
Theoretical Computer Science 110 (1993) 197-214

Elsevier

197

Mathematical Games

Geography

A.S. Fraenkel

S. Simonson”
Depar/ment of Mathemuiics und Computer .%ience, SrorvhiN College, North Easron, MA 02357, USA

Communicated by C. Berge

Received July 1991

Revised June 1992

Fraenkel, AS., Geography, Theoretical Computer Science 110 (1993) 1977214.

Generalized Geography is an impartial two-person game played on a digraph G=(V, A). In
impartial Arc (Vertex) Geography, a token is initially placed on a special start vertex, and the players

alternately move the token along unused arcs (vertices) of G. The player first unable to move loses

and his opponent wins. The question of who wins these games IAG and IVG is known to be

PSPACE-complete.

Both impartial versions with rwo tokens on special start vertices are proved PSPACE-complete

even for DAGs but polynomial for directed trees. The partizan variations, PAG and PVC, with one

token per player are PSPACE-complete even for bipartite degree-restricted digraphs. They are

NP-hard for DAGs, but polynomial for directed trees.

1. Introduction

Geography is a childrens’ game where two players alternately choose a country,

each name beginning with the same letter that ends the previous country’s name. The

first player who is unable to choose a new country loses; his opponent wins.

Generalized Geography is a two-person game played on a directed graph (digraph)

G = (V, A) with a specified vertex U,,E I/. Players alternate choosing a new arc from A.

Correspondence to: AS. Fraenkel, Department of Applied Mathematics and Computer Science, The

Weizmann Institute of Science, Rehovot 76100, Israel.
*Supported in part by NSF Grant CCR-8710730.

0304-3975/93/$06.00 Q 1993 -Elsevier Science Publishers B.V. All rights reserved

198 AS. Fraenkel, S. Simonson

The first arc chosen must have its tail at uO, and each subsequently chosen arc must

have its tail at the vertex that was the head of the previous arc. The first player unable

to choose such a new arc loses, and his opponent wins [4].

Generalized Geography is PSPACE-complete [12], even if the digraph is bipartite,

planar, and has no in/out-degree exceeding 2 and no degree exceeding 3. These results

remain true for the variation where the players choose vertices rather than arcs. (In

this variation, each new vertex must be a follower of the last vertex chosen, and the

player who first cannot choose such a vertex loses.) In fact, these restrictions were first

proved PSPACE-complete for Vertex Geography [7].

We consider a variation of this game in which there are two specified vertices r1 and

v2. This variation was first proposed in [131. The players alternately choose arcs. We

refer to the player who moves first as I and the player to move second as II. The first

arc chosen by the two players, I and II, must have its tail, respectively, at vi and vZ;

and each subsequently chosen arc must have its tail at the vertex that was the

head of the arc previously chosen by that player. That is, rather than taking turns

moving a single token, which is equivalent to the two Geography games described

above, the players take turns each moving his own token. We call this variation

Partizan Geography; henceforth, we shall refer to the original version as Impartial

Geography.

The computational complexity of partizan games was investigated by Morris [S].

He considered the situation where a number of trivial games are given and each player

at his turn may make a move in any one of these games. The new game is the

disjunctive sum of the trivial games. An example of this is Nim (with n heaps), which is

the sum of n trivial games, each played with a single heap.

Morris [S] proved that the decision problem of whether player I can win a disjunc-

tive sum of trivial games is PSPACE-complete. Other work has shown that if

repetitions of positions is prohibited, then this decision problem remains PSPACE-

complete [9] or becomes ExpSPACE-complete [l 11.

Our work extends the results of Morris and others by showing that PSPACE-

completeness is preserved even for various restricted Partizan Geography games. Our

main results were completed in 1988 and presented at the International Conference of

Algebraic Graph Theory in 1989 [3] and at Argonne Labs Symposium for Under-

graduates in Science, Mathematics and Engineering in 1990 [13]. Work on Partizan

Geography appears also in [1,2], where PVG, under the name TRON, is proved to be

PSPACE-complete.

Both Partizan and Impartial Geography can be played on arcs or vertices, giving US

4 games which we will abbreviate as PAG, PVG, IAG and IVG. The vertex and arc

versions of Geography generally have the same complexity. This is in contrast to

games like the Shannon Switching Game [S], which is solvable in polynomial

time, while its vertex version, Generalized Hex, is PSPACE-complete [lo]. There

are, however, differences between the partizan and impartial versions of

Geography. We will show that, in general, the partizan versions are more difficult to

solve.

Grography 199

We also consider variants of IAG and IVG where 2 tokens are on the digraph, but

each player may move either one on his turn. We call these IAG2 and IVG2. Their

complexity resembles that of PAG and PVG more than that of IAG and IVG.

The arc versions of these 3 games are listed below as formal decision problems. The

3 corresponding vertex versions can be defined similarly except for how the game

ends. In the vertex versions, a player loses when he is unable to move his token along

an arc whose head has never contained a token (i.e. all his arc choices have had or

currently have a token on their heads).

lmpurtial Arc Geography (IAG)

This is equivalent to the original Generalized Geography problem defined in [4].

Input: A digraph G = (V, A) and a specified vertex u0 in V.

Question: Does player I have a forced win in the following game played on G?

Players alternate moving a single token along arcs in A. The first move must be

along an arc whose tail is at L’~ and each subsequent move must be along an as yet

unused arc whose tail is at the vertex that contains the token. The player first unable

to move the token along a new arc loses.

Partizan Arc Geography (PAG)

Input: A digraph G =(V, A) and 2 specified vertices L’~ and L’~ in I’.

Question: Does player I have a forced win in the following game played on G?

Players alternate moving tokens along arcs in A. Each player has one token and can

move only that one. The first token moved by player I/II must be along an arc whose

tail is at c’,/02, and each subsequently moved token must be along an as yet unused

arc whose tail holds that player’s token. The player first unable to move his token

along a new arc loses.

Impartial Arc Geography with 2 Tokens (IAG2)

Input: A digraph G =(I’, A) and 2 specified vertices u and I! in I’.

Questiort: Does player I have a forced win in the following game played on G?

Players alternate moving either one of two tokens along arcs in A. The first token

moved must be along an arc that has its tail at either u or u, and each subsequently

moved token must be along an as yet unused arc whose tail holds a token. The player

first unable to move a token along a new arc loses.

In Section 2, we describe PSPACE-completeness and NP-hardness results. PAG

and PVG are PSPACE-complete for bipartite digraphs with in/outdegree not exceed-

ing 2 and degree not exceeding 3. They are NP-hard when G is acyclic or planar. The

games IAG2 and IVG2 are PSPACE-complete even when G is acyclic.

In Section 3, we describe polynomial-time solutions for acyclic digraphs (DAGs)

and trees. The games IAG and IVG are solvable in O(n’) time when G is acyclic, and

O(n) time when G is a directed tree. The games PAG and PVG are solvable in O(d)
time when G is a directed tree, and IAG2 and IVG2 are solvable in O(n4) time when

G is a directed tree.

A summary of our main results appears in Table 1.

200 AS. Fraenkel, S. Simonson

Table 1

Summary of our main results

Degree-restricted bipartite digraphs

Directed acyclic graphs

Trees

PAG (PVC) IAG2 (IVGZ) IAG (IVG)

PSPACE-complete PSPACE-complete PSPACE-complete

NP-hard PSPACE-complete Polynomial
Polynomial Polynomial Polynomial

2. PSPACE-completeness and NP-hardness results

It is known that IAG is PSPACE-complete for planar bipartite digraphs with

in/outdegree not more than 2 and degree not more than 3 (henceforth, digraphs with

this degree restriction will be called degree-restricted) [12]. It is not difficult to see that

the same results holds for IVG.

In this section we describe PSPACE-completeness and NP-hardness results for our

variations IAG and IVG. We first show that PAG and PVG are PSPACE-complete

for bipartite degree-restricted digraphs. The reduction is from 3QBF, a version of

quantified Boolean formula with exactly 3 literals per clause [4]. We illustrate our

reduction proofs from 3QBF by means of the following example:

The proofs, of course, are described in full generality, with the example provided as an

aid for the reader.

Theorem 2.1. PVG is PSPACE-complete for bipartite degree-restricted digraphs.

Proof. First note that PVG is in PSPACE, since the number of moves in any play of

the game is bounded by the number of vertices.

We show that 3QBF reduces to PVG. By adjoining a clause of the form

(x, +x, +X,), we may assume, without loss of generality, that the number of variables

in the 3QBF formula is odd. Given an instance F of 3QBF, the construction and the

two specified vertices are shown in Fig. la.

For each variable in F, we have a 4-vertex diamond, with the left and right vertices of

the diamond representing the variable and its negation, respectively. For each clause

in F, we have a cluster of 11 vertices. A clause cluster is shown in Fig. 1 b. (For the sake

of clarity, in Fig. la, we drew a clause cluster as a black box, with just the connections

drawn in.) The existential variable diamonds are connected so that the bottoms and

the tops of successive diamonds coincide. The very bottom vertex of this chain of

existential diamonds connects to the 3 existential connectors in each clause cluster.

The universal variable diamonds are similarly connected so that the bottoms and the

tops of successive diamonds coincide. There is one extra vertex connected to the end of

the universal diamond chain which connects to a universal connector in each clause

Geography 201

Player I starts here

A

Player II starts here

a. 3QBF a PVG

universe I existential
connector connectors

literal
connectors

b. A clause cluster

Fig. 1. Illustration of the proof of Theorem 2.1

cluster. Finally, the 3 literal connectors in each clause cluster are connected to the

appropriate diamond vertices representing the variables in that clause. The first player

to move, I, starts at the top of the existential diamond chain, and the second player, II,

starts at the top of the universal diamond chain.

We claim that player I can win PVG on G if and only if F is true. If F is true, then

I chooses his path so that he goes through the existential literals which he wants to be

true. That is, blocking a literal-labeled vertex on a diamond corresponds to choosing

a true value for that literal.

202 AS. Fraenkel, S. Simonson

Meanwhile, II is choosing a path (T/F values) for all the universal variables.

After this phase, II needs to choose a clause, hoping to find a clause which has

all false literals. Player I then chooses an existential connector in the same clause.

Note that, in each clause cluster, every existential connector is adjacent to exactly

two literal connectors. Player I chooses this vertex such that the third literal

connector in the clause, i.e. the one he is not adjacent to, is itself adjacent to

a true literal. That is, the path from the third literal connector to the diamond

literal vertex is blocked. We know that player I can do this, since we assume

that F is true, and every clause must, therefore, have at least one true-valued

literal.

At this point, II has two options. He chooses to move either towards this third

vertex, or else towards one of the other two vertices. If he chooses the latter, then

player I can block him off immediately and win. If he chooses to move to the third

vertex, then I moves to the center in the clause cluster, via a literal connector. This

blocks II from proceeding to the center, and, since II is at a vertex adjacent to

a true-valued literal, he is blocked from the other side as well, and player I wins.

If F is false, then II can win as follows. He chooses a path through the universal

variables that includes exactly the vertices which he wants to be true, trying to ensure

that at least one clause will have all false-valued literals. Meanwhile, I chooses his own

path (T/F values) through the existential literals. At the end of this phase, II chooses

a clause cluster whose literal connectors are each adjacent to false-valued literals.

Player I then chooses a pair of these 3 literal connectors, or he moves to a different

clause. Player II simply moves towards the third vertex (the one not chosen by I).

Now, since the vertex is adjacent to a false-valued literal, II can move to it if I moves to

the center. If I moves to a literal, then II moves to the center; so, II makes the last move

in any case. Note that this strategy also works if two literal connectors are connected

to the same literal, and I is on one literal connector and II on the other.

The reduction can be modified to have the degree restrictions we claim. Fig. 2 shows

the result of modifying the digraph in Fig. 1. The idea is to replace the arcs of a vertex

with high degree with a directed binary tree. For every vertex of in/outdegree k,
a directed binary tree with k leaves is introduced. Consider the edges from the literal

connectors to the literals. Let kj (~j) be the number of occurrences of literal Xj (Xj) in

F. In order to ensure that all paths from the literal connectors to the literals are the

same length, and to achieve the low degree, we let h=maxlGj,,(rlog, kjl, l-log, kjl).

(In Fig. 2, h= 1.) We construct a binary tree T of height h in between each literal

connector and its corresponding literal. If a particular log ki is smaller than h, then the

tree for xi still keeps its required height h, but is pruned so that the number of leaves is

exactly ki. The new clause clusters have 30+ h + 1 vertices. The h + 1 comes from

a chain of vertices p of length h + 1 connected to the center, and is needed in order to

keep the path length from the clause cluster through the center equal to the path

lengths to the literals.

The other high-degree vertices that cause problems are those with edges between

the last diamond literal and the clause clusters. The trees in this case all have height

203

Player II starts here Player I starts here

a. 3QBF a PVG with degree restrictions

universal connector existential connectors

literal connectors
J

b. A degree restricted clause cluster

Fig. 2. Degree restriction applied to Fig. 1

h’=log,(3m), where m is the number of clauses (h’=4 in Fig. 2). To make it easier to

see the idea, we again draw the clusters as black boxes.

Finally, the reader should note that, although the graph in our reduction shown in

Fig. 1 is bipartite, the degree modified version in Fig. 2 is not if h + h’ is odd. It is,

however, an easy matter to modify it and make it bipartite. An extra edge is adjoined,

directed from each root of T to its literal (at the diamond). To preserve timing, one

extra edge is also adjoined to each path p. This final modification preserves the degree

restriction, and provides a bipartite graph. This completes the proof. q

204 AS. Fraenkel, S. Simonson

Chanqe

to

Fig. 3. PVC cc PAC.

This result for PVG remains true for PAG because we can reduce PVG to PAG

without affecting the bipartite or degree restrictions.

Theorem 2.2. PAG is PSPACE-complete for bipartite degree-restricted digraphs.

Proof. First, note that PAG is in PSPACE since the number of moves is bounded by

the number of edges. We reduce PVG to PAG. Given a digraph G for PVG, we do

a local substitution for each vertex, as shown in Fig. 3. Each vertex u in G is replaced

by an arc (Uin, u ..,). The arcs that go into U, if any, will now go into Uin, and the arcs

that go out from U, if any, will now go out from u,,~. If the starting vertices in G were

u and c’, then the new starting vertices will be Uin and Uin. Finally, for every vertex u in

G with outdegree zero, we add an arc (u,,~, ueXtra). Call this new graph G’. We claim

that player I has a forced win for PVG on G if and only if he has a forced win for PAG

on G’. Every sequence of moves for PVG on G corresponds to a sequence of moves for

PAG on G’, and vice versa. The thing to note is that in PAG the odd numbered moves

of each player are dummy moves where the player is forced to choose an arc (Uin, u,,~),

and the even-numbered moves correspond to true moves between vertices in G.

Further note that a player in PAG will never get stuck on an even-numbered move,

only on an odd-numbered move. Therefore, a player in PVG will lose on his kth move

iff he will lose in PAG on his (2k- 1)th move. Note that the u,,~,, vertices are added to

vertices of outdegree zero to guarantee that this is always true. Otherwise, a player in

PAG might be stuck on an even-numbered move, i.e. the move coming out of some

u,,~ vertex.

Finally, note that the construction preserves the bipartiteness and the degree

restrictions. 0

Theorem 2.3. PVG and PAG are NP-hard for planar digraphs.

Proof. There is a simple reduction from Directed Planar Hamiltonian Path with

specified endpoints [4] to PVG. Given a digraph G with n vertices and specified start

and end vertices, construct a digraph H consisting of a chain of y1 vertices and let

player I start at the vertex with indegree 0. Let player II start at the start vertex of G. It

is easy to see that II will win PVG if and only if G has a Hamiltonian path from the

start vertex to the end vertex. This, along with Theorem 2.2, implies that PAG is also

NP-hard for planar digraphs. 0

Geography 205

In another direction we show that PVG and PAG are NP-hard even when G is

acyclic. Here the reduction is from Vertex Cover [4]. PSPACE-complete results

would be better here, but we leave this as an open question.

Theorem 2.4. PVG and PAG are NP-hard for DAGs.

Proof. We reduce Vertex Cover to PVG. The result for PAG follows from Theorem

2.2. We describe the reduction, without loss of generality, by the example in Fig. 4.

Given a graph H and a positive integer k, we construct a digraph G with two specified

vertices. We claim that the original graph H has a vertex cover of size k if and only if II

can win PVG on the digraph G. Before we describe the details of the reduction, note

the cigars in Fig. 4. The cigar notation is a shorthand to make the diagram easier to

Player I starts here

n-k+6

block

Fig. 4. Vertex Cover r Acyclic PVC.

206 AS. Fraenkel, S. Simonson

draw. If an arc from a vertex v ends at the border of a cigar, it means that there is an

arc from v to each of the vertices encircled by that cigar; and if an arc to v begins at the

border of a cigar, it means that there is an arc from each one of the vertices encircled

by that cigar to v. Note that if an arc goes right through the wall of a cigar, then it is

just a normal arc between two vertices.

The reduction consists of 4 cigars connected together in a specific way, and a tail.

Let it be the number of vertices in H and let e be the number of edges in H. Cigar 1 has

n-k + 6 vertices; cigar 2 has e vertices, each labeled by the H-edge it represents; and

cigars 3 and 4 each have it vertices. Player I starts at the top of a chain of k + 3 vertices.

The (k + 2) th vertex from the top is called thefork and connects to the leftmost vertex

in cigar 1. The (k + 3)th vertex from the top connects to each vertex in cigar 2. Cigar

2 connects to cigar 3 in the natural way shown in Fig. 4. That is, each vertex in cigar 2,

which represents an edge i, j in H, is connected to vertices i and j in cigar 3. The

starting vertex for II is connected to each vertex in cigar 3. Within cigar 3, there are

arcs (i, j) for all pairs of vertices i, j, where i < j. These arcs are not drawn in Fig. 4 for

the sake of clarity. Cigar 3 is connected to cigar 4 as shown, and every vertex in cigar

3 connects to a vertex labeled ui. Every vertex in cigar 1 is connected to a vertex

labeled block, and u1 is also connected to the block. The block is connected to every

vertex in cigar 4. Finally, there is a tail which consists of two chains: a shorter one with

n-k+ 1 vertices and a longer one with n-k+ 2 vertices. The head of the shorter

chain, c1 , is connected to a vertex u2, which itself is connected to the head of the longer

chain, c2. Every vertex in cigar 4 is connected to both c1 and c2.

If H has a vertex cover of size k, then II can win. Player II’s strategy is to choose the

k vertices in the vertex cover by moving left to right through cigar 3. After II has

chosen the kth vertex, I moves into the fork, and II moves out of cigar 3, to ul. If I now

moves to the right, he will lose. This is because he has only y1- k + 6 moves left, while II

also has that many by moving via ci and c2. Hence, player I must move down from

the fork and subsequently choose some uv in cigar 2. Since II has chosen a vertex cover

in cigar 3, at least one of u or u is blocked. Player II now chooses a vertex u or v in cigar

4, that was not previously chosen by him in cigar 3, i.e., that was not necessarily

included in the vertex cover. (Note that if both vertices were chosen by him in the

vertex cover, then he can pick either one now.) Player I is now forced to move into the

vertex in cigar 3, which has an arc to the vertex in cigar 4, on which II is residing.

Player II continues by moving in order to cl, u2 and c2, thereby blocking off both

chains in the tail from player I. Player I can try to sneak around through cigar 3 and

down into cigar 4, but, when he is ready to enter the tail, II would have finished

blocking off c2. Furthermore, it does not help I to traverse cigar 3 exhaustively since

he has at most n-k moves and II has more.

If H has no vertex cover of size k, then player I can win. First note that II must

choose at least k vertices in cigar 3. If he chooses less, and then moves out of cigar 3 to

the right or down, he gets a path of total length at most n + 6, while player I can always

move along a path of total length n+7 by moving to the fork, and then through

cigar 1.

Groyruphy 207

Hence, we assume that II chooses k or more vertices from cigar 3. Player I can then

win using the following strategy. He moves to the fork, and waits to see if II will

choose more than k vertices or exactly k. That is, does II stay in cigar 3 or move out?

We examine each case separately.

Cuse 1: Pluyer II moves out (i.e. chooses exactly k vertices)
If II moves from cigar 3 into cigar 4, player I can win by moving into cigar 1 for

a path of total length n + 9, while player 2 gets total length at most n + 5. Therefore, II

must move out of cigar 3 to ul. Then player I will move down from the fork and

choose an edge which was not covered by any of the k vertices chosen by player 2. This

edge must exist because we assume that H has no vertex cover of size k. Player I then

enters cigar 4 just after II leaves cigar 4 into the tail. We claim that this ensures a win

for player I since II cannot block both chains in the tail. If II tries by moving to cl and

then to u2, I blocks him by moving to c2. If II does not move to u2 then I wins by

moving to cl. If II moves into c2 from cigar 4, then 1 moves into c1 after II has left c2,

and since the short chain is just one shorter than the long chain, player I will be the

winner.

Cuse 2: Pluq’er II stala in the cigar (i.e. chooses more than k vertices)
If II stays in cigar 3, then I moves into cigar 1, and stays in cigar 1 as long as II stays

in cigar 3. If II subsequently moves down from cigar 3 into cigar 4, player I then moves

to the block, and enters cigar 4 just after II leaves cigar 4 for the tail. As in case 1, this

ensures a victory for player I. Finally, if II moves out of cigar 3 to ul, then I wins

immediately by moving out of cigar 1 to the block, blocking player II. 0

To conclude this section, we show that both IAG2 and IVG2 are PSPACE-

complete even for DAGs. IAG2/IVG2 are the arc and vertex variations of Geography

where there are two tokens that the players can move, and either player can move

either token at his turn.

Theorem 2.5. IAG2 is PSPACE-complete,for DAGs.

Proof. Since IAG2 is clearly in PSPACE, it suffices to show that 3QBF reduces to

IAG2. As in the proof of Theorem 2.1, we may assume without loss of generality that

n, the number of variables of the given instance F of 3QBF, is odd. The reduction is

illustrated in Fig. 5. In reyular play, the 3n diamond arcs are traversed first, where

player I makes the last move with token 1. Then player II selects a clause with token 2,

and player I selects a literal. Player I wins if and only if formula F is true.

If I, at any time during the play, selects a clause, then II moves onto the 2-path.

Since the total number of moves is now 3rz + 3 = 3(n + 1) which is even, II wins. The

same argument shows that if I embarks, at any time, on the 2-path, then II wins.

So, assume that II selects a clause ci before the diamond chain has been fully

traversed. We may assume that II embarks on this experiment only if F can be made

true by I, since, otherwise, II can win using regular play. Further note that once II has

208 A.S. Fraenkel, S. Simonson

token 1

token 2

Fig. 5. 3QBF a Acyclic IAG2

selected a clause, I necessarily has to select a literal, since, otherwise, II can move onto

the 2-path and win.

Suppose first that the clause ci selected by II has already been made true during the

partial diamond traversal. Then I moves to a literal previously traversed, which is the

last move for this token. Since the total number of moves is now 3n + 2, which is odd,

I wins.

So, assume that the clause ci selected by II is not yet true. Then there is an

odd-indexed variable xk or Xk in Ci, say xk, on the part of the diamond chain not yet

traversed, since, otherwise, F could be made false by player II. Then I moves token

2 to xk and follows the strategy of moving token 2 whenever II moves it. Note

that, since k is odd, there is an even number of moves from xk to the leaf. Thus, II will

be the first one to move token 1 again. Hence, the choice of odd-indexed variables

by I and even-indexed variables by II has been preserved; so eventually, player

I will be able to move onto xk, thereby winning. (In particular, note that, when II

selected the clause ci prematurely, token I could not have been on the top vertex

of diamond k.) 0

Geography 209

token 1

token 2

Fig. 6. 3QBF J; Acyclic IVGZ.

Theorem 2.6. IVG2 is PSPACE-complete for DAGs.

Proof. The reduction from 3QBF to IVG2 is illustrated in Fig. 6. The arguments are

similar to those used in the proof of Theorem 2.5 and, hence, are omitted. 0

3. Polynomial results for DAGs and trees

We first observe that IAG and IVG (the problems are identical on DAGs) can be

solved in O(e), time where e is the number of arcs in G, and G=(V, A) is a directed

acyclic graph. This result is due to the lack of blocking when these games are played

on DAGs. The games become Nim-like and yield to standard methods.

A more complicated idea works for PAG and PVG but only for directed trees. This

is the best one can hope for in the light of Theorem 2.4. We define VT(u, v) to be the

winner (with best play) of PVG played on the directed tree T with starting points

u and v, where u moves first and u # v.

PAG and PVG, unlike IAG and IVG, are different games even when G is a directed

tree. For example, the game shown in Fig. 7 is a win for u in PVG and a win for v in

PAG if u moves first. Hence, we define E,(u, v) to be the winner (with best play) of

210 AS. Fraenkel, S. Sitnonson

u V

u to move

PVG - u wins

PAG - v wins

Fig. 7. PVC # PAG on directed trees.

PAG played on a directed tree T with starting points u and u, where u moves first (here

u and v can be equal). Note that, in general, V,(u, v) # vT(v, U) and E,(u, v) # E,(v, u).

The algorithms for computing I/, and ET are very similar. So we will concentrate

on V,, explaining later on how to modify the ideas to work for ET. We calculate VT

for all pairs U, VE V, where u # v, by distinguishing 2 cases.

Case I: There is a directed path from v to u, or from u to v.

This case can be decided by calculating the depths of two subtrees of T and

comparing them. The point is that one player has already blocked the other one from

the subtree rooted at the vertex of the first player. They are now effectively playing the

game on two disjoint trees and the one with the longest path is the winner.

The actual calculation is done as follows. Assume that there is a path from u to v.

Then we calculate the subtree of T rooted at v (call this T,), and the subtree of

T rooted at u with T, deleted (call this T,,,). If depth(T,)<depth(T,,,) then

VT(z4, v)=u else VT(u, v)=v.

(If the path is from v to u, then if depth (T,)>depth(T,,,) then V,(u, v)=u else

VT(U, v) = v.)

Case 2: There is no directed path between u and v.

Here we use a recursive relationship (similar to the one which can be used to solve

IVG):

V,(u, v)=u iff 3(u, \v)EA such that V,(v, w)=w,

VT(u, v)=v iff V(u, w)EA, VT(v, w)=v.

The reason we separate two cases here is that the calculations for each case do not

work for the other one. The reader should first note that the recursive relationship

above does not work for case 1. The tree in Fig. 8 shows an example where V,(u, v) = u

but the recursive relation yields v.

Furthermore, the calculation in case 1 does not work in general for case 2. When

there is no directed path between the two vertices but the two vertices have a common

descendant, it breaks down. In Fig. 9, V,(u, v) = U, but the calculation of case 1 (re-

gardless of which two subtrees you compare) yields v.

As before, we can calculate VT for all pairs (u, V)E V x V (where u # v) by dynamic

programming. We will need a queue of vertices in reverse topological order called Q.

We describe the algorithm below.

211

Fig. 8. A counterexample. Fig. 9. Another counterexample

Algorithm 1. Polynomial-time algorithm for PVG on directed trees

Initiulize

for all vertices UE V with outdegree 0, Vr(u, 0) = L’ (for all vertices v # u).

for all vertices u, CE V where outdegree(u)>O, and outdegree(v)=O,

Vr(U, v)=u.

Muin Loop

while Q is not empty

begin

x = delete(Q);

for all vertices y already removed from Q do

Compute V,(x, y); Compute V,(y, x);

end

Compute Routine

if there is a directed path from x to y, or from y to x,

then compute 1/T according to case 1,

else compute VT according to case 2.

Theorem 3.1. PVG can be solved in 0(n2) time on directed trees.

Proof. We show that Algorithm 1 can be implemented in O(d) time.

The initialization, including the reverse topological order in Q, takes O(n) time.

Deciding whether or not there is a path between 2 vertices can be done in O(1) time by

calculating all 0(n2) answers in advance and looking them up when needed. The

preprocessing time to do all these calculations takes 0(n2) time.

Each pair of vertices in the main loop is considered exactly once by virtue of the

reverse topological order processing. Hence, for each vertex u, Compute(u, x) and

Compute(x, u) are each computed exactly once for each vertex XE V. The work done

by Compute on a given pair of vertices (u, x) is proportional to outdegree(Hence,

the total work done by case 2, over all pairs of vertices, is at most (n- l)Cv,v

(outdegree(v which is O(n2) for directed trees.

The total work done by case 1 is as follows. Each call to case 1 can be accomplished

in O(1) time if we do the appropriate preprocessing. To accomplish this, we need to

calculate in advance the depths of all the subtrees that may be used by the calculations

212 A.S. Fraenkel. S. Simonson

in case 1. Once this is done, the work in case 1 reduces to one comparison and

2 lookups.

For every vertex u in V, we compute the depth of the subtree of T rooted at U.

This can be done in O(n) time. If a vertex has outdegree 0 then its depth is 0,

else its depth equals the maximum of its childrens’ depths plus 1. This recursive

relationship can be computed with a reverse topological order scan of the tree in linear

time.

Then, for every vertex u in V, we remove u and its descendents from T to create

a new tree. For every vertex u in this new tree, we calculate the depth of the subtree

rooted at u. As before, this calculation can be done in O(n) time. Furthermore, since

we need to do this calculation for each u~V, there are II such calculations, giving

a total preprocessing time of O(n’). 0

All of the previous discussion is for PVG. For PAG, a few modifications are

necessary. Case 2 works exactly as before but case 1 breaks down. The point is that the

subtree of T rooted at u is not blocked completely from the player at u. In fact, u can

move to u. He will be blocked by only one arc leaving u. This is the arc that the player

at u chooses when he leaves u. Without loss of generality, we can assume that the

player at v will choose the arc which gives the longest path.

Hence, when there is path from u to u, we do the following. First, we compute the

depth of the subtree of T rooted at u. This is exactly as before. Then we need to find

among the children of u, a child x, such that the depth of the subtree of T rooted at x is

maximal. We remove x and all its descendents from T, and calculate the depth of the

subtree of T rooted at u. Finally, we compare these two depths to determine which

player wins. (If the path is from u to u, the computation is similar).

As before, a preprocessing step is necessary to implement these calculations in 0(1)

time. This preprocessing can be done as before in O(n*) time. This gives us the

following result.

Theorem 3.2. PAG can be solved in O(n*) time on directed trees.

The situation for undirected trees is even easier than for directed trees. This is true

for both PVG and PAG. Here there is always a path between the two vertices u and u.

The player to move must decide whether he wishes to move along the path between

him and the other player, or to leave this path. If he leaves the path, then the two

players are blocked from one another and a depth calculation similar to case 1 on

directed trees determines the winner. Hence, the player to move can determine by

a simple calculation whether he can win by moving off the path to the other player. If

this calculation says that he cannot win by doing so, then he stays on the path to the

other player and hopes his luck will change. The reader can check that the corre-

sponding decision problems can be done in linear time. This result is summarized

below.

GeograpA~ 213

Theorem 3.3. PVG and PAG can be solued in O(n) time on undirected trees.

These techniques can also be used to exhibit polynomial-time algorithms for IAG2

and IVG2 on directed trees. The resulting algorithms, however, are not as fast as for

PVG and PAG.

We outline the ideas for IVG2. Let V2r(u, v) bejirst when the player to move first

wins IVG2 on T with starting vertices u and U, else second. (Note that here, in contrast

to PAG and PVG, V2T(~, v)= V2,(v, u).)

We distinguish 2 cases just as we did for PVG. When there is no directed path from

u to L; from L; to u, then we use the following recursive relationship:

V2T(~, 0) =$rst iff

3(u, W)EA 1 V2,(w, p)=second, or 3(u, Z)EA 1 V2T(~, z)=second.

When there is a directed path from u to u or I! to u, the players, like in PVG, are

essentially playing the game on two disjoint trees. For PVG, the decision of who wins

in this situation depends on which tree was deeper. This depth calculation was done in

O(1) time, by doing an 0(n2) preprocessing step to calculate the depth of every

subtree. For IVG2, this situation of disjoint trees is not as easy to solve. For a given

pair of trees, one needs to set up another recursive relationship. A straightforward

method to do this will take O(nm) time, where m and n are the number of vertices in

the two trees. Furthermore, each pair of vertices (u, a), where there is a path between

u and u, may create a different pair of disjoint trees. This implies an upper bound of

O(n4) for the whole computation. The ideas carry over to IAG2 giving us the

following result.

Theorem 3.4. IVG2 and IAG2 can be soloed in 0(n4) time on directed trees.

With a careful implementation and analysis, we conjecture that this can be cut

down to O(n’).

4. Conclusions and future work

We have analyzed a number of variations of the game Geography. These included

Impartial Geography, Partizan Geography, Impartial Geography with 2 tokens, and

the vertex and arc versions of each. Impartial Geography, also known as Generalized

Geography, was previously known to be PSPACE-complete for many restricted

classes of digraphs. We showed that it was polynomial-time-solvable for DAGs

(directed acyclic graphs).

We showed that all the other variations are PSPACE-complete or NP-hard even for

DAGs. We described polynomial-time algorithms for these problems on directed trees.

It is easy to analyze these games for certain special digraphs. For example, one can

look at complete DAGs and characterize who wins for any of the games above. But

larger classes of digraphs are difficult to analyze.

214 A.S. Fraenkel. S. Simonson

There are a number of open questions that remain:

(1) Can one show that PAG and PVG are actually PSPACE-complete for DAGs

instead of just NP-hard?

(2) Can one improve the 0(n4) bound on the algorithm for IAG2 and IVG2 on

directed trees?

(3) Can one describe heuristics for any of the difficult versions of these games and

prove that they do reasonably well most of the time?

References

[l] H.L. Bodlaender, Complexity of path-forming games, Theoret. Comput. Sci. 110 (1993) 215-245.
[2] H.L. Bodlaender and T. Kloks, Fast algorithms for the tron game on trees, Tech. Report RUU-

CS-90-11, Department of Computer Science, Utrecht University 1990.

[3] A. Fraenkel, On some combinatorial games, Abstracts of Int. Conf. on Algebraic Graph Theory (1989)

Leibnitz, Austria, p. 11, Publ. of Institut fiir Mathematik und Angewandte Geometrie, Montanuniver-

sitiit Leoben, A-8700 Leoben, Austria, June 1989.
[4] M. Carey and D. Johnson, Computers and Intractability (Freeman, San Francisco 1979).

[S] A. Lehman, A solution of the Shannon switching game, J. Sot. Indust. Appl. Math. 12 (1964) 687-725.

[6] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329-343.

[7] D. Lichtenstein and M. Sipser, GO is Pspace-hard, J. ACM 27 (1980) 393401.

[S] F.L. Morris, Playing disjunctive sums is polynomial space complete, Internat. J. Game Theory 10 (3/4)

(1981) 195-205.

[9] A. Pultr and F.L. Morris, Prohibiting repetitions makes playing games substantially harder, Internat.

J. Game Theory 13 (1) (1984) 27-40.

[lo] S. Reisch, Hex ist Pspace-vollstandig, Acta Inform. 15 (1981) 167-191.

[1 l] J.M. Robson, Combinatorial games with exponential space complete decision problems, in: Proc. 11th

Sqmp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,

Vol. 176 (Springer, Berlin, 1984) 498-506.

[12] T. Schaefer, Complexity of some two-person perfect-information games, J. Comput. System Sci. 16

(1978) 185-225.

[13] C. Simonson, SIGART Newslerter 96 (1986) 3.

[14] S. Simonson and J. Villimek, Efficient algorithms for Partizan Geography on trees, Argonne Labs

Symp. for Undergraduates in Science, Mathematics and Engineering, Argonne, IL (1990).

