
Computers and Mathematics with Applications 60 (2010) 377–389

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A new online learning algorithm for structure-adjustable
extreme learning machine
Guohu Li, Min Liu ∗, Mingyu Dong
Department of Automation, Tsinghua University and TNLIST, Beijing, 100084, PR China

a r t i c l e i n f o

Article history:
Received 20 January 2010
Accepted 16 March 2010

Keywords:
Online learning
Extreme learning machine (ELM)
Adjustable structure
Neural network
Modelling

a b s t r a c t

In actual industrial fields, data for modelling are usually generated gradually, which
requires that the data-based prediction model has the online learning capability. Although
many online learning algorithms have been proposed, the generalization performance
needs to be improved further. In this paper, a structure-adjustable online learning neural
network (SAO-ELM) based on the extreme learning machine (ELM) with quicker learning
speed and better generalization performance is proposed. Firstly, ELM is changed into a
structure-adjustable learning machine, in which the number of nodes in its single hidden
layer can be adjusted. Then, a special strategy is developed to handle the difficulty that the
new added hidden nodes’ outputs corresponding to the discarded training data cannot be
obtained. After that, an iterative equation is presented to update the output matrix when
hiddennodes are added. Results of numerical comparison based ondata from the realworld
benchmark problems and an actual continuous casting process show that the performance
of SAO-ELM has significant advantages over that of the typical online learning algorithms
on generalization performance. In addition, SAO-ELM retains the merit of quick learning
characteristic of ELM.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Neural network is an important nonlinear modelling method, in which the performance relies heavily on the availability
of the training data. However, in many practical applications, acquisition of representative training data is expensive and
time consuming. Actually, the training data are usually generated gradually in practical industrial fields. In such settings, it
is necessary to update the existing neural network in an online fashion to accommodate new datawithout compromising its
performance on old data [1]. To overcome such difficulties, the online learning neural networks are presented [2–7]. From
the literature discussing online learning, the requirements for online learning algorithms can be summarized as follows:

(1) All training data are sequentially (one by one) presented to the model.
(2) At any time, only current training data are seen and learned.
(3) A training datum is discarded as soon as the learning procedure on it is completed.
(4) The model does not know how many data will be presented in its learning procedure.

The requirements of the online learning algorithm lead to the so-called stability–plasticity dilemma [8]. The stability means
the ability of the neural network to preserve the existing knowledge, while the plasticity indicates the capability of
accommodating any new information. A typical approach to deal with this dilemma is to save all the arrived data and retrain
the neural network using them. In this method, amount of the training data increases as the learning process goes on. On the

∗ Corresponding author.
E-mail address: lium@tsinghua.edu.cn (M. Liu).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.03.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82007552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:lium@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.camwa.2010.03.023

378 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

one hand, this will result in extra storing space consumption; on the other hand, it makes the time of the learning process
becomes longer and longer, which is not suitable for online applications.
In order to dealwith the above dilemmamore effectively, various online learning algorithms have been proposed. RAN [2]

is the first neural network with the ability of online learning. It starts with no hidden nodes and grows through allocating
new hidden nodes based on the novelty of the training data that arrive sequentially. A drawback of RAN is that it uses the
least mean square method (LMS) to regulate the output weights, which results in long time convergence. Moreover, RAN
has no pruning strategy. Consequently, other online learning algorithms, such as RANEKF [3], MRAN [4], GAP-RBF [5], GGAP-
RBF [6], are proposed to improve the performance of RAN. The common deficiency of the above algorithms is that too many
parameters need to be determined and the training time is too long. These heavily limit their practical applications.
OS-ELM [7], in which only the number of hidden nodes need to be determined, uses the idea of ELM [9–13] and changes

the updating way for the output weights in ELM into an online fashion and possesses the online learning ability. It is
a promising one for online learning because it originates from ELM, which has been shown to be extremely fast with
generalization performance better than other batch learningmethods, andholds thosemerits of ELM.However, the structure
of OS-ELM cannot be changed once the learning process starts. This results in relatively weak capability to accommodate
new information because there is a paradox between the fixed structure and the various unknown training samples that
will arrive in future. Subsequently, GART [14] is proposed and obtains better performance than OS-ELM.
In this paper, a structure-adjustable online learning neural network (SAO-ELM) based on ELM is proposed. In SAO-ELM,

the basic network structure is the same as ELM, but the number of the hidden nodes can be adjusted. The main challenge of
adding hidden nodes is that the output of these new added nodes on the old data, which have been discarded because of the
requirements of the online learning, is unknown. However, the objective of the learning is corresponding to all the arrived
training data. Therefore, a sphere is introduced to surround the arrived data, in which the center and radius of the sphere are
recorded, and the RBF node is selected as the hidden node. Then the outputs of the new hidden nodes on the discarded data
can be treated as zeros if the center and width of the new added RBF nodes are properly determined to satisfy a condition.
The condition is that the output of the RBF node for a special point, which locates on the bound of the sphere and is nearest
to the center of the RBF node, should be small enough. After that, the above challenge is solved. Then, if the new coming
datum is in the outside of this sphere and the training accuracy cannot satisfy the training requirements, a new hidden node
is added and its parameters are properly determined. Subsequently, the output weights are regulated with a new iterative
method inwhich the objective is tominimize the empirical risk corresponding to all arrived data. Otherwise, only the output
weights are updated. Finally, the center and radius of the sphere are updated according to the new data in order to make
the learning process continue.
This paper is organized as follows: Section 2 gives a brief review of ELM and OS-ELM. Section 3 presents the derivation of

SAO-ELM, including the methods to select the parameters for the new added hidden node and the equations to update the
output weights. Performance evaluation of SAO-ELM is shown in Section 4 based on the benchmark problems in the areas
of regression and classification and a practical problem. Conclusions based on the study are highlighted in Section 5.

2. Review of ELM and OS-ELM

OS-ELM is an online learning version of ELM and the idea of SAO-ELM originates from OS-ELM. In order to provide the
necessary background for the development of SAO-ELM in Section 3, this section will briefly review the batch ELM and
OS-ELM. The mathematical description of Single Hidden Layer Feed-forward Network (SLFN) with RBF hidden nodes, ELM,
and OS-ELM will be introduced one by one. Details about ELM and OS-ELM are given in [9–13,7], respectively.

2.1. Description of SLFN with RBF hidden nodes

If an SLFN has n input nodes, M hidden RBF nodes, and m output nodes, the output vector and its components can be
represented by

F = [f1, f2, . . . , fm]T (1)

fj =
M∑
i=1

βjiG(ai,bi, x), x ∈ Rn, ai ∈ Rn, bi ∈ R+, j = 1, . . . ,m (2)

where ai and bi are the center and impact factor of the ith RBF hidden node respectively and βji is the weight connecting
the jth output node to the ith hidden node. R+ indicates the set of all positive real values. G(ai,bi, x) is the output of the ith
hidden node with respect to the input x. For the case of RBF nodes, the function G is a radially symmetric function of the
distance between the input and the center, namely it can be represented by a function g(x) : R→ R as g(bi ‖x− ai‖). If the
Gaussian function is used as the activation function of the hidden node, G(ai,bi, x) can be written as

G(ai,bi, x) = ebi‖x−ai‖. (3)

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 379

2.2. Review of ELM

ELM is a special kind of SLFN. In ELM, the hidden nodes can be additive nodes or RBF nodes. The parameters of the
hidden nodes are randomly generated. The output weights are analytically determined. For N arbitrary distinct samples
(xi, ti) ∈ Rn × Rm, in which xi is a n× 1 input vector and ti is am× 1 output vector, the jth output for the ith sample is

fij =
M∑
k=1

βjkG(ak, bk, xi), i = 1, . . . ,N, j = 1, . . . ,m. (4)

Eq. (4) can be written compactly as

H0β = F (5)

where

H0 =

G(a1, b1, x1) . . . G(aM , bM , x1)
...

. . .
...

G(a1, b1, xN) · · · G(aM , bM , xN)


N×M

(6)

β =

β11 . . . β1m
...

. . .
...

βM1 · · · βMm

 =
βT1· · ·
βTM


M×m

(7)

F =

f11 . . . f1m
...

. . .
...

fN1 · · · fNm

 =
f T1· · ·
f TN


N×m

. (8)

H0 is called the hidden layer output matrix of the network [7,15]. The ith column ofH0 is the ith hidden node’s output vector
with respect to all of the N inputs and the jth row is the outputs of all the hidden nodes to the jth sample.
If the empirical risk minimization (ERM) principle is used, the objective function for training the neural network can be

written as

min (‖F − T0‖) = min
(∥∥H0(N×M)β(M×m) − T0(N×m)∥∥) (9)

where T0 is the matrix of training target, namely

T0 =

[t11 · · · t1m
· · ·

tN1 · · · tNm

]
=

tT1· · ·
tTN


N×m

. (10)

In ELM, the number of hidden nodes is determined firstly and so the structure is fixed. Then the widths and centers of those
nodes are selected randomly. According to Eq. (9), the network output weight matrix, which denotes as β , becomes the
only parameter that needs to be determined. The following two theorems provide possible method to calculate β . These
theorems are formally stated in [12].

Theorem 1. Let an SLFN with M additive or RBF hidden nodes and an activation function g(x) which is infinitely differentiable
in any interval of R be given. Then, for M arbitrary distinct input vectors {xi|xi ∈ Rn, i = 1, . . . ,M}, and {(ai, bi)}Mi=1 randomly
generatedwith any continuous probability distribution, respectively, the hidden layer outputmatrixH is invertiblewith probability
one.

Theorem 2. Given any small positive value ε > 0 and activation function g(x) : R → R which is infinitely differentiable in
any interval, there exists M ≤ N such that for N arbitrary distinct input vectors {xi|xi ∈ Rn, i = 1, . . . ,N}, for any {(ai, bi)}Mi=1
randomly generated according to any continuous probability distribution ‖HN×MβM×m − TN×m‖ < ε with probability one.

According to Theorem 1, if N = M in Eq. (9), we can select the parameters of the hidden nodes and regulate the output
weight matrix to make the training error be zero. The optimal value of β can be given by

β0 = H−10 T0. (11)

However, in most practical applications, it is unnecessary to allocate so many hidden nodes as the training samples. So
the size of training data set, i.e. N , is usually larger than the number of hidden nodes, i.e. M . In such settings, Theorem 2
guarantees that any small training error ε can be obtainedwith some network that its hidden nodes are less than the number
of training samples. The optimal output weight matrix can be estimated as [7]

β0 = H
Ď
0T0 (12)

380 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

whereHĎ
0 is theMoore–Penrose generalized inverse. If the condition of rank(H) = M is satisfied, Eq. (12) can be rewritten as

β0 = (HT0H0)
−1HT0 T0. (13)

If Eq. (13) is used, a smaller network sizeM or a larger initial training data set should be chosen to cater for such condition.

2.3. Review of OS-ELM

As seen from Eq. (12), ELM is a batch learning algorithm which assumes that all of the training data are available before
training. In order to handle the problem of online learning in many real applications, OS-ELM is proposed.
Given a chunk of initial training data set X0 = {(xi, ti)}Ni=1, the hidden layer output matrix H0 and the training target

matrix T0 are the same as Eqs. (6) and (10), respectively. If the number of hidden nodesM is less than the number training
samples N , i.e.M ≤ N , the output matrix β0 can be given by

β0 = K−10 H
T
0 T0 (14)

where

K0 = HT0H0 (15)

according to Eq. (13).
If a new chunk of data set X1 = {(xi, ti)}

N+N1
i=N+1 arrives, the hidden layer output matrix and the training target for this set

can be written as

H1 =

 G(a1, b1, xN+1) . . . G(aM , bM , xN+1)
...

. . .
...

G(a1, b1, xN+N1) · · · G(aM , bM , xN+N1)


N1×M

(16)

and

T1 =

[t(N+1)1 · · · t(N+1)m
· · ·

t(N+N1)1 · · · t(N+N1)m

]
=

tTN+1· · ·
tTN+N1


N1×m

. (17)

Then, the objective function for old data set X0 and new coming data set X1 is

min
(∥∥∥∥[H0H1

]
β −

[
T0
T1

]∥∥∥∥) . (18)

The solution for the minimization problem (18) becomes

β1 = (K1)−1
[
H0
H1

]T
0

[
T0
T1

]
(19)

where

K1 =
[
H0
H1

]T [
H0
H1

]
. (20)

In order to satisfy the four conditions of online learning defined in Section 1, the matrix β1 and K1 should be expressed as a
function of β0, K0, H1, and T1. By some mathematical derivation, such equation can be got as

β1 = β0 + K−11 H
T
1 (T1 − H1β0) (21)

where

K1 = K0 + HT1H1. (22)

(21) and (22) are the output matrix updating equation for online learning in OS-ELM. Apparently, they satisfy all the
requirements in online learning defined in Section 1. Therefore OS-ELM is a real online learning algorithm.

3. Derivation of SAO-ELM

ELM and OS-ELM can accommodate the information in training data using a fixed structure neural network in a batch
learning manner and an online sequential learning manner, respectively. However, in online learning circumstances, there
is a paradox between the fixed structure and the various unknown training samples that will arrive in future. When the
structure of the neural network cannot accommodate the new information in the coming data through regulating its output
weights, it is necessary to change the structure. This section will give an online learning algorithm based on ELM in the case
that the structure of the network can be adjusted.

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 381

3.1. Problem description

Suppose the initial training data set is X0 = {(xi, ti)}Ni=1 and the new coming data set is X1 = {(xi, ti)}
N+N1
i=N+1. If not only the

output weights should be updated but also L hidden nodes {(ai, bi)}M+Li=M+1 are added to the network, the training objective
function will become

min
(∥∥∥∥[H0 H01

H1 H11

]
β −

[
T0
T1

]∥∥∥∥) (23)

where H0 and T0 are shown in Eqs. (6) and (10) while H1 and T1 have been given in Eqs. (16) and (17). In Eq. (23), H01 and
H11 are the output matrices of the new added hidden nodes for data sets X0 and X1, respectively. They can be deployed as

H01 =

G(aM+1, bM+1, x1) . . . G(aM+L, bM+L, x1)
...

. . .
...

G(aM+1, bM+1, xN) · · · G(aM+L, bM+L, xN)


N×L

(24)

and

H11 =

 G(aM+1, bM+1, xN+1) . . . G(aM+L, bM+L, xN+1)
...

. . .
...

G(aM+1, bM+1, xN+N1) · · · G(aM+L, bM+L, xN+N1)


N1×L

. (25)

In order to get the solution of β in Eq. (23) satisfying the online learning definition, a corresponding method must be
developed.

3.2. Method deduction

Before deduction, we should notice that adding some new properly defined hidden nodes can do benefit to the training.
This can be stated formally in Theorem 3 as follows.

Theorem 3. Suppose the initial training set is X0 = {(xi, ti)}Ni=1 and the new coming data set is X1 = {(xi, ti)}
N+N1
i=N+1. If the ERM

principle is used, an ELM with M hidden nodes can get minimal training error

E0 = min
(∥∥∥∥[H0H1

]
β −

[
T0
T1

]∥∥∥∥)
while an ELM with M + L hidden nodes can realize minimal training error

E1 = min
(∥∥∥∥[H0 H01

H1 H11

]
β −

[
T0
T1

]∥∥∥∥) .
Then the conclusion E1 ≤ E0 can be obtained.

Proof. Denote

H =
[
H0
H1

]
and H ′ =

[
H0 H01
H1 H11

]
.

If thematrixβ is divided into two blocks from the rowdirection as thematrixH ′ has been divided from the columndirection,
it can be written as

β =

[
β0
β1

]
.

Meanwhile,we should notice that the solution of an optimization problem found in some setmust be better than the solution
searched in the subset of that particular set. Then

E1 = min
(∥∥∥∥[H0 H01

H1 H11

]
β −

[
T0
T1

]∥∥∥∥) = min(∥∥∥∥[H0 H01
H1 H11

] [
β0
β1

]
−

[
T0
T1

]∥∥∥∥) ≤ min(∥∥∥∥[H0 H01
H1 H11

] [
β0
0

]
−

[
T0
T1

]∥∥∥∥)
= min

(∥∥∥∥[H0H1
]
β0 −

[
T0
T1

]∥∥∥∥) = E0. � (26)

382 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

-5 0 5
0

0.2

0.4

0.6

0.8

1
responding at the center

responding at the bound responding at the bound

Fig. 1. Response curve of the RBF node.

Theorem 3 assures that adding some more hidden nodes to the network can lessen the training error. But the ‘‘less than
or equal to’’ mark in Eq. (26) implies that adding hidden nodes cannot improve the training performance without limit..
Although the benefit of adding hidden nodes is guaranteed by Theorem 3, an iterative output weights updating method

must be developed correspondingly. According to Eqs. (12) and (13), the solution for problem (23) should be

β1 =

[
H0 H01
H1 H11

]Ď [
T0
T1

]
=

([
H0 H01
H1 H11

]T [
H0 H01
H1 H11

])−1 [
H0 H01
H1 H11

]T [
T0
T1

]
. (27)

Notice that H0 and T0 are changed into β0 while H1, H11 and T1 can be figured out from current data set X1. As stated before,
H01 is the output of the new added hidden nodes for the old data set X0. At the time X1 arrives and the new hidden nodes
are added, X0 has been discarded. Then H01 is unknown if an online learning algorithm is used. In order to deal with this
challenge, a special method that can make H01 approximate a zero matrix is proposed in the following.
Consider the characteristic of the RBF hidden node. The activation function of the RBF node is a radially symmetric

function of the distance between the center of the node and the input. So the output of the RBF node will become smaller
and smaller as the input goes far away from the center of that node more and more. This phenomenon can be called as local
responding property. The sketch map of the responding of an RBF node activation function is shown in Fig. 1.
Suppose a sphere S0 is used to surround the old data set X0 and the center of the new added node is outside that sphere

as depicted in Fig. 2. In that figure, point ‘‘O’’ is the center of S0 and point ‘‘A’’ is the center of the new hidden node. Point ‘‘B’’
and ‘‘C’’ are the apogee and perigee of S0 corresponding to ‘‘A’’, respectively. Suppose the coordinate of ‘‘C’’ is xc . According to
the local responding property of the RBF node, if the output of the new hidden node for xc is smaller than an arbitrary small
positive value ε, the output will be even small for the points inside the sphere. That means all of the component in H01 will
be trivial because each component in H01, as shown in Eq. (24), is the output of a new added hidden node corresponding to
a point inside S0. In that case, H01 can be treated as a zero matrix and the deduction can move on smoothly.
So some special methods must be developed to make the output of the new added hidden node in point ‘‘C’’ be close to

zero. This can be done through letting the center of that node be far away from the point ‘‘C’’ if the width is fixed or selecting
a small width for that node if the center cannot be changed. In our settings, the center of the node is fixed in ‘‘A’’. So the
width must be determined to satisfy the requirement that the response of the new added hidden node in ‘‘C’’ approximates
zero. Suppose the center and width of the new hidden node are denoted as a and b. If the Gaussian function is chosen as the
activation function of the hidden node, the requirement can be written as

e
−‖xc−a‖

b ≤ ε⇒ b ≤ −
‖xc − a‖
ln ε

(28)

where ε is an arbitrary small positive value. Anywidth b that satisfies Eq. (28) is a reasonable choice. However, the coordinate
of point ‘‘C’’, i.e. xc , must be determined first.
Suppose the coordinate of point ‘‘A’’, ‘‘B’’ and ‘‘O’’ are denoted as xa, xb, and xo. There must be a λ1, such that

xc = xo + λ1(xa − xo). (29)

Then λ1 can be obtained as

λ1 =
‖xc − xo‖
‖xa − xo‖

=
R

‖xa − xo‖
(30)

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 383

New sphere

S0

O1

A

B

C

Old data

New data and the center of the new node

O

Fig. 2. The old data set and a new added node.

where R is the radius of S0 and xo is the coordinate of the center of S0. If xo and R are recorded, xc can be calculated by
Eqs. (29) and (30). Then a width b can be chosen from Eq. (28).
When the matrix H01 can be treated as a zero matrix, Eq. (27) can be rewritten as

β1 =

([
H0 0
H1 H11

]T [
H0 0
H1 H11

])−1 [
H0 0
H1 H11

]T [
T0
T1

]
. (31)

Denote H =
[
H0
H1

]
and δH =

[
0
H11

]
, then

β1 =
(
[H δH]T [H δH]

)−1
[H δH]T

[
T0
T1

]
. (32)

Denote K1 =
[
H0 0
H11 H12

]T [H0 0
H11 H12

]
, then

K1 = [H δH]T [H δH] =
[
HT

δHT

]
[H δH] . (33)

Denote K−11 = A =
[
A11A12
A21A22

]
=

([
HT

δHT

]
[H δH]

)−1
. Accordingto [16], the components of A should be

A11 =
(
HTH

)−1
+
(
HTH

)−1 (
HT δH

)
× R−1

(
δH

T
H
) (
HTH

)−1
A12 = −(HTH)−1(HT δH)R−1, A21 = AT12, A22 = R−1

(34)

where

R = δHT δH −
(
δHTH

) (
HTH

)−1 (
HT δH

)
. (35)

Substitute the expression of H and δH into Eqs. (34) and (35), then

HTH = HT0H0 + H
T
1H1 = K0 + H

T
1H1

HT δH = HT1H11, δHT δH = HT11H11.
(36)

Using Eqs. (36), (34) and (35) can be rewritten as

A11 =
(
K0 + HT1H1

)−1
+
(
K0 + HT1H1

)−1 (
HT1H11

)
R−1

(
HT11H1

) (
K0 + HT1H1

)−1
A12 = −(K0 + HT1H1)

−1(HT1H11)R
−1, A21 = AT12, A22 = R−1

R = HT11H11 −
(
HT11H1

) (
K0 + HT1H1

)−1 (
HT1H11

)
.

(37)

384 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

A useful equation can be taken from [17] for the fast iterative implementation of matrix inversion, that is(
K0 + HT1H1

)−1
= K−10 − K

−1
0 H

T
1 (I + H1K

−1
0 H

T
1)
−1H1K−10 . (38)

Combining Eqs. (31)–(38), the quick iterative updating method of K , K−1, and β can be written as follows in the case of
adding hidden nodes when the new training data arrives:

Kn+1 =
[
Kn + HT1H1 HT1H11
HT11H1 HT11H11

]
, βn+1 = Pn+1

[
Knβn + HT1 T1
HT11T1

]
, Pn+1 = K−1n+1 =

[
A11 A12
A21 A22

]
A11 = P ′n+1 + P

′

n+1

(
HT1H11

)
R−1

(
HT11H1

)
P ′n+1, A12 = −P ′n+1(H

T
1H11)R

−1, A21 = AT12, A22 = R
−1

R = HT11H11 −
(
HT11H1

)
P ′n+1

(
HT1H11

)
P ′n+1 =

(
Kn + HT1H1

)−1
= Pn − PnHT1 (I + H1PnH

T
1)
−1H1Pn, Pn = K−1n .

(39)

If there is no need to add hidden nodes to the network, the quick iterative updating method of K , K−1, and β can be written
as [7]:

Kn+1 = Kn + HT1H1

Pn+1 = K−1n+1 = Pn − PnH
T
1 (I + H1PnH

T
1)
−1H1Pn

βn+1 = βn + Pn+1HT1 (T1 − H1βn).

(40)

Finally, the radius and center of the sphere S0 should be updated accordingly when new samples arrive in order to make
the online learning process continue. Consider the case of one sample firstly. The old data set X0, the new coming datum x1,
and the sphere S0 surrounding X0 are shown in Fig. 2. Suppose x1 locates at point ‘‘A’’. In order to get the smallest sphere
to surround X0 and x1, the center of the new sphere should be point ‘‘O1’’, which is the midpoint of ‘‘A’’ and ‘‘B’’, and the
new radius should be half of the length of the line segment ‘‘AB’’. Therefore the coordinate of ‘‘B’’ must be acquired first. As
shown in Eq. (29), there must be a λ2, such that

xb = xo + λ2(xo − xa) (41)

and λ2 can be derived as

λ2 =
‖xb − xo‖
‖xo − xa‖

=
R

‖xo − xa‖
(42)

where R and xo are the same as that in Eq. (29). Then the updating equation for R and xo are:

Rnew =
‖xa − xb‖
2

xo_new =
xa + xb
2

.
(43)

If the number of new coming data is more than one, the above method can be used to update R and xo for each data one by
one and then the final center and radius of the new sphere can be obtained.

3.3. The algorithm

Based on the solid foundation presented above, an algorithm can be summarized. For the sake of simplicity, only the case
that the data are arriving one by one is considered. If the data arrive chunk by chunk, the following algorithm can be used
for each data in the chunk sequentially.
Step (1): Select the activation function and the numberM for the hidden nodes. Initialize the learning using a small chunk of
initial training data X0 = {(xi, ti)}Ni=1. Assign random center ai and impact factor bi, i = 1, . . .M . Calculate the initial hidden
layer output matrix H0 which is shown in Eq. (6). Estimate the initial output weight β0 = P0HT0 T0 where P0 = K

−1
0 and

K0 = HT0H0. T0 is shown in Eq. (10). Determine the center x0 and radius R0 of the smallest sphere S0 that surrounds X0.
Step (2): If there is no new training data coming, the current network is used for prediction. Otherwise, go to step (3) to start
the online learning procedure to accommodate the new information in datum x1 = (xN+1, tN+1).
Step (3): Keep the structure of the network unchanged and try to update output weights and related parameters using
Eq. (40). Calculate the mean square training error for new arrived datum. Judge whether x1 is inside or outside the sphere
S0. If the training error for x1 cannot satisfy the requirements and x1 is in the outside of S0, discard all of the update and go
to step (4). Otherwise, go to step (5).

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 385

Table 1
Specification of data sets for performance evaluation.

Data set #Attributes #Classes #Training data #Testing data

Auto-Mpg 7 – 320 72
Abalone 8 – 3000 1177
California housing 8 – 8000 12640
Image segment 19 7 1500 810
Satellite image 36 6 4435 2000
DNA 180 3 2000 1186
Practical application 84 2 1056 508

Step (4): Add a hidden node to the network. Set the center of that node the same as the coordinate of x1.Use Eq. (28) to
determine the width. Update output weights and related parameters using Eq. (39) instead. Go to step (5).
Step (5): Update the parameters of S0, i.e. center and radius, using Eq. (43) and go to step (2).

Remark 1. In step (1), the number of the initial hidden nodesM should not be less than the size of initialization data set X0
in order to make rank(H0) = M , which is the foundation of all of the deduction.

Remark 2. The presented algorithm is similar to the recursive least-square (RLS) [18] algorithm and OS-ELM. So its
convergence can be ensured by all of the results of RLS algorithm which has been indicated by [7].

4. Performance evaluation of SAO-ELM

The performance of SAO-ELM is evaluated on the benchmark problems described in Table 1 which includes three
regression applications (auto-MPG, abalone, California housing), three classification problems (image segment, satellite
image, DNA) and a practical application (continuous casting quality prediction). SAO-ELM is firstly compared with other
popular online learning algorithms, such as OS-ELM, GART, GGAP-RBF, and MRAN. Then the performance evaluation of
SAO-ELM is conducted fully on a practical problem. All the simulations have been conducted inMATLAB 2008A environment
running on an ordinary PC with 3.2 GHZ CPU. The Gaussian RBF activation function G(a, b, x) = exp(−‖x− a‖2 /b) is the
only selection for all the simulations. The input and output attributes of regression applications are normalized into the
range [0, 1]while the input attributes of classification applications are normalized into the range [−1, 1].

4.1. Benchmark applications

Before simulation, we should estimate the optimal architecture of the network and the optimal leaning parameters of the
learning algorithm. That is called model selection in the literature. For SAO-ELM, only the optimal number of hidden units
needs to be determined. As stated in [7], the number can be determined using the cross-validation method. However, for
benchmark problems in this simulation, in order to compare SAO-ELM and OS-ELM in the same circumstance, the number
of the initial hidden nodesM is the same as the one stated in [7]. The number of training data N0 for initialization should be
aboutM+50 for regression problems and aboutM+100 for classification problems. The centers of the initial hidden nodes
are randomly chosen from the range [−1, 1]. Similarly, the widths are also randomly chosen from the range [0, 1] except
for ‘‘image segment’’ and DNA case. For these two cases, the range should be [3, 11] and [20, 60] respectively in order to
makeH0 nonsingular. The performance is the average result on 50 trials. The average training time, the average training and
testing RMSE for regression problems, and the average training and testing classification rate for classification applications
are represented in the following.
(1) Regression problems: auto-MPG, abalone, and California housing are the three regression problems selected from [19].

The auto-MPG problem is to predict the fuel consumption of different models of cars. The abalone problem is the estimation
of the age of abalone from physical measurements. The California housing problem is to predict the median California
housing price based on the information collected using all the block groups in California from the 1990 census. The training
and testing data are randomly selected for all the regression problems.
Table 2 summarizes the results for regression problems in terms of training time, training RMSE, testing RMSE, and the

number of hidden units for each algorithm. The initial number of hidden nodes for SAO-ELM is the same as OS-ELM so as
to make a consistent condition for comparison. The results of other online learning algorithm are cited from the literature
directly.
As observed from Table 2, the performance of SAO-ELM is better than others. Although the best training RMSE is obtained

by GART, the testing RMSE of SAO-ELM can be always optimal. This indicates that SAO-ELM has the best generalization
performance, which is very important for practical application. The training time of SAO-ELM is larger than that of OS-ELM,
which is due to the fact that the SAO-ELM has to update the output weights for trial before adding a node to the hidden
layer while OS-ELM updates the output weights directly. However, as we can see from Table 2, SAO-ELM still hold the fast

386 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

Table 2
Comparison between SVOS-ELM and other sequential algorithms on regression problems.

Data sets Algorithms Training time RMSE #Nodes
Training Testing Start End

Auto-MPG

SAO-ELM 0.2784 0.0639 0.0607 25 30.42
OS-ELM(RBF) [7] 0.0915 0.0696 0.0759 25
GART [14] – 0.0417 0.0739 –
GAP-RBF [5] 0.4520 0.1144 0.1404 3.12

Abalone

SAO-ELM 3.3794 0.0738 0.0734 25 34.24
OS-ELM(RBF) [7] 1.2478 0.0759 0.0783 25
GART [14] – 0.0646 0.0800 –
GAP-RBF [5] 83.784 0.0963 0.0966 23.62

California housing

SAO-ELM 11.3356 0.1296 0.1307 50 60.18
OS-ELM(RBF) [7] 6.9629 0.1321 0.1341 50
GART [14] – 0.0683 0.1316 –
GGAP-RBF [6] 115.34 0.1417 0.1386 18

Table 3
Comparison between SVOS-ELM and other sequential algorithms on classification applications.

Data sets Algorithms Training time Accuracy #Nodes
Training Testing Start End

Image segmentation

SAO-ELM 9.1644 0.9725 0.9516 180 191
OS-ELM(RBF) [7] 9.9981 0.9700 0.9488 180
GART [14] – 0.9909 0.9680 –
GAP-RBF [5] 1724.3 – 0.8993 44.2
MRAN [4] 7004.5 – 0.9330 53.1

Satellite image

SAO-ELM 211.0347 0.9480 0.9139 400 413
OS-ELM(RBF) [7] 319.14 0.9318 0.8901 400
GART [14] – 0.9804 0.9053 –
MRAN [4] 2469.4 – 0.8636 20.4

DNA

SAO-ELM 14.9844 0.9640 0.9454 200 214
OS-ELM(RBF) [7] 20.9510 0.9612 0.9437 200
GART [14] – 1.0000 0.8831 –
MRAN [4] 6079 – 0.8685 5

learning characteristic of ELM. So it can still be used for online application. Finally we can see that the number of hidden
nodes at the end of the simulation is larger than the initial number which indicates that SAO-ELM has the ability to adjust
its structure as what we expect.
(2) Classification Problems: Three classification problems are chosen from [19], namely: image segmentation, satellite

image, and DNA. The image segmentation problem consists of 2310 instances. The instances were drawn randomly from
a database of 7 outdoor images. Each image is a 3 × 3 region. The aim is to recognize each region into one of the seven
categories, i.e. brick facing, sky, foliage, cement, window, path, and grass using 19 attributes extracted from each square
region.
The satellite image problem consists of a database generated from landsat multispectral scanner. The sample database

was generated taking a small section from the original data. Each data in the database corresponds to a region of 3 × 3
pixels. The aim is to predict the classification, given the multi-spectral values. There are 6 classes and each class is coded as
a number.
The DNA problem is the database ‘‘Primate splice-junction gene sequences (DNA) with associated imperfect domain

theory’’. Splice junctions are points on a DNA sequence at which ‘‘superfluous’’ DNA is removed during the process of
protein creation in higher organisms. The problem posed in this data set is to recognize, given a sequence of DNA, the
boundaries between exons (the parts of theDNA sequence retained after splicing) and introns (the parts of theDNA sequence
that are spliced out). This problem consists of two subtasks: recognizing exon/intron boundaries (EI site), and recognizing
intron/exon boundaries (IE site). Every symbolic variables in the DNA sequence is coded as three binary indicator variables
as it was done in [7] resulting 180 binary attributes. The character string indicating the category is coded as a number.
Table 3 summarizes the results for classification problems in terms of training time, training RMSE, testing RMSE, and

the number of hidden units for each algorithm. The initial number of hidden nodes for SAO-ELM is the same as OS-ELM so as
to make a consistent condition for comparison. The results for other online learning algorithms are cited from the literature
directly.
As we can see from Table 3, SAO-ELM obtains the best generalization performance except for ‘‘image segmentation’’ case.

For that case, the GART is the best. But the training time and network structure are unknown from the literature presenting

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 387

50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Hidden Units

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Training
Validation

Fig. 3. Cross-validation.

Table 4
Comparison between SAO-ELM and other neural network on real application.

Data sets Algorithms Training time Accuracy #Nodes
Training Testing Start End

Practical problem
SAO-ELM 7.7397 0.8904 0.8165 200 210
OS-ELM(RBF) 7.3006 0.8762 0.8073 200
BP NN 77.000 0.8520 0.7720 80

GART.We can also conclude that SAO-ELM is better than OS-ELM in all aspects including the training time, training accuracy,
and testing accuracy. All of these advantages are originated from the structure-adjustable property. By contrast, the structure
of OS-ELM is fixed. The number of hidden nodes of SAO-ELM at the end of the simulation is larger than the initial one which
also indicates the successful implementation of adjusting structure when learning.

4.2. Practical problem

The practical problem comes from the continuous casting process of steelmaking. The aim is to predict the continuous
casting quality using various parameters about continuous casting process. It is an important task because it can ensure
process continuity, improve product quality and reduce production cost. There are 84 attributes used. The quality statuses,
i.e. normal and abnormal, are coded as binary number. We use 1056 samples for training and 508 samples for testing. The
testing data are gathered some days later after the training data have been collected.
As stated before, we should do model selection before modelling. That is, we should determine the initial number of

hidden units and the parameters for those units. The centers of the initial hidden nodes are randomly selected from the
range [−1, 1]. The widths are randomly chosen from the range [10, 20]. In order to determine the optimal initial hidden
unit number, a cross-validation procedure is used. The training data are divided into two non-overlapping groups: one for
training and another for validation. The optimal number is selected as the one which results in the highest classification
accuracy for the validation data set. The result of cross-validation is shown in Fig. 3. The red dashed curve corresponds to
the trend of the classification accuracy as the number of hidden units increase for the training data while the blue solid one
is for the validation data. Although the classification accuracy for the training data is increasing all along as the number of
hidden units goes up, the one for the validation data cannot be improved after the number of hidden node reaches 200.
Therefore we choose the initial hidden units number for the practical problem as 200. The number of initial training data is
300 (i.e. 200+ 100, as stated in Section 4.1) as this is also a classification problem.
The learning evolution is shown in Fig. 4. In that figure, the curve above shows the trend of the classification accuracy for

validation datawith the increasing of the number of samples and the one below sets out the changes of the number of hidden
units as the training samples provided to the learning machine continuously. As we can see from Fig. 4, the improvement of
classification accuracy for validation data is consistent with the increasing of hidden nodes. This demonstrates the validity
of the proposed method of adding nodes.
Table 4 compares the results of SAO-ELM with OS-ELM and BP neural network using the various indices used for

benchmark problems. The results show that SAO-ELM obtains the best performance and has the quick and online learning
capability.

388 G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389

300 350 400 450 500 550 600 650 700
0.7

0.8

0.9

1

number of samples

V
al

id
at

io
n

A
cc

ur
ac

y

300 350 400 450 500 550 600 650 700
200

205

210

215

number of samples

nu
m

be
r

of
 h

id
de

n
un

its

Fig. 4. Learning evolution.

5. Conclusion

In this paper, a new online learning algorithm (SAO-ELM) has been developed for single hidden layer neural network.
The RBF hidden nodes are used because of their local responding property. Using the idea of ELM proposed by Huang
et al. developed for batch learning, the parameters of the hidden nodes are randomly selected and the output weights are
analytically determined. Apart from determining the number of hidden nodes using the cross-validation method, no other
parameters have to be chosen. Hidden nodes can be added to the network in the middle of learning if necessary. A new fast
iterative equation for updating the output weights when a hidden unit is added to the network is deduced. The performance
of SAO-ELM is compared with other well-known online learning algorithms on real world benchmark problems including
regression problems and classification problems. In addition, a numerical comparison based on practical continuous casting
process data ismade. Results indicate that SAO-ELM produces better generalization performance and keeps the fast learning
characteristic of ELM.

Acknowledgements

This work was supported in part by National Basic Research Program of China (973 Program) (2002CB312202,
2009CB320602), in part by National High Technology Research and Development Program of China (863 Program)
(2006AA04Z163), in part by National Natural Science Foundation of China (60834004, 60721003), and in part by Program
for New Century Excellent Talents in University.

References

[1] R. Polikar, L. Udpa, S. Udpa, V. Honavar, Learn++: an incremental learning algorithm for supervised neural networks, IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev. 31 (2001) 497–508.

[2] J. Platt, A resource-allocating network for function interpolation, Neural Comput. 3 (1991) 213–225.
[3] V. Kadirkamanathan, M. Niranjan, A function estimation approach to sequential learning with neural networks, Neural Comput. 5 (1993) 954–975.
[4] L. Yingwei, N. Sundararajan, P. Saratchandran, A sequential learning scheme for function approximation using minimal radial basis function (RBF)
neural networks, Neural Comput. 9 (1997) 461–478.

[5] G.-B. Huang, P. Saratchandran, N. Sundararajan, An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks, IEEE
Trans. Syst., Man, Cybern. 34 (2004) 2284–2292.

[6] G.-B. Huang, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation, IEEE
Trans. Neural Netw. 16 (2005) 57–67.

[7] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithms for feedforward network, IEEE
Trans. Neural Netw. 17 (2006) 1411–1423.

[8] S. Grossberg, Nonlinear neural network: principles, mechanisms and architectures, IEEE Trans. Neural Netw. 1 (1988) 17–61.
[9] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proc. Int. Joint Conf. Neural
Netw., IJCNN2004, Budapest, Hungary 2, 2004, pp. 985–990.

[10] G.-B. Huang, C.-K. Siew, Extreme learning machine: RBF network case, in: Proc. 8th Int. Conf. Control, Autom., Robot., Vis., ICARCV 2004, Kunming,
China, 2004 pp. 1029–1036.

[11] G.-B. Huang, Q.-Y. Zhu, K.Z. Mao, C.-K. Siew, P. Saratchandran, N. Sundararajan, Can threshold networks be trained directly? IEEE Trans. Circuits Syst.
II, Exp. Briefs. 53 (2006) 187–191.

[12] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489–501.
[13] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE

Trans. Neural Netw. 17 (2006) 879–892.

G. Li et al. / Computers and Mathematics with Applications 60 (2010) 377–389 389

[14] Keem Siah Yap, Chee Peng Lim, Izham Zainal Abidin, A hybrid ART-GRNN online learning neural networkwith a ε-insensitive loss function, IEEE Trans.
Neural Netw. 19 (2008) 1641–1646.

[15] G.-B. Huang, Learning capability and storage capacity of two-hidden-layer feedforward networks, IEEE Trans. Neural Netw. 14 (2003) 274–281.
[16] Guorui Feng, Guang-Bin Huang, Qingping Lin, Robert Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental

learning, IEEE Trans. Neural Netw. 20 (2009) 1352–1357.
[17] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed., The Johns Hopkins Univ. Press, Baltimore, MD, 1996.
[18] E.K.P. Chong, S.H. Zak, An Introduction to Optimization, Wiley, New York, 2001.
[19] C. Blake, C. Merz, UCI repository of machine learning databases, Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998 [Online]. Available:

http://www.ics.uci.edu/~mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html

	A new online learning algorithm for structure-adjustable extreme learning machine
	Introduction
	Review of ELM and OS-ELM
	Description of SLFN with RBF hidden nodes
	Review of ELM
	Review of OS-ELM

	Derivation of SAO-ELM
	Problem description
	Method deduction
	The algorithm

	Performance evaluation of SAO-ELM
	Benchmark applications
	Practical problem

	Conclusion
	Acknowledgements
	References

