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Abstract

We show that two embeddingsf andg of a finite graphG into the 3-space are spatial-grap
homologous if and only if for each subgraphH of G that is homeomorphic to a disjoint union of tw
circles, the restriction mapsf |H andg|H have the same linking number, and for each subgraphH of
G that is homeomorphic to a complete graphK5 or a complete bipartite graphK3,3, the restriction
mapsf |H andg|H have the same Simon invariant.
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1. Introduction

Throughout this paper we work in the piecewise linear category. We consider a
as a topological space as well as a combinatorial object. LetG be a finite graph and
f :G → R3 an embedding ofG into the three-dimensional Euclidean spaceR3. We call
such an embedding a spatial embedding of a graph or simply a spatial graph. In
second author showed that two spatial embeddings are spatial-graph-homologou
only if they have the same Wu invariant. Wu invariant coincides with linking num
whenG is homeomorphic to a disjoint union of two circles, and it coincides with Sim
invariant whenG is homeomorphic to a complete graph on five verticesK5 or a complete
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bipartite graph on three–three verticesK3,3. Note that both linking number and Simon
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invariant are integral invariants that are easily calculated from a regular diagram of a
graph. The purpose of this paper is to show thatf andg are spatial-graph-homologo
if and only if all of their linking numbers and Simon invariants coincides. Namelf

and g are spatial-graph-homologous if and only if for each subgraphH of G that is
homeomorphic to a disjoint union of two circles, the restriction mapsf |H andg|H have
the same linking number, and for each subgraphH of G that is homeomorphic toK5 or
K3,3, the restriction mapsf |H andg|H have the same Simon invariant. Spatial-gra
homology is an equivalence relation of spatial graphs introduced in [7]. We note t
[7,8] spatial-graph-homology is simply called homology. See [7] or [8] for the defin
of spatial-graph-homology. It is shown in [4] that two spatial embeddings are spatial-g
homologous if and only if they are transformed into each other by delta-moves. It is k
that a delta-move does not change any order 1 finite type invariant of spatial graph
sense of [5]. Therefore we have that linking number and Simon invariant determine
order 1 finite type invariants of spatial graph.

Now we state the definition of Wu invariant. See [8] for more detail. For a topolo
spaceX let C2(X) be the configuration space of ordered two points onX. Let σ be an
involution onC2(X) that is the exchange of the order of two points, i.e.,σ(x, y)= (y, x).
Let f :G → R3 be an embedding. Letf 2 :C2(G) → C2(R

3) be a map defined b
f 2(x, y)= (f (x), f (y)). Thenf 2 induces a homomorphism

(
f 2)# :H 2(C2

(
R3), σ ) →H 2(C2(G),σ

)
,

where H 2(C2(X),σ ) denotes the skew-symmetric second cohomology of the
(C2(X),σ ). It is known thatH 2(C2(R

3), σ ) is an infinite cyclic group. Letτ be a fixed
generator ofH 2(C2(R

3), σ ). Then Wu defined an invariant off by (f 2)#(τ ) [10]. We
denote this element ofH 2(C2(G),σ ) byL(f ) and call it the Wu invariant off .

Theorem 1.1 [8, Main Theorem].Two spatial embeddingsf,g :G → R3 are spatial-
graph-homologous if and only ifL(f )= L(g).

Thus Wu invariant classifies spatial graphs up to spatial-graph-homology. See [1
another spatial-graph-homology classification using disk-band surface of spatial gra

In the summer of 1990, Jonathan Simon gave a lecture at Tokyo. In the lecture he d
an invariant for spatial embeddings ofK5 andK3,3 as follows.

We give an orientation of the edges as illustrated in Fig. 1.
Let G = K5 or K3,3. For two disjoint edgesx, y, we define the signε(x, y) = ε(y, x)

as follows:

ε(ei, ej )= 1, ε(di, dj )= −1 and ε(ei , dj )= −1 for i, j ∈ {1,2,3,4,5},
ε(ci, cj )= 1, ε(bk, bl)= 1 and

ε(ci, bk)=
{

1 if ci andbk are parallel in Fig. 1,

−1 if ci andbk are anti-parallel in Fig. 1,

for i, j ∈ {1,2,3,4,5,6}, k, l ∈ {1,2,3}.
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Fig. 2.

Let f :G→R3 be a spatial embedding andπ :R3 →R2 a natural projection. Suppos
that π ◦ f is a regular projection. For disjoint oriented edgesx and y of G, let
�(f (x), f (y)) be the sum of the signs of the mutual crossingsπ ◦ f (x)∩ π ◦ f (y) where
the sign of a crossing is defined by Fig. 2.

Now we define an integerL(f ) by

L(f )=
∑

x∩y=∅
ε(x, y)�

(
f (x), f (y)

)
,

where the summation is taken over all unordered pairs of disjoint edges ofG.
It is known that two regular projections represent ambient isotopic embeddings

only if they are connected by a sequence of generalized Reidemeister moves [3]. Th
easy to check thatL(f ) is invariant under these moves. ThereforeL(f ) is a well-defined
ambient isotopy invariant. We callL(f ) theSimon invariantof f .

The followings are known in [8]. WhenG is homeomorphic to a disjoint union o
two circles,K5 or K3,3 the groupH 2(C2(G),σ ) is an infinite cyclic group. Then w
may suppose thatL(f ) is an integer. WhenG is homeomorphic to a disjoint union o
two circlesL(f ) is equal to twice the linking number off (G) up to sign. WhenG is
homeomorphic toK5 or K3,3 L(f ) is equal toL(f ) up to sign. In [7, Theorem C] it is
shown that if a graphG does not contain any subgraph that is homeomorphic to a dis
union of two circles,K5 or K3,3 then any two spatial embeddings ofG are spatial-graph
homologous. Corresponding to this result it is shown in [8] that the groupH 2(C2(G),σ )

is trivial for suchG. Namely ifG is a planar graph that does not contain disjoint circ
thenH 2(C2(G),σ )= 0.

In [6] the following is shown.
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Theorem 1.2 [6, Theorem 2].Let G be a connected planar graph andf,g :G → R3
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spatial embeddings ofG. Thenf andg are spatial-graph-homologous if and only if fo
any subgraphH ofG that is homeomorphic to a disjoint union of two circles the restrict
mapsf |H andg|H have the same linking number.

In this paper we generalize Theorem 1.2 to an arbitrary finite graph.

Main Theorem. Let G be a finite graph andf,g :G → R3 spatial embeddings ofG.
Thenf and g are spatial-graph-homologous if and only if for each subgraphH of G
that is homeomorphic to a disjoint union of two circles the restriction mapsf |H andg|H
have the same linking number, and for each subgraphH of G that is homeomorphic to
K5 or K3,3 the restriction mapsf |H and g|H have the same Simon invariant. In oth
wordsL(f ) = L(g) if and only ifL(f |H) = L(g|H ) for each subgraphH of G that is
homeomorphic to a disjoint union of two circles,K5 or K3,3.

In [8, §2] a method of calculation of Wu invariant from a regular diagram of a sp
graph is explained. By using this calculation it is easily seen that Wu invariant
order 1 finite type invariant in the sense of [5]. It is shown in [9] that two spa
embeddings have the same order 1 finite type invariants if they are transforme
each other by delta-moves. Since spatial-graph-homologous embeddings are tran
into each other by delta-moves [4] we have that every order 1 finite type invaria
determined by linking numbers and Simon invariants. Namely we have the follo
theorem.

Theorem 1.3. LetG be a finite graph andf,g :G → R3 spatial embeddings ofG. Then
the following conditions are equivalent:

(1) f andg are spatial-graph-homologous,
(2) L(f )= L(g),
(3) v(f )= v(g) for any order1 finite type invariantv,
(4) for each subgraphH of G that is homeomorphic to a disjoint union of two circles t

restriction mapsf |H andg|H have the same linking number, and for each subgr
H of G that is homeomorphic toK5 or K3,3 the restriction mapsf |H andg|H have
the same Simon invariant.

Remark. In [8, Theorem 4.9] it is shown thatH 2(C2(G),σ ) is torsion free. This fact is
essentially used in the proof of the ‘if’ part of Theorem 1.1. In this paper we give a
proof of this fact as a corollary to Theorem 2.1 in Section 2.

We say that two spatial embeddingsf,g :G → R3 are minimally differentif f and
g are not ambient isotopic and for each proper subgraphH of G, the restriction map
f |H and g|H are ambient isotopic. LetG be a planar graph andu :G → R3 a spatial
embedding whose image is contained in a Euclidean plane inR3. Then a spatial embeddin
f :G → R3 is calledminimally knottedif f andu are minimally different. A graphG is
called ageneralized bouquetif there is a vertexv of G such thatG−{v} contains no simple
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closed curves. It is shown in [2] that a minimally knotted embedding is not isotopicu
unlessG is a generalized bouquet. Note that isotopy is an equivalence relation of s
graphs that is weaker than ambient isotopy, but stronger than spatial-graph-homolo
As an application of Main Theorem we have the following result that is a contrast t
result stated above.

Theorem 1.4. Let G be a graph which is homeomorphic to none of a disjoint union
two circles,K5 andK3,3. Then any two minimally different embeddings ofG are spatial-
graph-homologous.

Proof. Let f,g :G → R3 be minimally different embeddings. LetH be a subgraph o
G that is homeomorphic toJ , K5 or K3,3. By the assumption we have thatH is a
proper subgraph ofG. Then we havef |H and g|H are ambient isotopic. Therefo
L(f |H) = L(g|H ). Then by Main Theorem we have thatf and g are spatial-graph
homologous. ✷

Note that each of a disjoint union of two circles,K5 andK3,3 has minimally different
embeddings that are not spatial-graph-homologous. Examples are illustrated in
Since they have different linking numbers or different Simon invariants they are not sp
graph-homologous. Then it is easily checked that they are minimally different.

2. Proof

For the simplicity we denote the groupH 2(C2(G),σ ) by L(G). LetH be a subgraph
of G then the inclusionC2(H) ⊂ C2(G) induces a homomorphismϕH :L(G) → L(H).
By J = C1 ∪C2 we denote a disjoint union of two circlesC1 andC2.

Theorem 2.1. Let G be a finite graph. Letx, y be elements ofL(G). Suppose tha
ϕH (x) = ϕH (y) for any subgraphH of G that is homeomorphic toJ , K5 or K3,3. Then
x = y.

Corollary 2.2 [8, Theorem 4.9].LetG be a finite graph. ThenL(G) is torsion free.
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Proof. Let x be an element ofL(G) andn an integer greater than one such thatnx = 0.
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Suppose that a subgraphH of G is homeomorphic toJ , K5 or K3,3. ThenL(H) is an
infinite cyclic group. Therefore we have 0= ϕH (0) = ϕH (nx) = nϕH (x). Thus we have
ϕH (x) = 0. Thus we haveϕH (x) = ϕH (0) whenH is homeomorphic toJ , K5 or K3,3.
Then by Theorem 2.1 we havex = 0. This completes the proof.✷
Proof of Main Theorem. Suppose thatL(f |H)= L(g|H ) for each subgraphH of G that
is homeomorphic toJ , K5 or K3,3. SinceL(f |H) = ϕH (L(f )) andL(g|H ) = ϕH (L(g))
we haveϕH (L(f ))= ϕH (L(g)). Then by Theorem 2.1 we haveL(f )= L(g). ✷

For a graphG we denote the set of the vertices ofG by V (G) and the set of the edge
of G by E(G). LetW be a subset ofV (G). By G−W we denote the maximal subgra
of G with V (G−W)= V (G)−W . LetF be a subset ofE(G). By G− F we denote the
subgraph ofG with V (G−F)= V (G) andE(G−F)=E(G)−F . By |X| we denote the
number of the elements of a finite setX. A graphG is n-connectedif |V (G)| � n+ 1 and
for any subsetW of V (G) with |W | � n− 1 the graphG−W is connected. We say that
graph istopologicallyn-connectedif the graph is homeomorphic to ann-connected graph
A simple graphis a graph without loops and multiple edges. A graph istopologically
simple if it is not homeomorphic to any non-simple graph. Acycle is a graph that is
homeomorphic to a circle. Acycle of G is a subgraph ofG that is a cycle. Apath is a
graph that is homeomorphic to a closed interval. Apath ofG is a subgraph ofG that is a
path. Therefore we consider an edge as a path. Letv be a vertex ofG. Then the degree o
v in G, denoted by deg(v,G), is the number of the edges ofG incident tov where a loop
is counted twice. For other standard terminology of graph theory, see [1], for examp

We prove Theorem 2.1 step by step. First we prove Theorem 2.1 whenG is a simple
3-connected graph. This case is the core of Theorem 2.1.

Proposition 2.3. Theorem2.1 is true whenG is a simple3-connected graph.

For the proof of Proposition 2.3 we prepare some lemmas. LetP be a path. Letu and
v be the degree one vertices ofP . We call u andv the end points ofP . Then we say
thatP joins u andv and by∂P we denote the set{u,v}. Let P andQ be paths ofG. If
Q ⊂ P then we say thatQ is asubpathof P . A subpath ofP joining u andv is denoted
by (u, v;P). Let H be a subgraph ofG. Let u and v be vertices ofH . Let X andY
be subsets ofV (H). Suppose that there uniquely exists a pathP of H joining u andv
such thatV (P) ⊃ X andV (P) ∩ Y = ∅. Then we denoteP by (u, v,H, inX,exY ). We
denote(u, v,H, in∅,exY ) by (u, v,H,exY ), (u, v,H, inX,ex∅) by (u, v,H, inX) and
(u, v,H, in∅,ex∅) by (u, v,H) for simplicity. The following Lemma 2.4 is well-know
in graph theory. See [1], for example.

Lemma 2.4. LetG be a2-connected graph ande1 ande2 disjoint edges ofG. Then there
is a cycle ofG containing both ofe1 ande2.

Lemma 2.5. Let G be a finite graph ande1 and e2 disjoint edges ofG. Suppose
that G − {e1}, G − {e2} and G − {e1, e2} are topologically simple and topological
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3-connected. Note that thenG is topologically3-connected. HoweverG is not necessarily
g

of

).

e.
topologically simple. Then there is a subgraphH of G satisfying one of the followin
conditions:

(1) There is a homeomorphismh :J →H such thath(Ci) containsei (i = 1,2).
(2) There is a homeomorphismh :K5 → H such thath(di) containsei (i = 1,2) where

d1 andd2 are disjoint edges ofK5.
(3) There is a homeomorphismh :K3,3 →H such thath(di) containsei (i = 1,2) where

d1 andd2 are disjoint edges ofK3,3.

Proof.

Claim 1. There is a cycleΩ ofG containinge1 ande2.

SinceG is 2-connected this is an immediate consequence of Lemma 2.4.

Claim 2. There is a subgraphH of G, disjoint edgesf1 andf2 of a complete graph on
four verticesK4, and a homeomorphismh :K4 →H such thate1 ⊂ h(f1) ande2 ⊂ h(f2).

Let e3 ande4 be edges onΩ such thate1, e3, e2, e4 are lying onΩ in this cyclic order.
SinceG− {e1, e2} is 2-connected there is a cycleΛ of G− {e1, e2} containinge3 ande4.
Then it is not hard to see that either the condition (1) holds or there is a subgraphH in
Ω ∪Λ that satisfies the desired conditions.

Claim 3. Suppose that the condition(1) does not hold. Then there is a subgraphH of G,
disjoint edgesf1 andf2 of a complete graph on four verticesK4 and a homeomorphism
h :K4 →H such thate1 = h(f1) ande2 = h(f2).

Suppose thatei is a proper subset ofh(fi) for somei ∈ {1,2}, say i = 1. Let u and
v be the end points ofh(f1). Since(G − {e2}) − {u,v} is connected there is a path
(G− {e2}) − {u,v} joining a vertex ofh(f1) and a vertex ofH − h(f1). Then we either
have the condition (1) or findH ′ and a homeomorphismh′ :K4 → H ′ with e1 ⊂ h′(f1)

ande2 ⊂ h′(f2) such thath′(f1 ∪ f2) is a proper subset ofh(f1 ∪ f2). By repeating this
replacement we finally have the desired situation.

Let ui andvi be the vertices incident toei for i = 1,2. LetΓ be the cycleH − {e1, e2}.
Since(G − {e1, e2}) − {u2, v2} is connected there is a pathP of G − {e1, e2} joining a
vertex, sayw1, in (v2, u2,Γ, in{u1})−{u2, v2} and a vertex, sayw2, in (u2, v2,Γ, in{v1})−
{u2, v2}. We may suppose thatP ∩ H = ∂P . Up to the symmetry ofH it is sufficient to
consider the following two cases.

Case1.w1 ∈ (u1, u2,Γ,ex{v1})− {u1} andw2 ∈ (v1, v2,Γ,ex{u1})− {v1}.
In this case we have thatH ∪P is homeomorphic toK3,3, and we have the condition (3
Case2.w1 ∈ (u1, u2,Γ,ex{v1}) andw2 ∈ (u2, v1,Γ,ex{v2}).
We chooseP so thatw1 is closest tou1 among all paths withw1 ∈ (u1, u2,Γ,ex{v1})

andw2 ∈ (u2, v1,Γ,ex{v2}). Note that we consider the casew1 = u1 as the closest cas
Suppose thatw1 �= u1 and there is a pathQ with Q ∩ (H ∪ P) = ∂Q joining a vertex,



60 R. Shinjo, K. Taniyama / Topology and its Applications 134 (2003) 53–67

say s, of (u1,w1,Γ,ex{u2}) − {w1} and a vertex, sayt , of (w1, u2,Γ,ex{v1}) − {w1}.
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Then we replace(s, t,Γ, in{w1}) by Q and have a new subgraph, still denoted byH .
Then we choose for this newH newP with neww1 ∈ (u1, u2,newΓ,ex{v1}) and new
w2 ∈ (u2, v1,newΓ,ex{v2}) so thatw1 is closest tou1. Note that such newP exists
because oldP ∪ (s,oldw1,oldΓ,ex{u2}) satisfies the condition for newP . If new w1
is still not equal tou1 and there still exists a pathQ as above then we perform the sam
replacement. We continue these replacements so that there are no such paths. The
all paths with the samew1 we chooseP so thatw2 is closest tov1. Suppose thatw2 �= v1

and there is a pathQ with Q∩(H ∪P) = ∂Q joining a vertex of(u2,w2,Γ,ex{v1})−{w2}
and a vertex of(w2, v1,Γ,ex{v2})− {w2}. Then we perform a similar replacement. Th
we rechooseP so thatw2 is closest tov1. We continue these replacements until there
no such paths. Note that these operations do not changew1.

Case2.1.w2 �= v1 and there is another pathQ with Q∩ (H ∪P)= ∂Q joining a vertex,
sayx1, of (w1, u2,Γ,ex{v1})−{w1, u2} and a vertex, sayx2, of (w2, v1,Γ,ex{v2})−{w2}.

We chooseQ such thatx2 is closest tov1. If x2 �= v1 and there is a pathR with
R ∩ (H ∪ P ∪ Q) = ∂R joining a vertex of(w2, x2,Γ,ex{v1}) − {x2} and a vertex
of (x2, v1,Γ,ex{v2}) − {x2} then we perform a similar replacement. By repeating
operations we have that there are no such paths andx2 is closest tov1.

Now we consider the graph(G− {e1, e2})− {w1, x2}. Since this graph is connected w
find a pathW joining the components of(Γ ∪ P ∪ Q) − {w1, x2} and find the condition
(1) in H ∪ P ∪Q∪W .

Case2.2. There are no such pathQ, andw1 �= u1 orw2 �= v1.
In this case we consider the graph(G − {e1, e2}) − {w1,w2}. Since this graph is

connected we find a pathW and find either condition (1) or (3) inH ∪P ∪W .
Case2.3.w1 = u1 andw2 = v1.
In this case we consider the graph(G − {e1, e2}) − {u1, v1}. Since this graph is

connected we find the condition (1), or find pathsW1 andW2 joining the components o
(Γ ∪P)−{u1, v1} and find either condition (2) or (3) inH ∪P ∪W1 ∪W2. This completes
the proof of Lemma 2.5. ✷

Let H1 andH2 be subgraphs of a graphG. Suppose that there is a pathP of H2 such
thatP ∩H1 = ∂P andH2 =H1 ∪ P . Then we say thatH2 is obtained fromH1 by apath
addition.

Lemma 2.6. LetG be a simple3-connected graph ande an edge ofG such thatG− {e}
is topologically simple and topologically3-connected. Then there is a subgraphG0 of
G − {e} with ∂e ⊂ G0 that is homeomorphic toK4, and there is an increasing sequen
G0 ⊂G1 ⊂ · · · ⊂Gn =G− {e} with the following properties:

(1) eachGi is topologically simple and topologically3-connected;
(2) eachGi is obtained fromGi−1 by a path addition;
(3) for eachi the following(a)or (b) holds:

(a) Gi ∪ e is topologically simple and topologically3-connected,
(b) Gi+1 ∪ e is topologically simple and topologically3-connected.
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Proof. Let u andv be the vertices incident toe. First we show that there is a cycleΓ
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of G − {e} containingu andv. Let e1 ande2 be edges ofG − {e} incident tou andv
respectively. Note thatG− {e} is 2-connected. Ife1 ande2 are disjoint then by Lemma 2.
we have a cycle containinge1 and e2. Suppose thate1 ∩ e2 is a vertex, sayw. Since
(G − {e}) − {w} is connected there is a path, sayQ, of (G − {e}) − {w} joining u and
v. Thene1 ∪ e2 ∪ Q is a desired cycle. Note thate1 �= e2 sinceG has no multiple edges
SinceG − {e} is 2-connected there is a path, sayP , with P ∩ Γ = ∂P joining some
vertices ofΓ . ThenΓ ∪P is a graph homeomorphic to a theta-curve graph. SinceG− {e}
is topologically 3-connected there is a pathQ with Q∩ (Γ ∪P)= ∂Q such thatΓ ∪P ∪Q

is homeomorphic toK4. Then we setG0 = Γ ∪ P ∪Q.
Now suppose inductively that there is an increasing sequenceG0 ⊂ G1 ⊂ · · · ⊂ Gk of

subgraphs ofG satisfying the conditions (1), (2) and (3). Suppose thatGk �=G− {e}.
Case1.Gk ∪ e is topologically simple.
Case1.1. There is a vertexv of Gk that has degree two inGk ∪ e.
Let P be the longest path ofGk that containsv so that each vertex ofP − ∂P has

degree two inGk ∪ e. Let ∂P = {s, t}. SinceG− {s, t} is connected there is a pathQ of
(G− {e})− {s, t} with Q ∩Gk = ∂Q joining a vertex ofP and a vertex ofGk − V (P).
Set Gk+1 = Gk ∪ Q. Then it is easy to check thatGk+1 is topologically simple and
topologically 3-connected.

Case1.2. No vertex ofGk has degree two inGk ∪ e.
There is a pathP of G − {e} with P ∩ Gk = ∂P . Let ∂P = {s, t}. If s and t are not

adjacent inGk then we setGk+1 = Gk ∪ P . Suppose thats andt are incident to an edg
d of Gk. SinceG has no multiple edgesP is not an edge. Then we replaced by P . Note
that this replacement changes the increasing sequenceG0 ⊂G1 ⊂ · · · ⊂Gk . However it is
clear that the new increasing sequence still satisfies the required conditions. Thus th
is reduced to Case 1.1.

Case2.Gk ∪ e is not topologically simple.
Suppose thatGk = Gk−1 ∪ P whereP is a path ofG− {e} with P ∩Gk−1 = ∂P . By

the assumption we have thatGk−1 ∪ e is topologically simple. Therefore we have thatP

joins u andv. SinceG has no multiple edges we have thatP is not an edge. SinceG is
3-connected there is a pathQ of G− {e} with Q ∩Gk = ∂Q joining a vertex ofP − ∂P

and a vertex ofGk−1 − {u,v}. SetGk+1 = Gk ∪Q. Then it is easy to check thatGk+1 is
topologically simple and topologically 3-connected.✷
Lemma 2.7. LetG be a simple3-connected graph. Suppose thatG is not isomorphic toK4.
Then there is an edgee of G such thatG− {e} is topologically simple and topologicall
3-connected.

Proof. Let e1 ande2 be distinct edges ofG. We subdividee1 ande2 by taking verticesv1

andv2 on them respectively. We add an edged joining v1 andv2 toG. It is easy to see tha
the resultant graphG′ is simple and 3-connected. Note thatG′ − {d} is homeomorphic to
G hence topologically simple and topologically 3-connected. Then we apply Lemm
to G′ and d . Then we have thatG′ − {d} is obtained from a topologically simple an
topologically 3-connected graph by adding a pathP . Let e be an edge ofG corresponding
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to the pathP . Then we have thatG− {e} is topologically simple and topologically 3-con-

s of

imple

s of
y

f

gers
nected. ✷
Proof of Proposition 2.3. We give a proof by an induction on the number of the edge
G. The first step is the case thatG is isomorphic toK4. SinceL(K4) is a trivial group
[8] Theorem 2.1 is true in this case. Suppose that Theorem 2.1 is true for all s
3-connected graphs with less thann edges. LetG be a simple 3-connected graph withn
edges. Now we review an explicit presentation ofL(G)=H 2(C2(G),σ ). See [8] for more
details. LetE(G)= {e1, . . . , en} be the set of the edges ofG andV (G)= {v1, . . . , vm} the
set of the vertices ofG. We choose a fixed orientation on each edge ofG. For a pair of
integers(i, j) with 1 � i < j � n andei ∩ ej = ∅, we denote the pair(ei, ej ) by Eij . For
a pair of integers(i, s) with 1 � i � n, 1� s � m andvs is not incident toei , we denote
the pair(ei, vs) by V is . We set

δ1(V is
) =

∑
I (j)=s

Eρ(ij) −
∑

T (k)=s

Eρ(ik),

whereI (j) = s means that the initial vertex ofej is vs and T (k) = s means that the
terminal vertex ofek is vs , and

ρ(ij)=
{
ij if i < j,

j i if i > j.

Here the sum is taken over allj with I (j)= s andei ∩ ej = ∅ and allk with T (k)= s and
ei ∩ ek = ∅. ThenL(G) has an Abelian group presentation

〈
Eij (1 � i < j � n, ei ∩ ej = ∅)

| δ1(V is
)
(1 � i � n, 1 � s �m, vs is not incident toei)

〉
.

By Lemma 2.7 there is an edgee of G such thatG − {e} is topologically simple and
topologically 3-connected. We may suppose without loss of generality thate = en anden
is incident tov1 andv2. Let x, y be elements ofL(G) such thatϕH (x) = ϕH (y) for any
subgraphH of G that is homeomorphic toJ ,K5 orK3,3. We will show thatx−y = 0. Let
(G− {en})′ be the 3-connected graph that is homeomorphic toG− {en}. Then(G− {en})′
is simple. SinceG − {en} = (G − {en})′ or G − {en} is a subdivision of(G − {en})′ we
have that(G− {en})′ has at mostn− 1 edges. Therefore we may apply the hypothesi
induction and have thatϕG−{en}(x − y)= 0. This implies thatx − y can be represented b
an element as

x − y =
[∑

ainE
in

]
,

where i varies over alli ∈ {1 � i < n} with ei ∩ en = ∅ and ain is an integer. We
will change the representative element ofx − y step by step so that the range oi
becomes smaller and smaller as follows. LetG0 ⊂ G1 ⊂ · · · ⊂ Gk = G − {en} be an
increasing sequence satisfying the conditions of Lemma 2.6. LetPi be a path ofG such
thatGi = Gi−1 ∪ Pi . We may suppose without loss of generality that there are inte
1< r0 < r1 < r2 < · · ·< rk−1 < rk = n− 1 such thatE(Gi)= {e1, e2, . . . , eri } for eachi.
Similarly we may suppose that there are integers 1< s0 � s1 � s2 � · · · � sk−1 � sk = m
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.

by

t
ts
Fig. 4.

such thatV (Gi) = {v1, v2, . . . , vsi } for eachi. Up to the symmetry ofK4 there are six
cases of the topological type ofG0 ∪ en as illustrated in Fig. 4.

In any case it is easy to see that there is an element
∑

bnsδ
1(V ns) wheres varies over

the set{1,2, . . . , s1} andbns is an integer such that∑
ainE

in +
∑

bnsδ
1(V ns

) =
∑

cjnE
jn,

wherej varies over the set{r0 + 1, r0 + 2, . . . , n − 2, n− 1} andcjn is an integer. Note
that in (b), (c) and (e) we use the fact thatϕH (x − y)= 0 whereH is homeomorphic toJ .
In (f) we use the fact thatϕH (x − y)= 0 whereH is homeomorphic toK3,3.

Now suppose inductively thatx − y is represented as

x − y =
[∑

ainE
in

]
,

wherei varies over the set{rj + 1, rj + 2, . . . , n − 2, n − 1}. We consider the following
three cases.

Case1.Gj ∪ en is not topologically simple.
In this case∂Pj = ∂en = {v1, v2} and∂Pj+1 contains a vertex onPj . By adding some∑
bnsδ

1(V ns) wheres varies over the set{sj−1+1, sj−1+2, . . . , sj+1} we have the result
Namely we have∑

ainE
in +

∑
bnsδ

1(V ns
) =

∑
cjnE

jn,

wherej varies over the set{rj+1 + 1, rj+1 + 2, . . . , n− 2, n− 1} andcjn is an integer.
Case2.Gj ∪ en is topologically simple andPj+1 ∩ en �= ∅.
By adding some

∑
bnsδ

1(V ns) wheres varies over the set{sj +1, sj +2, . . . , sj+1} we
have the result.

Case3.Gj ∪ en is topologically simple andPj+1 ∩ en = ∅.
In this case we regarden andPj+1 as disjoint edges and apply Lemma 2.5. Namely

adding some
∑

bnsδ
1(V ns) wheres varies over the set{sj + 1, sj + 2, . . . , sj+1} we have

the result. This completes the proof.✷
Next we prove Theorem 2.1 for simple 2-connected graphs.

Proposition 2.8. Theorem2.1 is true whenG is a simple2-connected graph.

Lemma 2.9. Let G be a simple2-connected graph andu, v vertices ofG. Suppose tha
the graphG− {u,v} is not connected. LetQ1,Q2, . . . ,Qp be the connected componen
of the topological spaceG− {u,v}. LetHi be the closure ofQi in G. LetGi be a graph
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obtained fromHi by adding a new edge joiningu andv. Suppose that Theorem2.1 is true

e
is
ng

ds.

n (3)

f

f

nd

rst

n

for eachGi . Then Theorem2.1 is true forG.

Proof. Let x, y be elements ofL(G) such thatϕH (x) = ϕH (y) for any subgraphH of
G that is homeomorphic toJ , K5 or K3,3. We will show thatx − y = 0. Let E(G) =
{e1, e2, . . . , en} be the set of the edges ofG andV (G) = {v1 = u,v2 = v, v3, . . . , vm} the
set of the vertices ofG. Suppose thatx − y is represented by an element as

x − y =
[∑

aijE
ij
]
,

whereaij is an integer and the summation is taken for all pair(i, j) with 1 � i < j � n and
ei ∩ ej = ∅. We will change the representative

∑
aijE

ij step by step as follows. LetTi be
a spanning tree ofHi such that the degree ofu in Ti is one and the degree ofv in Ti is one.
LetT = T1∪T2∪· · ·∪Tp . Note that the maximal subgraph ofT without vertices of degre
one is homeomorphic to a graph on two vertices andp edges joining them. Therefore it
easy to see that the representative

∑
aijE

ij of x − y can be chosen such that the followi
condition (1) holds.

(1) aij = 0 if ei ∈E(Tk) andej ∈E(Tl) for somek �= l.
Next we show that in addition to the condition (1) the following condition (2) also hol

(2) aij = 0 if one ofei, ej is inE(Tk) for somek and the other is not inE(Hk).
Suppose thatei ∈ E(Hl)−E(Tl). If ei is incident tou or v then it is easy to erase allaij
andaji with ej ∈ E(Tk) for somek �= l. Suppose thatei is not incident tou nor v. Let γ
be the unique cycle ofTl ∪ ei . Then by using the condition on the disjoint cycles ofT ∪ ei
containingγ as a component we can erase allaij andaji with ej ∈ E(Tk) for somek �= l

without breaking the previous conditions. Next we show that the following conditio
holds.

(3) aij = 0 unless{ei, ej } ⊂E(Hk) for somek.
Note that the condition (3) implies both (1) and (2). Letei ∈ E(Hk) − E(Tk) andej ∈
E(Hl)−E(Tl) with k �= l. Let γ1 be the unique cycle ofTk ∪ ei andγ2 the unique cycle o
Tl ∪ ej . Then by the condition on these disjoint cycles we have thataij = 0. Thus we have
a representative

∑
aijE

ij of x − y that satisfies the condition (3).
Finally we will erase the termaij with ei, ej ∈ E(Hk) for somek. We will do this step

by step. First we will erase all the termsaijEij with ei, ej ∈ E(H1) as follows. LetP be
a path inT2 joining u andv. ThenH1 ∪ P is homeomorphic toG1. Let e0 be the edge o
G1 joining u= v1 andv = v2. Then by the assumption onG1 we have that∑

a′
ijE

ij =
∑

bis δ̃
1(V is

)
,

wherea′
ij = aij if ei, ej ∈E(H1) anda′

ij = 0 otherwise, and the summation of the seco

term is taken over some pairi, s with ei ∈ E(G1) andvs ∈ V (G1), and each of̃δ1(V i1)

and δ̃1(V i2) expresses the signed sum of someEjk with ej , ek ∈ E(G1), one of them is
ei the other incident tov1 or v2, not the signed sum of someEjk with ej , ek ∈ E(G),
and otherwisẽδ1(V is)= δ1(V is). We will modify the second summation as follows. Fi
we replace each termbi1δ̃1(V i1) by bi1δ1(V i1). Next we replace each termbi2δ̃1(V i2) by
bi2

∑
δ1(V is) where the summation is taken over alls with vs ∈ (V (G)− V (H1))∪ {v2}.

Finally we replace each termb0s δ̃
1(V 0s) by b0s

∑
δ1(V is) where the summation is take
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over all i with ei incident tou = v1 andei ∈ E(G) − E(H1). Let
∑

cisδ
1(V is) be the

ave

he
ple 2-

h that

.
t

e

e that

e
the

t
e

summation obtained from
∑

bis δ̃
1(V is) by the replacement stated above. Then we h

that the new representative
∑

aijE
ij −∑

cisδ
1(V is)= ∑

dijE
ij of x−y satisfiesdij = 0

if ei, ej ∈ E(H1), and still satisfies the condition (3). Repeating this replacementp times
we have 0 as a representative ofx − y. This completes the proof.✷
Proof of Proposition 2.8. We will give a proof by an induction on the number of t
edges of a simple 2-connected graph. The minimal number of the edges of a sim
connected graph is three and then the graph isK3. SinceL(K3) is trivial Theorem 2.1
is true forK3. Suppose that Theorem 2.1 is true for each simple 2-connected grap
hask or less edges. LetG be a simple 2-connected graph that hask + 1 edges. IfG is 3-
connected then by Proposition 2.3 we have the result. Suppose thatG is not 3-connected
Then there are verticesu andv of G such that the graphG− {u,v} is not connected. Le
Q1,Q2, . . . ,Qp be the connected components of the topological spaceG− {u,v}. LetHi

be the closure ofQi in G. Let Gi be a graph obtained fromHi by adding a new edg
joining u andv. Suppose thatu andv are not adjacent inG. Then we have that eachGi is
a simple 2-connected graph. Suppose thatu andv are adjacent inG. Then we havep � 3,
one ofG1, . . . ,Gp is a cycle, and other graphs are simple 2-connected graphs. Not
Theorem 2.1 is true for a cycle sinceL(G) is trivial whenG is a cycle. Since eachGi has
k or less edges we have the result by the induction hypothesis and by Lemma 2.9.✷

Next we prove Theorem 2.1 for simple connected graphs.

Proposition 2.10. Theorem2.1 is true whenG is a simple connected graph.

Lemma 2.11. LetG be a simple connected graph andv a vertex ofG. Suppose that th
graphG− {v} is not connected. LetQ1,Q2, . . . ,Qp be the connected components of
topological spaceG− {v}. LetGi be the closure ofQi in G. Suppose that Theorem2.1 is
true for eachGi . Then Theorem2.1 is true forG.

Proof. Let x, y be elements ofL(G) such thatϕH (x) = ϕH (y) for any subgraphH of
G that is homeomorphic toJ , K5 or K3,3. We will show thatx − y = 0. Let E(G) =
{e1, e2, . . . , en} be the set of the edges ofG andV (G)= {v1 = v, v2, . . . , vm} the set of the
vertices ofG. Suppose thatx − y is represented by an element as

x − y =
[∑

aijE
ij
]
,

whereaij is an integer and the summation is taken for all pair(i, j) with 1 � i < j � n

andei ∩ ej = ∅. We will change the representative
∑

aijE
ij step by step as follows. Le

Ti be a spanning tree ofGi such that the degree ofv in Ti is one. First we change th
representative element ofx − y by using the assumption on eachGi such that

(1) ajk = 0 if ej , ek ∈E(Gi) for somei.
To do this we first consider the casei = 1. By the assumption onG1 we have∑

a′
ijE

ij =
∑

bis δ̃
1(V is

)
,
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where the meanings ofa′ and δ̃1 are similar to those in the proof of Lemma 2.9. Then

l
m

to the

te

he
phs of

graph

.

h.
d by

2

rs ago.
azuaki
wa,
ij

we replace eachbi1δ̃1(V i1) by bi1
∑

δ1(V is) where the summation is taken over als
with vs ∈ (V (G) − V (G1)) ∪ {v1}. Let

∑
cisδ

1(V is) be the summation obtained fro∑
bis δ̃

1(V is) by this replacement. Then we have that the new representative
∑

aijE
ij −

∑
cisδ

1(V is
) =

∑
dijE

ij of x − y

satisfiesdij = 0 if ei, ej ∈ E(G1). Repeating this replacementp times we have the
condition (1). Next we change the representative element such that in addition
condition (1),

(2) ajk = 0 if one ofej andek is in E(Ti) for somei.
This is easily done by using the fact that eachTi is a tree. Then by considering appropria
disjoint cycles we have thatajk = 0 for anyj andk. This completes the proof.✷
Proof of Proposition 2.10. We will give a proof by an induction on the number of t
vertices of a simple connected graph. It is clear that Theorem 2.1 is true for all gra
one or two vertices. Suppose that Theorem 2.1 is true for each simple connected
that hask or less vertices. LetG be a simple connected graph that hask + 1 vertices. If
G is 2-connected then by Proposition 2.8 we have the result. Suppose thatG is not 2-
connected. Then there is a vertexv of G such that the graphG − {v} is not connected
Let Q1,Q2, . . . ,Qp be the connected components of the topological spaceG − {v}. Let
Gi be the closure ofQi in G. Then we have that eachGi is a simple connected grap
Since eachGi hask or less vertices we have the result by the induction hypothesis an
Lemma 2.11. ✷
Proposition 2.12. Theorem2.1 is true whenG is a simple graph.

Proof. Let G be a simple graph andG1, . . . ,Gp the connected components ofG. Then
eachGi is a simple connected graph. We choose a spanning treeTi for eachGi . Then the
proof is similar to that of Lemma 2.11 and we omit it.✷
Proof of Theorem 2.1. By Proposition 2.12 it is sufficient to consider the case thatG is
not simple. LetG′ be a simple graph that is a subdivision ofG. Then by Proposition 2.1
we have that Theorem 2.1 is true forG′. SinceL(G) is isomorphic toL(G′) we have that
Theorem 2.1 is true forG. ✷
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