}) — {v1}.

In this case we have th&t U P is homeomorphic t&3 3, and we have the condition (3).

Case2. wj € (u1, u2, I',ex{v1}) andwz € (u2, v1, I', ex{va}).

We chooseP so thatws is closest tar; among all paths withw1 € (11, uz, I', ex{v1})
andwz € (u2, v1, I', ex{vz}). Note that we consider the cagg = u; as the closest case.
Suppose thatv; # 1y and there is a patl® with Q N (H U P) = dQ joining a vertex,
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says, of (u1, w1, I',eX{uz}) — {w1} and a vertex, say, of (w1, uz, I', ex{v1}) — {w1}.
Then we replacds, ¢, I', in{fw1}) by Q and have a new subgraph, still denoted By
Then we choose for this neW new P with new w1 € (11, uz, newrl’, ex{v1}) and new

w2 € (uz, v1, Newrl’, ex{vy}) so thatw is closest tou;. Note that such newP exists
because ol® U (s, oldw1, old I'", ex{u»}) satisfies the condition for new?. If new w;

is still not equal tou1 and there still exists a pat@ as above then we perform the same
replacement. We continue these replacements so that there are no such paths. Then among
all paths with the same; we chooseP so thatw; is closest tav;. Suppose thab, # v

and there is a pat@ with QN (H U P) = 8 Q joining a vertex ofuz, wa, I', ex{v1}) — {w2}

and a vertex ofwy, v1, I, ex{vz}) — {w2}. Then we perform a similar replacement. Then
we rechooseé so thatws is closest taw1. We continue these replacements until there are
no such paths. Note that these operations do not change

Case2.1.wy # v1 and there is another path with 0 N (H U P) = 3 Q joining a vertex,
sayxi, of (w1, u2, I', ex{v1}) — {w1, uz} and a vertex, say, of (wo, v1, I', ex{va}) — {wa}.

We chooseQ such thatx, is closest tovs. If x2 # v1 and there is a patlR with
RN (HUPUQ)=0R joining a vertex of(wa, x2, I', ex{v1}) — {x2} and a vertex
of (x2,v1, I',ex{v2}) — {x2} then we perform a similar replacement. By repeating the
operations we have that there are no such pathsargiclosest ta.

Now we consider the graplG — {e1, e2}) — {w1, x2}. Since this graph is connected we
find a pathW joining the components afl" U P U Q) — {w1, x2} and find the condition
QDiInHUPUQUW.

Case2.2. There are no such pafh andwi # u1 or wa # v1.

In this case we consider the grapti — {e1, e2}) — {w1, wz}. Since this graph is
connected we find a patl’ and find either condition (1) or (3)IH U P U W.

Case2.3.w1 = u1 andwz = v1.

In this case we consider the grapti — {e1, e2}) — {u1,v1}. Since this graph is
connected we find the condition (1), or find pathis and W» joining the components of
(I' U P) — {u1, v1} and find either condition (2) or (3) i U P U W1 U W>. This completes
the proof of Lemma 2.5. O

Let H, and H» be subgraphs of a graph. Suppose that there is a pathof H> such
thatP N Hy =dP andH, = H1 U P. Then we say thakl, is obtained fromH; by apath
addition

Lemma 2.6. Let G be a simple3-connected graph and an edge ofG such thatG — {e}

is topologically simple and topologicall-connected. Then there is a subgragh of

G — {e} with de C G that is homeomorphic t&4, and there is an increasing sequence
GoC G1C---C G, =G — {e} with the following properties

(1) eachg; is topologically simple and topologicalB+connected

(2) eachG; is obtained fromG;_1 by a path addition

(3) for eachi the following(a) or (b) holds
(a) G; Ue is topologically simple and topologicalB-connected,
(b) G;+1Ueistopologically simple and topologicalBrconnected.
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Proof. Let u andv be the vertices incident te. First we show that there is a cyclé
of G — {e} containingu andv. Let e; andez be edges of; — {e} incident tou andv
respectively. Note that — {e} is 2-connected. I&; ande; are disjoint then by Lemma 2.4
we have a cycle containingg and e>. Suppose thagéi N ez is a vertex, sayw. Since
(G — {e}) — {w} is connected there is a path, s@y of (G — {e}) — {w} joining u and
v. Thenes U ez U Q is a desired cycle. Note that # e» sinceG has no multiple edges.
Since G — {e} is 2-connected there is a path, sBy with P N I" = 9 P joining some
vertices ofl". ThenI" U P is a graph homeomorphic to a theta-curve graph. Sthee{e}

is topologically 3-connected there is a p@twith QN (I"UP) =9Q suchthal"UP U Q

is homeomorphic t& 4. Then we seGo=1"U P U Q.

Now suppose inductively that there is an increasing sequégce G1 C --- C Gy of
subgraphs o& satisfying the conditions (1), (2) and (3). Suppose thatt G — {e}.

Casel. G Ue is topologically simple.

Casel.l. There is a vertex of G that has degree two iy U e.

Let P be the longest path af; that contain so that each vertex aP — 3 P has
degree two inG; Ue. Letd P = {s, t}. SinceG — {s, t} is connected there is a path of
(G —{e}) — {s,t} with Q N G = 3 Q joining a vertex ofP and a vertex o5, — V(P).
SetGiy+1 = Gy U Q. Then it is easy to check thaf;1 is topologically simple and
topologically 3-connected.

Casel.2. No vertex oG has degree two i, U e.

There is a pathP of G — {e} with PN Gy =9 P. LetdP = {s,t}. If s andz are not
adjacent inGy then we seG;+1 = G U P. Suppose that and: are incident to an edge
d of Gi. SinceG has no multiple edgeB is not an edge. Then we replagdy P. Note
that this replacement changes the increasing sequeéficeGi C - - - C Gi. However it is
clear that the new increasing sequence still satisfies the required conditions. Thus this case
is reduced to Case 1.1.

Case2. G Ue is not topologically simple.

Suppose thaG; = Gx—1 U P whereP is a path ofG — {e¢} with PN Gy_1 =0P. By
the assumption we have th@f._1 U e is topologically simple. Therefore we have that
joinsu andv. SinceG has no multiple edges we have thatis not an edge. Sincé is
3-connected there is a pathof G — {e} with 0 N G, = 3 Q joining a vertex ofP — a P
and a vertex olGy_1 — {u, v}. SetGyy+1 = Gx U Q. Then it is easy to check théi;,; is
topologically simple and topologically 3-connectedi

Lemma2.7. LetG be a simple-connected graph. Suppose tltats not isomorphic tK 4.
Then there is an edgeof G such thatG — {e} is topologically simple and topologically
3-connected.

Proof. Lete; andes be distinct edges off. We subdividez; ande; by taking vertices;
andvz on them respectively. We add an edgining v1 andv; to G. Itis easy to see that

the resultant graply’ is simple and 3-connected. Note th@t— {d} is homeomorphic to

G hence topologically simple and topologically 3-connected. Then we apply Lemma 2.6
to G’ andd. Then we have that;’ — {d} is obtained from a topologically simple and
topologically 3-connected graph by adding a pAtH_et e be an edge of; corresponding
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to the pathP. Then we have that — {e} is topologically simple and topologically 3-con-
nected. O

Proof of Proposition 2.3. We give a proof by an induction on the number of the edges of
G. The first step is the case th@tis isomorphic toK4. SinceL(K4) is a trivial group

[8] Theorem 2.1 is true in this case. Suppose that Theorem 2.1 is true for all simple
3-connected graphs with less tharedges. LetG be a simple 3-connected graph with
edges. Now we review an explicit presentatiorld6) = H2(C2(G), o). See [8] for more
details. LetE(G) = {es, ..., ey} be the set of the edges 6fandV (G) = {v1, ..., v, } the

set of the vertices of;. We choose a fixed orientation on each edg&ofor a pair of
integers(i, j) with 1 <i < j <n ande; Ne; = ¥, we denote the paite;, ;) by E"/. For

a pair of integergi, s) with 1 <i < n, 1 <s <m anduy is not incident toe;, we denote

the pair(e;, vs) by V5. We set

31(‘/”) — Z EPUD) _ Z E/)(ik)’
1(j)=s T (k)=s
where I(j) = s means that the initial vertex af; is v, and T'(k) = s means that the
terminal vertex og;, is v, and
. ij ifi<y,
p(l])={ e
ji ifi>j.
Here the sum is taken over gliwith 7(j) = s ande; Ne; =¥ and allk with T'(k) = s and
ei Nex = 0. ThenL(G) has an Abelian group presentation

<Eij A<i<j<n, eiNe;=0)
|8H(V) (1<i <n, 1< s <m, vy is notincident ta;)).

By Lemma 2.7 there is an edgeof G such thatG — {e} is topologically simple and
topologically 3-connected. We may suppose without loss of generality that, ande,

is incident tov1 andvz. Let x, y be elements oL (G) such thatpy (x) = ¢y (y) for any
subgrapl of G thatis homeomorphictd, Ks or K3 3. We will show thatc —y = 0. Let

(G — {e,})’ be the 3-connected graph that is homeomorph@ te {e, }. Then(G — {e,})’

is simple. SinceG — {e,} = (G — {e,}) or G — {e,} is a subdivision of G — {e,})’ we
have thatG — {e,})’ has at mosk — 1 edges. Therefore we may apply the hypothesis of
induction and have thatg_.,1(x — y) = 0. This implies thak — y can be represented by
an element as

x—y= [Zai,in”],

wherei varies over alli € {1 <i < n} with ¢; Ne, =@ and a;;, is an integer. We

will change the representative element.of- y step by step so that the range iof
becomes smaller and smaller as follows. k& c G1 C --- C Gy = G — {e,} be an
increasing sequence satisfying the conditions of Lemma 2.6PLbe a path ofG such

that G; = G;—1 U P;. We may suppose without loss of generality that there are integers
l<rg<ri<ry<---<ri—1<rr=n—1suchthatt(G;) ={ey, e, ..., e} for eachi.
Similarly we may suppose that there are integegssh <s1 <s2 < - <1 < Sk =m
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(a) (b) (c) (d) (e) (f)

Fig. 4.

such thatV (G;) = {v1, va, ..., v5;} for eachi. Up to the symmetry o4 there are six
cases of the topological type 6fy U ¢, as illustrated in Fig. 4.

In any case it is easy to see that there is an ele@h,tsal(vm) wheres varies over
the set{1, 2, ..., s1} andb,; is an integer such that

> ainE™+ Y b8t (V) =) cjuEN",
where j varies over the seto+ 1,70+ 2,...,n — 2,n — 1} andcj, is an integer. Note
that in (b), (c) and (e) we use the fact thgi (x — y) = 0 whereH is homeomorphictd.

In (f) we use the fact thaty (x — y) = 0 whereH is homeomorphic t&3 3.
Now suppose inductively that— y is represented as

X—=Yy= [ZainEin]’
wherei varies over the ser; +1,r; +2,...,n — 2,n — 1}. We consider the following
three cases.
Casel. G Ue, is not topologically simple.
In this case) P; = de, = {v1, v2} andd P;;1 contains a vertex o®;. By adding some
3" bag8(V™) wheres varies over the sébj_1+1,5;_1+2,...,5;41} we have the result.
Namely we have

> ainE™+Y b8t (V) =) cju BN,

wherej varies overthe st 11+ 1,7j41+2,...,n — 2,n — 1} andc;, is an integer.

Case2. G Ue, is topologically simple an®; 11 Ne, # @.

By adding somé" b, 81(V"*) wheres varies over the se; +1,s; +2,...,sj11} we
have the result.

Case3. G Ue, is topologically simple and®; .1 Ne, = 0.

In this case we regarg, and P;,1 as disjoint edges and apply Lemma 2.5. Namely by
adding somée_ bns81(V"S) wheres varies over the sdt; +1,5;+2,...,5;4+1} we have
the result. This completes the proofo

Next we prove Theorem 2.1 for simple 2-connected graphs.
Proposition 2.8. Theoren®.1is true whenG is a simple2-connected graph.
Lemma 2.9. Let G be a simple2-connected graph and, v vertices ofG. Suppose that

the graphG — {u, v} is not connected. La@1, Q>, ..., Q, be the connected components
of the topological spac& — {u, v}. Let H; be the closure 0D; in G. LetG; be a graph
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obtained fromH; by adding a new edge joiningandv. Suppose that Theorelis true
for eachG;. Then Theorer@.1is true forG.

Proof. Let x, y be elements of.(G) such thatpy (x) = ¢ (y) for any subgraptd of
G that is homeomorphic td, Ks or K33. We will show thatx — y =0. Let E(G) =
{e1,e2,...,e,} be the set of the edges 6fandV(G) = {v1 = u, v2 = v, v3, ..., v,} the
set of the vertices of;. Suppose that — y is represented by an element as

X —y= [ZaijEij],

whereg;; is an integer and the summation is taken for all gaiy) with 1 <i < j <n and
ei Ne; = . We will change the representatiyéa;; E'/ step by step as follows. L&} be
a spanning tree aff; such that the degree ofin 7; is one and the degree ofin T; is one.
LetT =T1UT>U---UT,. Note that the maximal subgraphBfwithout vertices of degree
one is homeomorphic to a graph on two vertices aratiges joining them. Therefore it is
easy to see that the representajive; ; E'J of x — y can be chosen such that the following
condition (1) holds.

(1) aij =0if ¢; € E(T}) ande; € E(T;) for somek # .
Next we show that in addition to the condition (1) the following condition (2) also holds.

(2) a;; =0if one ofe;, e; is in E(T;) for somek and the other is not itk (Hy).
Suppose that; € E(H)) — E(T;). If ¢; is incident tou or v then it is easy to erase al;
anda;; with e; € E(T}) for somek # [. Suppose tha; is not incident tox norv. Lety
be the unique cycle df; U ¢;. Then by using the condition on the disjoint cyclesaf ¢;
containingy as a component we can erased)landa; with e; € E(T;) for somek # [
without breaking the previous conditions. Next we show that the following condition (3)
holds.

(3) aij =0 unlesse;, e;} C E(Hy) for somek.
Note that the condition (3) implies both (1) and (2). legte E(Hy) — E(Tx) ande; €
E(H;) — E(T;) with k #£ 1. Lety1 be the unique cycle df;, U ¢; andy» the unique cycle of
T; Ue;. Then by the condition on these disjoint cycles we havedfat 0. Thus we have
arepresentativ®_ a;; E'/ of x — y that satisfies the condition (3).

Finally we will erase the term;; with ¢;, e; € E(Hy) for somek. We will do this step
by step. First we will erase all the termg E/ with ¢;, ¢; € E(H1) as follows. LetP be
a path in7» joining u andv. ThenH; U P is homeomorphic ta71. Let eg be the edge of
G1 joining u = v1 andv = v2. Then by the assumption af; we have that

2 ayEY =3 bust (V).

wherea;; = a;; if e;, ej € E(H1) anda;; = 0 otherwise, and the summation of the second

term is taken over some pairs with ¢; € E(G1) andv, € V(G1), and each of(v1)
andél(vi2) expresses the signed sum of som# with e;, ex € E(G1), one of them is
e; the other incident ta or vz, not the signed sum of som&/* with ej, e € E(G),
and otherwisé1(V’*) = §1(V%). We will modify the second summation as follows. First
we replace each terin151 (V1) by b;181(V1). Next we replace each terbpst(Vi2) by
b,-2281(V”) where the summation is taken overalilith v; € (V(G) — V(H1)) U {v2}.
Finally we replace each terb 81 (V%) by bo, 3 8%(V%) where the summation is taken
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over alli with ¢; incident tou = v1 ande; € E(G) — E(H1). Let Zcisal(viS) be the
summation obtained from bis8L(VS) by the replacement stated above. Then we have
that the new representatiy€ a;; EV — Y ¢;;81(V*) =Y " d;; EV of x — y satisfiesl;; = 0

if e;,e; € E(Hy), and still satisfies the condition (3). Repeating this replacemdimes

we have 0 as a representativerof y. This completes the proof.O

Proof of Proposition 2.8. We will give a proof by an induction on the number of the
edges of a simple 2-connected graph. The minimal number of the edges of a simple 2-
connected graph is three and then the grapkjs Since L(K3) is trivial Theorem 2.1

is true for K3. Suppose that Theorem 2.1 is true for each simple 2-connected graph that
hask or less edges. Laf be a simple 2-connected graph that kas 1 edges. IfG is 3-
connected then by Proposition 2.3 we have the result. Supposg tkatot 3-connected.
Then there are verticesandv of G such that the graptt — {u, v} is not connected. Let

01, 02, ..., Qp be the connected components of the topological spaedu, v}. Let H;

be the closure o); in G. Let G; be a graph obtained frorf{; by adding a new edge
joining u andv. Suppose that andv are not adjacent iG. Then we have that eadh; is

a simple 2-connected graph. Suppose thahdv are adjacent ir;. Then we have > 3,

one ofGy, ..., G, is a cycle, and other graphs are simple 2-connected graphs. Note that
Theorem 2.1 is true for a cycle siné€G) is trivial whenG is a cycle. Since eadi; has

k or less edges we have the result by the induction hypothesis and by Lemma=®.9.

Next we prove Theorem 2.1 for simple connected graphs.
Proposition 2.10. Theoren®.1is true whenG is a simple connected graph.

Lemma 2.11. Let G be a simple connected graph and vertex ofG. Suppose that the
graphG — {v} is not connected. LeD1, Q», ..., Q, be the connected components of the
topological space&s; — {v}. LetG; be the closure 00; in G. Suppose that TheorePalis
true for eachG;. Then Theorer.1is true forG.

Proof. Let x, y be elements of.(G) such thatpy (x) = ¢y (y) for any subgraphH of
G that is homeomorphic td, Ks or K33. We will show thatx — y =0. Let E(G) =
{e1,e2,...,e,} be the set of the edges 6fandV (G) = {v1 = v, v, ..., vy} the set of the
vertices ofG. Suppose that — y is represented by an element as

xX—y= [ZaijEij],
wheregq;; is an integer and the summation is taken for all gaiy) with 1 <i < j <n
ande; Ne; = . We will change the representati@aijE"f step by step as follows. Let
T; be a spanning tree af; such that the degree ofin 7; is one. First we change the
representative element of— y by using the assumption on ea6h such that
(1) ajx=0if e;, ex € E(G;) for somei.
To do this we first consider the case- 1. By the assumption 061 we have

> alEV = "bisH V),
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where the meanings ozflfj andé! are similar to those in the proof of Lemma 2.9. Then

we replace eact;16(V'h) by bi1 )" 8* (V') where the summation is taken over all
with vs € (V(G) — V(G1)) U {vy}. Let Zcissl(V”) be the summation obtained from
3" big81 (V%) by this replacement. Then we have that the new representative

a;i EY — cis6-(VY) = di; EY of x —y
2121()21

satisfiesd;; = 0 if ¢;,e; € E(G1). Repeating this replacemept times we have the
condition (1). Next we change the representative element such that in addition to the
condition (1),

(2) ajx =0if one ofe; andey is in E(T;) for somei.
This is easily done by using the fact that edtlis a tree. Then by considering appropriate
disjoint cycles we have that;; = 0 for any j andk. This completes the proof.O

Proof of Proposition 2.10. We will give a proof by an induction on the number of the
vertices of a simple connected graph. It is clear that Theorem 2.1 is true for all graphs of
one or two vertices. Suppose that Theorem 2.1 is true for each simple connected graph
that hask or less vertices. LeG be a simple connected graph that kas 1 vertices. If

G is 2-connected then by Proposition 2.8 we have the result. Supposé tisahot 2-
connected. Then there is a vertexof G such that the grapty — {v} is not connected.

Let Q1, Q2, ..., Q, be the connected components of the topological sgaee{v}. Let

G; be the closure of; in G. Then we have that eadH; is a simple connected graph.
Since eaclG; hask or less vertices we have the result by the induction hypothesis and by
LemmaZ2.11. O

Proposition 2.12. Theoren®.1is true whenG is a simple graph.

Proof. Let G be a simple graph an@y, ..., G, the connected components Gf Then
eachgG; is a simple connected graph. We choose a spannindiree eachG;. Then the
proof is similar to that of Lemma 2.11 and we omit it0

Proof of Theorem 2.1. By Proposition 2.12 it is sufficient to consider the case thas
not simple. LetG’ be a simple graph that is a subdivision@f Then by Proposition 2.12
we have that Theorem 2.1 is true f6f. SinceL(G) is isomorphic toL.(G") we have that
Theorem 2.1istrue foG. O
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