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Generalized Geography is an impartial two-person game played on a digraph G=(V, A). In 
impartial Arc (Vertex) Geography, a token is initially placed on a special start vertex, and the players 

alternately move the token along unused arcs (vertices) of G. The player first unable to move loses 

and his opponent wins. The question of who wins these games IAG and IVG is known to be 

PSPACE-complete. 

Both impartial versions with rwo tokens on special start vertices are proved PSPACE-complete 

even for DAGs but polynomial for directed trees. The partizan variations, PAG and PVC, with one 

token per player are PSPACE-complete even for bipartite degree-restricted digraphs. They are 

NP-hard for DAGs, but polynomial for directed trees. 

1. Introduction 

Geography is a childrens’ game where two players alternately choose a country, 

each name beginning with the same letter that ends the previous country’s name. The 

first player who is unable to choose a new country loses; his opponent wins. 

Generalized Geography is a two-person game played on a directed graph (digraph) 

G = (V, A) with a specified vertex U,,E I/. Players alternate choosing a new arc from A. 
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The first arc chosen must have its tail at uO, and each subsequently chosen arc must 

have its tail at the vertex that was the head of the previous arc. The first player unable 

to choose such a new arc loses, and his opponent wins [4]. 

Generalized Geography is PSPACE-complete [12], even if the digraph is bipartite, 

planar, and has no in/out-degree exceeding 2 and no degree exceeding 3. These results 

remain true for the variation where the players choose vertices rather than arcs. (In 

this variation, each new vertex must be a follower of the last vertex chosen, and the 

player who first cannot choose such a vertex loses.) In fact, these restrictions were first 

proved PSPACE-complete for Vertex Geography [7]. 

We consider a variation of this game in which there are two specified vertices r1 and 

v2. This variation was first proposed in [ 131. The players alternately choose arcs. We 

refer to the player who moves first as I and the player to move second as II. The first 

arc chosen by the two players, I and II, must have its tail, respectively, at vi and vZ; 

and each subsequently chosen arc must have its tail at the vertex that was the 

head of the arc previously chosen by that player. That is, rather than taking turns 

moving a single token, which is equivalent to the two Geography games described 

above, the players take turns each moving his own token. We call this variation 

Partizan Geography; henceforth, we shall refer to the original version as Impartial 

Geography. 

The computational complexity of partizan games was investigated by Morris [S]. 

He considered the situation where a number of trivial games are given and each player 

at his turn may make a move in any one of these games. The new game is the 

disjunctive sum of the trivial games. An example of this is Nim (with n heaps), which is 

the sum of n trivial games, each played with a single heap. 

Morris [S] proved that the decision problem of whether player I can win a disjunc- 

tive sum of trivial games is PSPACE-complete. Other work has shown that if 

repetitions of positions is prohibited, then this decision problem remains PSPACE- 

complete [9] or becomes ExpSPACE-complete [l 11. 

Our work extends the results of Morris and others by showing that PSPACE- 

completeness is preserved even for various restricted Partizan Geography games. Our 

main results were completed in 1988 and presented at the International Conference of 

Algebraic Graph Theory in 1989 [3] and at Argonne Labs Symposium for Under- 

graduates in Science, Mathematics and Engineering in 1990 [13]. Work on Partizan 

Geography appears also in [ 1,2], where PVG, under the name TRON, is proved to be 

PSPACE-complete. 

Both Partizan and Impartial Geography can be played on arcs or vertices, giving US 

4 games which we will abbreviate as PAG, PVG, IAG and IVG. The vertex and arc 

versions of Geography generally have the same complexity. This is in contrast to 

games like the Shannon Switching Game [S], which is solvable in polynomial 

time, while its vertex version, Generalized Hex, is PSPACE-complete [lo]. There 

are, however, differences between the partizan and impartial versions of 

Geography. We will show that, in general, the partizan versions are more difficult to 

solve. 
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We also consider variants of IAG and IVG where 2 tokens are on the digraph, but 

each player may move either one on his turn. We call these IAG2 and IVG2. Their 

complexity resembles that of PAG and PVG more than that of IAG and IVG. 

The arc versions of these 3 games are listed below as formal decision problems. The 

3 corresponding vertex versions can be defined similarly except for how the game 

ends. In the vertex versions, a player loses when he is unable to move his token along 

an arc whose head has never contained a token (i.e. all his arc choices have had or 

currently have a token on their heads). 

lmpurtial Arc Geography (IAG) 

This is equivalent to the original Generalized Geography problem defined in [4]. 

Input: A digraph G = (V, A ) and a specified vertex u0 in V. 

Question: Does player I have a forced win in the following game played on G? 

Players alternate moving a single token along arcs in A. The first move must be 

along an arc whose tail is at L’~ and each subsequent move must be along an as yet 

unused arc whose tail is at the vertex that contains the token. The player first unable 

to move the token along a new arc loses. 

Partizan Arc Geography (PAG) 

Input: A digraph G =( V, A) and 2 specified vertices L’~ and L’~ in I’. 

Question: Does player I have a forced win in the following game played on G? 

Players alternate moving tokens along arcs in A. Each player has one token and can 

move only that one. The first token moved by player I/II must be along an arc whose 

tail is at c’,/02, and each subsequently moved token must be along an as yet unused 

arc whose tail holds that player’s token. The player first unable to move his token 

along a new arc loses. 

Impartial Arc Geography with 2 Tokens (IAG2) 

Input: A digraph G =( I’, A) and 2 specified vertices u and I! in I’. 

Questiort: Does player I have a forced win in the following game played on G? 

Players alternate moving either one of two tokens along arcs in A. The first token 

moved must be along an arc that has its tail at either u or u, and each subsequently 

moved token must be along an as yet unused arc whose tail holds a token. The player 

first unable to move a token along a new arc loses. 

In Section 2, we describe PSPACE-completeness and NP-hardness results. PAG 

and PVG are PSPACE-complete for bipartite digraphs with in/outdegree not exceed- 

ing 2 and degree not exceeding 3. They are NP-hard when G is acyclic or planar. The 

games IAG2 and IVG2 are PSPACE-complete even when G is acyclic. 

In Section 3, we describe polynomial-time solutions for acyclic digraphs (DAGs) 

and trees. The games IAG and IVG are solvable in O(n’) time when G is acyclic, and 

O(n) time when G is a directed tree. The games PAG and PVG are solvable in O(d) 
time when G is a directed tree, and IAG2 and IVG2 are solvable in O(n4) time when 

G is a directed tree. 

A summary of our main results appears in Table 1. 
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Table 1 

Summary of our main results 

Degree-restricted bipartite digraphs 

Directed acyclic graphs 

Trees 

PAG (PVC) IAG2 (IVGZ) IAG (IVG) 

PSPACE-complete PSPACE-complete PSPACE-complete 

NP-hard PSPACE-complete Polynomial 
Polynomial Polynomial Polynomial 

2. PSPACE-completeness and NP-hardness results 

It is known that IAG is PSPACE-complete for planar bipartite digraphs with 

in/outdegree not more than 2 and degree not more than 3 (henceforth, digraphs with 

this degree restriction will be called degree-restricted) [12]. It is not difficult to see that 

the same results holds for IVG. 

In this section we describe PSPACE-completeness and NP-hardness results for our 

variations IAG and IVG. We first show that PAG and PVG are PSPACE-complete 

for bipartite degree-restricted digraphs. The reduction is from 3QBF, a version of 

quantified Boolean formula with exactly 3 literals per clause [4]. We illustrate our 

reduction proofs from 3QBF by means of the following example: 

The proofs, of course, are described in full generality, with the example provided as an 

aid for the reader. 

Theorem 2.1. PVG is PSPACE-complete for bipartite degree-restricted digraphs. 

Proof. First note that PVG is in PSPACE, since the number of moves in any play of 

the game is bounded by the number of vertices. 

We show that 3QBF reduces to PVG. By adjoining a clause of the form 

(x, +x, +X,), we may assume, without loss of generality, that the number of variables 

in the 3QBF formula is odd. Given an instance F of 3QBF, the construction and the 

two specified vertices are shown in Fig. la. 

For each variable in F, we have a 4-vertex diamond, with the left and right vertices of 

the diamond representing the variable and its negation, respectively. For each clause 

in F, we have a cluster of 11 vertices. A clause cluster is shown in Fig. 1 b. (For the sake 

of clarity, in Fig. la, we drew a clause cluster as a black box, with just the connections 

drawn in.) The existential variable diamonds are connected so that the bottoms and 

the tops of successive diamonds coincide. The very bottom vertex of this chain of 

existential diamonds connects to the 3 existential connectors in each clause cluster. 

The universal variable diamonds are similarly connected so that the bottoms and the 

tops of successive diamonds coincide. There is one extra vertex connected to the end of 

the universal diamond chain which connects to a universal connector in each clause 
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Player I starts here 

A 

Player II starts here 

a. 3QBF a PVG 

universe I existential 
connector connectors 

literal 
connectors 

b. A clause cluster 

Fig. 1. Illustration of the proof of Theorem 2.1 

cluster. Finally, the 3 literal connectors in each clause cluster are connected to the 

appropriate diamond vertices representing the variables in that clause. The first player 

to move, I, starts at the top of the existential diamond chain, and the second player, II, 

starts at the top of the universal diamond chain. 

We claim that player I can win PVG on G if and only if F is true. If F is true, then 

I chooses his path so that he goes through the existential literals which he wants to be 

true. That is, blocking a literal-labeled vertex on a diamond corresponds to choosing 

a true value for that literal. 
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Meanwhile, II is choosing a path (T/F values) for all the universal variables. 

After this phase, II needs to choose a clause, hoping to find a clause which has 

all false literals. Player I then chooses an existential connector in the same clause. 

Note that, in each clause cluster, every existential connector is adjacent to exactly 

two literal connectors. Player I chooses this vertex such that the third literal 

connector in the clause, i.e. the one he is not adjacent to, is itself adjacent to 

a true literal. That is, the path from the third literal connector to the diamond 

literal vertex is blocked. We know that player I can do this, since we assume 

that F is true, and every clause must, therefore, have at least one true-valued 

literal. 

At this point, II has two options. He chooses to move either towards this third 

vertex, or else towards one of the other two vertices. If he chooses the latter, then 

player I can block him off immediately and win. If he chooses to move to the third 

vertex, then I moves to the center in the clause cluster, via a literal connector. This 

blocks II from proceeding to the center, and, since II is at a vertex adjacent to 

a true-valued literal, he is blocked from the other side as well, and player I wins. 

If F is false, then II can win as follows. He chooses a path through the universal 

variables that includes exactly the vertices which he wants to be true, trying to ensure 

that at least one clause will have all false-valued literals. Meanwhile, I chooses his own 

path (T/F values) through the existential literals. At the end of this phase, II chooses 

a clause cluster whose literal connectors are each adjacent to false-valued literals. 

Player I then chooses a pair of these 3 literal connectors, or he moves to a different 

clause. Player II simply moves towards the third vertex (the one not chosen by I). 

Now, since the vertex is adjacent to a false-valued literal, II can move to it if I moves to 

the center. If I moves to a literal, then II moves to the center; so, II makes the last move 

in any case. Note that this strategy also works if two literal connectors are connected 

to the same literal, and I is on one literal connector and II on the other. 

The reduction can be modified to have the degree restrictions we claim. Fig. 2 shows 

the result of modifying the digraph in Fig. 1. The idea is to replace the arcs of a vertex 

with high degree with a directed binary tree. For every vertex of in/outdegree k, 
a directed binary tree with k leaves is introduced. Consider the edges from the literal 

connectors to the literals. Let kj (~j) be the number of occurrences of literal Xj (Xj) in 

F. In order to ensure that all paths from the literal connectors to the literals are the 

same length, and to achieve the low degree, we let h=maxlGj,,(rlog, kjl, l-log, kjl). 

(In Fig. 2, h= 1.) We construct a binary tree T of height h in between each literal 

connector and its corresponding literal. If a particular log ki is smaller than h, then the 

tree for xi still keeps its required height h, but is pruned so that the number of leaves is 

exactly ki. The new clause clusters have 30+ h + 1 vertices. The h + 1 comes from 

a chain of vertices p of length h + 1 connected to the center, and is needed in order to 

keep the path length from the clause cluster through the center equal to the path 

lengths to the literals. 

The other high-degree vertices that cause problems are those with edges between 

the last diamond literal and the clause clusters. The trees in this case all have height 



203 

Player II starts here Player I starts here 

a. 3QBF a PVG with degree restrictions 

universal connector existential connectors 

literal connectors 
J 

b. A degree restricted clause cluster 

Fig. 2. Degree restriction applied to Fig. 1 

h’=log,(3m), where m is the number of clauses (h’=4 in Fig. 2). To make it easier to 

see the idea, we again draw the clusters as black boxes. 

Finally, the reader should note that, although the graph in our reduction shown in 

Fig. 1 is bipartite, the degree modified version in Fig. 2 is not if h + h’ is odd. It is, 

however, an easy matter to modify it and make it bipartite. An extra edge is adjoined, 

directed from each root of T to its literal (at the diamond). To preserve timing, one 

extra edge is also adjoined to each path p. This final modification preserves the degree 

restriction, and provides a bipartite graph. This completes the proof. q 
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Chanqe 

to 

Fig. 3. PVC cc PAC. 

This result for PVG remains true for PAG because we can reduce PVG to PAG 

without affecting the bipartite or degree restrictions. 

Theorem 2.2. PAG is PSPACE-complete for bipartite degree-restricted digraphs. 

Proof. First, note that PAG is in PSPACE since the number of moves is bounded by 

the number of edges. We reduce PVG to PAG. Given a digraph G for PVG, we do 

a local substitution for each vertex, as shown in Fig. 3. Each vertex u in G is replaced 

by an arc (Uin, u ..,). The arcs that go into U, if any, will now go into Uin, and the arcs 

that go out from U, if any, will now go out from u,,~. If the starting vertices in G were 

u and c’, then the new starting vertices will be Uin and Uin. Finally, for every vertex u in 

G with outdegree zero, we add an arc (u,,~, ueXtra ). Call this new graph G’. We claim 

that player I has a forced win for PVG on G if and only if he has a forced win for PAG 

on G’. Every sequence of moves for PVG on G corresponds to a sequence of moves for 

PAG on G’, and vice versa. The thing to note is that in PAG the odd numbered moves 

of each player are dummy moves where the player is forced to choose an arc (Uin, u,,~), 

and the even-numbered moves correspond to true moves between vertices in G. 

Further note that a player in PAG will never get stuck on an even-numbered move, 

only on an odd-numbered move. Therefore, a player in PVG will lose on his kth move 

iff he will lose in PAG on his (2k- 1)th move. Note that the u,,~,, vertices are added to 

vertices of outdegree zero to guarantee that this is always true. Otherwise, a player in 

PAG might be stuck on an even-numbered move, i.e. the move coming out of some 

u,,~ vertex. 

Finally, note that the construction preserves the bipartiteness and the degree 

restrictions. 0 

Theorem 2.3. PVG and PAG are NP-hard for planar digraphs. 

Proof. There is a simple reduction from Directed Planar Hamiltonian Path with 

specified endpoints [4] to PVG. Given a digraph G with n vertices and specified start 

and end vertices, construct a digraph H consisting of a chain of y1 vertices and let 

player I start at the vertex with indegree 0. Let player II start at the start vertex of G. It 

is easy to see that II will win PVG if and only if G has a Hamiltonian path from the 

start vertex to the end vertex. This, along with Theorem 2.2, implies that PAG is also 

NP-hard for planar digraphs. 0 
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In another direction we show that PVG and PAG are NP-hard even when G is 

acyclic. Here the reduction is from Vertex Cover [4]. PSPACE-complete results 

would be better here, but we leave this as an open question. 

Theorem 2.4. PVG and PAG are NP-hard for DAGs. 

Proof. We reduce Vertex Cover to PVG. The result for PAG follows from Theorem 

2.2. We describe the reduction, without loss of generality, by the example in Fig. 4. 

Given a graph H and a positive integer k, we construct a digraph G with two specified 

vertices. We claim that the original graph H has a vertex cover of size k if and only if II 

can win PVG on the digraph G. Before we describe the details of the reduction, note 

the cigars in Fig. 4. The cigar notation is a shorthand to make the diagram easier to 

Player I starts here 

n-k+6 

block 

Fig. 4. Vertex Cover r Acyclic PVC. 
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draw. If an arc from a vertex v ends at the border of a cigar, it means that there is an 

arc from v to each of the vertices encircled by that cigar; and if an arc to v begins at the 

border of a cigar, it means that there is an arc from each one of the vertices encircled 

by that cigar to v. Note that if an arc goes right through the wall of a cigar, then it is 

just a normal arc between two vertices. 

The reduction consists of 4 cigars connected together in a specific way, and a tail. 

Let it be the number of vertices in H and let e be the number of edges in H. Cigar 1 has 

n-k + 6 vertices; cigar 2 has e vertices, each labeled by the H-edge it represents; and 

cigars 3 and 4 each have it vertices. Player I starts at the top of a chain of k + 3 vertices. 

The (k + 2) th vertex from the top is called thefork and connects to the leftmost vertex 

in cigar 1. The (k + 3)th vertex from the top connects to each vertex in cigar 2. Cigar 

2 connects to cigar 3 in the natural way shown in Fig. 4. That is, each vertex in cigar 2, 

which represents an edge i, j in H, is connected to vertices i and j in cigar 3. The 

starting vertex for II is connected to each vertex in cigar 3. Within cigar 3, there are 

arcs (i, j) for all pairs of vertices i, j, where i < j. These arcs are not drawn in Fig. 4 for 

the sake of clarity. Cigar 3 is connected to cigar 4 as shown, and every vertex in cigar 

3 connects to a vertex labeled ui. Every vertex in cigar 1 is connected to a vertex 

labeled block, and u1 is also connected to the block. The block is connected to every 

vertex in cigar 4. Finally, there is a tail which consists of two chains: a shorter one with 

n-k+ 1 vertices and a longer one with n-k+ 2 vertices. The head of the shorter 

chain, c1 , is connected to a vertex u2, which itself is connected to the head of the longer 

chain, c2. Every vertex in cigar 4 is connected to both c1 and c2. 

If H has a vertex cover of size k, then II can win. Player II’s strategy is to choose the 

k vertices in the vertex cover by moving left to right through cigar 3. After II has 

chosen the kth vertex, I moves into the fork, and II moves out of cigar 3, to ul. If I now 

moves to the right, he will lose. This is because he has only y1- k + 6 moves left, while II 

also has that many by moving via ci and c2. Hence, player I must move down from 

the fork and subsequently choose some uv in cigar 2. Since II has chosen a vertex cover 

in cigar 3, at least one of u or u is blocked. Player II now chooses a vertex u or v in cigar 

4, that was not previously chosen by him in cigar 3, i.e., that was not necessarily 

included in the vertex cover. (Note that if both vertices were chosen by him in the 

vertex cover, then he can pick either one now.) Player I is now forced to move into the 

vertex in cigar 3, which has an arc to the vertex in cigar 4, on which II is residing. 

Player II continues by moving in order to cl, u2 and c2, thereby blocking off both 

chains in the tail from player I. Player I can try to sneak around through cigar 3 and 

down into cigar 4, but, when he is ready to enter the tail, II would have finished 

blocking off c2. Furthermore, it does not help I to traverse cigar 3 exhaustively since 

he has at most n-k moves and II has more. 

If H has no vertex cover of size k, then player I can win. First note that II must 

choose at least k vertices in cigar 3. If he chooses less, and then moves out of cigar 3 to 

the right or down, he gets a path of total length at most n + 6, while player I can always 

move along a path of total length n+7 by moving to the fork, and then through 

cigar 1. 
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Hence, we assume that II chooses k or more vertices from cigar 3. Player I can then 

win using the following strategy. He moves to the fork, and waits to see if II will 

choose more than k vertices or exactly k. That is, does II stay in cigar 3 or move out? 

We examine each case separately. 

Cuse 1: Pluyer II moves out (i.e. chooses exactly k vertices) 
If II moves from cigar 3 into cigar 4, player I can win by moving into cigar 1 for 

a path of total length n + 9, while player 2 gets total length at most n + 5. Therefore, II 

must move out of cigar 3 to ul. Then player I will move down from the fork and 

choose an edge which was not covered by any of the k vertices chosen by player 2. This 

edge must exist because we assume that H has no vertex cover of size k. Player I then 

enters cigar 4 just after II leaves cigar 4 into the tail. We claim that this ensures a win 

for player I since II cannot block both chains in the tail. If II tries by moving to cl and 

then to u2, I blocks him by moving to c2. If II does not move to u2 then I wins by 

moving to cl. If II moves into c2 from cigar 4, then 1 moves into c1 after II has left c2, 

and since the short chain is just one shorter than the long chain, player I will be the 

winner. 

Cuse 2: Pluq’er II stala in the cigar (i.e. chooses more than k vertices) 
If II stays in cigar 3, then I moves into cigar 1, and stays in cigar 1 as long as II stays 

in cigar 3. If II subsequently moves down from cigar 3 into cigar 4, player I then moves 

to the block, and enters cigar 4 just after II leaves cigar 4 for the tail. As in case 1, this 

ensures a victory for player I. Finally, if II moves out of cigar 3 to ul, then I wins 

immediately by moving out of cigar 1 to the block, blocking player II. 0 

To conclude this section, we show that both IAG2 and IVG2 are PSPACE- 

complete even for DAGs. IAG2/IVG2 are the arc and vertex variations of Geography 

where there are two tokens that the players can move, and either player can move 

either token at his turn. 

Theorem 2.5. IAG2 is PSPACE-complete,for DAGs. 

Proof. Since IAG2 is clearly in PSPACE, it suffices to show that 3QBF reduces to 

IAG2. As in the proof of Theorem 2.1, we may assume without loss of generality that 

n, the number of variables of the given instance F of 3QBF, is odd. The reduction is 

illustrated in Fig. 5. In reyular play, the 3n diamond arcs are traversed first, where 

player I makes the last move with token 1. Then player II selects a clause with token 2, 

and player I selects a literal. Player I wins if and only if formula F is true. 

If I, at any time during the play, selects a clause, then II moves onto the 2-path. 

Since the total number of moves is now 3rz + 3 = 3(n + 1) which is even, II wins. The 

same argument shows that if I embarks, at any time, on the 2-path, then II wins. 

So, assume that II selects a clause ci before the diamond chain has been fully 

traversed. We may assume that II embarks on this experiment only if F can be made 

true by I, since, otherwise, II can win using regular play. Further note that once II has 
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token 1 

token 2 

Fig. 5. 3QBF a Acyclic IAG2 

selected a clause, I necessarily has to select a literal, since, otherwise, II can move onto 

the 2-path and win. 

Suppose first that the clause ci selected by II has already been made true during the 

partial diamond traversal. Then I moves to a literal previously traversed, which is the 

last move for this token. Since the total number of moves is now 3n + 2, which is odd, 

I wins. 

So, assume that the clause ci selected by II is not yet true. Then there is an 

odd-indexed variable xk or Xk in Ci, say xk, on the part of the diamond chain not yet 

traversed, since, otherwise, F could be made false by player II. Then I moves token 

2 to xk and follows the strategy of moving token 2 whenever II moves it. Note 

that, since k is odd, there is an even number of moves from xk to the leaf. Thus, II will 

be the first one to move token 1 again. Hence, the choice of odd-indexed variables 

by I and even-indexed variables by II has been preserved; so eventually, player 

I will be able to move onto xk, thereby winning. (In particular, note that, when II 

selected the clause ci prematurely, token I could not have been on the top vertex 

of diamond k.) 0 
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token 1 

token 2 

Fig. 6. 3QBF J; Acyclic IVGZ. 

Theorem 2.6. IVG2 is PSPACE-complete for DAGs. 

Proof. The reduction from 3QBF to IVG2 is illustrated in Fig. 6. The arguments are 

similar to those used in the proof of Theorem 2.5 and, hence, are omitted. 0 

3. Polynomial results for DAGs and trees 

We first observe that IAG and IVG (the problems are identical on DAGs) can be 

solved in O(e), time where e is the number of arcs in G, and G=( V, A) is a directed 

acyclic graph. This result is due to the lack of blocking when these games are played 

on DAGs. The games become Nim-like and yield to standard methods. 

A more complicated idea works for PAG and PVG but only for directed trees. This 

is the best one can hope for in the light of Theorem 2.4. We define VT(u, v) to be the 

winner (with best play) of PVG played on the directed tree T with starting points 

u and v, where u moves first and u # v. 

PAG and PVG, unlike IAG and IVG, are different games even when G is a directed 

tree. For example, the game shown in Fig. 7 is a win for u in PVG and a win for v in 

PAG if u moves first. Hence, we define E,(u, v) to be the winner (with best play) of 
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u V 

u to move 

PVG - u wins 

PAG - v wins 

Fig. 7. PVC # PAG on directed trees. 

PAG played on a directed tree T with starting points u and u, where u moves first (here 

u and v can be equal). Note that, in general, V,(u, v) # vT(v, U) and E,(u, v) # E,(v, u). 

The algorithms for computing I/, and ET are very similar. So we will concentrate 

on V,, explaining later on how to modify the ideas to work for ET. We calculate VT 

for all pairs U, VE V, where u # v, by distinguishing 2 cases. 

Case I: There is a directed path from v to u, or from u to v. 

This case can be decided by calculating the depths of two subtrees of T and 

comparing them. The point is that one player has already blocked the other one from 

the subtree rooted at the vertex of the first player. They are now effectively playing the 

game on two disjoint trees and the one with the longest path is the winner. 

The actual calculation is done as follows. Assume that there is a path from u to v. 

Then we calculate the subtree of T rooted at v (call this T,), and the subtree of 

T rooted at u with T, deleted (call this T,,,). If depth(T,)<depth(T,,,) then 

VT(z4, v)=u else VT(u, v)=v. 

(If the path is from v to u, then if depth (T,)>depth(T,,,) then V,(u, v)=u else 

VT(U, v) = v.) 

Case 2: There is no directed path between u and v. 

Here we use a recursive relationship (similar to the one which can be used to solve 

IVG): 

V,(u, v)=u iff 3(u, \v)EA such that V,(v, w)=w, 

VT(u, v)=v iff V(u, w)EA, VT(v, w)=v. 

The reason we separate two cases here is that the calculations for each case do not 

work for the other one. The reader should first note that the recursive relationship 

above does not work for case 1. The tree in Fig. 8 shows an example where V,(u, v) = u 

but the recursive relation yields v. 

Furthermore, the calculation in case 1 does not work in general for case 2. When 

there is no directed path between the two vertices but the two vertices have a common 

descendant, it breaks down. In Fig. 9, V,(u, v) = U, but the calculation of case 1 (re- 

gardless of which two subtrees you compare) yields v. 

As before, we can calculate VT for all pairs (u, V)E V x V (where u # v) by dynamic 

programming. We will need a queue of vertices in reverse topological order called Q. 

We describe the algorithm below. 
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Fig. 8. A counterexample. Fig. 9. Another counterexample 

Algorithm 1. Polynomial-time algorithm for PVG on directed trees 

Initiulize 

for all vertices UE V with outdegree 0, Vr(u, 0) = L’ (for all vertices v # u). 

for all vertices u, CE V where outdegree(u)>O, and outdegree(v)=O, 

Vr(U, v)=u. 

Muin Loop 

while Q is not empty 

begin 

x = delete(Q); 

for all vertices y already removed from Q do 

Compute V,(x, y); Compute V,(y, x); 

end 

Compute Routine 

if there is a directed path from x to y, or from y to x, 

then compute 1/T according to case 1, 

else compute VT according to case 2. 

Theorem 3.1. PVG can be solved in 0(n2) time on directed trees. 

Proof. We show that Algorithm 1 can be implemented in O(d) time. 

The initialization, including the reverse topological order in Q, takes O(n) time. 

Deciding whether or not there is a path between 2 vertices can be done in O(1) time by 

calculating all 0(n2) answers in advance and looking them up when needed. The 

preprocessing time to do all these calculations takes 0(n2) time. 

Each pair of vertices in the main loop is considered exactly once by virtue of the 

reverse topological order processing. Hence, for each vertex u, Compute(u, x) and 

Compute(x, u) are each computed exactly once for each vertex XE V. The work done 

by Compute on a given pair of vertices (u, x) is proportional to outdegree( Hence, 

the total work done by case 2, over all pairs of vertices, is at most (n- l)Cv,v 

(outdegree(v which is O(n2) for directed trees. 

The total work done by case 1 is as follows. Each call to case 1 can be accomplished 

in O(1) time if we do the appropriate preprocessing. To accomplish this, we need to 

calculate in advance the depths of all the subtrees that may be used by the calculations 
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in case 1. Once this is done, the work in case 1 reduces to one comparison and 

2 lookups. 

For every vertex u in V, we compute the depth of the subtree of T rooted at U. 

This can be done in O(n) time. If a vertex has outdegree 0 then its depth is 0, 

else its depth equals the maximum of its childrens’ depths plus 1. This recursive 

relationship can be computed with a reverse topological order scan of the tree in linear 

time. 

Then, for every vertex u in V, we remove u and its descendents from T to create 

a new tree. For every vertex u in this new tree, we calculate the depth of the subtree 

rooted at u. As before, this calculation can be done in O(n) time. Furthermore, since 

we need to do this calculation for each u~V, there are II such calculations, giving 

a total preprocessing time of O(n’). 0 

All of the previous discussion is for PVG. For PAG, a few modifications are 

necessary. Case 2 works exactly as before but case 1 breaks down. The point is that the 

subtree of T rooted at u is not blocked completely from the player at u. In fact, u can 

move to u. He will be blocked by only one arc leaving u. This is the arc that the player 

at u chooses when he leaves u. Without loss of generality, we can assume that the 

player at v will choose the arc which gives the longest path. 

Hence, when there is path from u to u, we do the following. First, we compute the 

depth of the subtree of T rooted at u. This is exactly as before. Then we need to find 

among the children of u, a child x, such that the depth of the subtree of T rooted at x is 

maximal. We remove x and all its descendents from T, and calculate the depth of the 

subtree of T rooted at u. Finally, we compare these two depths to determine which 

player wins. (If the path is from u to u, the computation is similar). 

As before, a preprocessing step is necessary to implement these calculations in 0( 1) 

time. This preprocessing can be done as before in O(n*) time. This gives us the 

following result. 

Theorem 3.2. PAG can be solved in O(n*) time on directed trees. 

The situation for undirected trees is even easier than for directed trees. This is true 

for both PVG and PAG. Here there is always a path between the two vertices u and u. 

The player to move must decide whether he wishes to move along the path between 

him and the other player, or to leave this path. If he leaves the path, then the two 

players are blocked from one another and a depth calculation similar to case 1 on 

directed trees determines the winner. Hence, the player to move can determine by 

a simple calculation whether he can win by moving off the path to the other player. If 

this calculation says that he cannot win by doing so, then he stays on the path to the 

other player and hopes his luck will change. The reader can check that the corre- 

sponding decision problems can be done in linear time. This result is summarized 

below. 
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Theorem 3.3. PVG and PAG can be solued in O(n) time on undirected trees. 

These techniques can also be used to exhibit polynomial-time algorithms for IAG2 

and IVG2 on directed trees. The resulting algorithms, however, are not as fast as for 

PVG and PAG. 

We outline the ideas for IVG2. Let V2r(u, v) bejirst when the player to move first 

wins IVG2 on T with starting vertices u and U, else second. (Note that here, in contrast 

to PAG and PVG, V2T(~, v)= V2,(v, u).) 

We distinguish 2 cases just as we did for PVG. When there is no directed path from 

u to L; from L; to u, then we use the following recursive relationship: 

V2T(~, 0) =$rst iff 

3(u, W)EA 1 V2,(w, p)=second, or 3(u, Z)EA 1 V2T(~, z)=second. 

When there is a directed path from u to u or I! to u, the players, like in PVG, are 

essentially playing the game on two disjoint trees. For PVG, the decision of who wins 

in this situation depends on which tree was deeper. This depth calculation was done in 

O(1) time, by doing an 0(n2) preprocessing step to calculate the depth of every 

subtree. For IVG2, this situation of disjoint trees is not as easy to solve. For a given 

pair of trees, one needs to set up another recursive relationship. A straightforward 

method to do this will take O(nm) time, where m and n are the number of vertices in 

the two trees. Furthermore, each pair of vertices (u, a), where there is a path between 

u and u, may create a different pair of disjoint trees. This implies an upper bound of 

O(n4) for the whole computation. The ideas carry over to IAG2 giving us the 

following result. 

Theorem 3.4. IVG2 and IAG2 can be soloed in 0(n4) time on directed trees. 

With a careful implementation and analysis, we conjecture that this can be cut 

down to O(n’). 

4. Conclusions and future work 

We have analyzed a number of variations of the game Geography. These included 

Impartial Geography, Partizan Geography, Impartial Geography with 2 tokens, and 

the vertex and arc versions of each. Impartial Geography, also known as Generalized 

Geography, was previously known to be PSPACE-complete for many restricted 

classes of digraphs. We showed that it was polynomial-time-solvable for DAGs 

(directed acyclic graphs). 

We showed that all the other variations are PSPACE-complete or NP-hard even for 

DAGs. We described polynomial-time algorithms for these problems on directed trees. 

It is easy to analyze these games for certain special digraphs. For example, one can 

look at complete DAGs and characterize who wins for any of the games above. But 

larger classes of digraphs are difficult to analyze. 
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There are a number of open questions that remain: 

(1) Can one show that PAG and PVG are actually PSPACE-complete for DAGs 

instead of just NP-hard? 

(2) Can one improve the 0(n4) bound on the algorithm for IAG2 and IVG2 on 

directed trees? 

(3) Can one describe heuristics for any of the difficult versions of these games and 

prove that they do reasonably well most of the time? 
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