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Summary

Seasonally breeding mammals use the annual change in
the photoperiod cycle to drive rhythmic nocturnal melatonin

signals from the pineal gland, providing a critical cue to time
seasonal reproduction [1]. Paradoxically, species resident at

high latitudes achieve tight regulation of the temporal
pattern of growth and reproduction despite the absence of

photoperiodic information for most of the year [2]. In this
study, we show that the melatonin rhythm of reindeer

(Rangifer tarandus) is acutely responsive to the light/dark
cycle but not to circadian phase, and also that two key clock

genes monitored in reindeer fibroblast cells display little, if
any, circadian rhythmicity. The molecular clockwork that

normally drives cellular circadian rhythms is evidently
weak or even absent in this species, and instead, mela-

tonin-mediated seasonal timing may be driven directly by
photic information received at a limited time of year specific

to the equinoxes.

Results and Discussion

Melatonin Rhythmicity

It has been suggested that the pineal production of melatonin
in reindeer may be largely independent of circadian regulation
and may be driven instead passively by the light/dark (LD)
cycle [3]. To test this, we measured melatonin concentrations
in reindeer exposed to artificial LD cycles of 2.5 hr light
followed by 2.5 hr dark over two cycles, administered during
the photophase of a natural LD cycle. By selecting a period
of 2.5 hr, we were able to avoid the possibility of frequency
demultiplication to modulo 24 hr.

Concentrations of melatonin remained at or below the
level of detection of the radioimmunoassay (5 pg/ml) when
the animals were exposed to daylight. Entrance into the
dark phase of the experimental cycle induced an immediate
(%15 min) rise in the melatonin titer in all animals. Levels of
the hormone remained high until the onset of the light phase,
when they fell precipitously, in every case returning to baseline
levels within 2 sample points (%30 min). The melatonin titer
rose again abruptly at the onset of the next dark phase. The
pattern of the increase was individually consistent across the
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two cycles (Figure 1). Our previous studies have also reported
a rapid rise of melatonin to peak levels within 30 min on expo-
sure to continuous darkness, but no subsequent circadian
oscillations [3].

The biosynthesis of melatonin in the mammalian pineal
gland is subject to dual control involving endogenous (circa-
dian pacemakers) and exogenous (LD cycle) components.
The rate-limiting enzyme N-acetyltransferase (NAT) is tightly
gated by transcriptional (rodents) or posttranslational (ungu-
lates) control [4]. It is stimulated by autonomic neurons leading
from the paraventricular nuclei (PVN) according to a temporal
pattern that is modulated by both photic and circadian infor-
mation. Thus, the conventional model is that the daily LD cycle
entrains circadian oscillators in the suprachiasmatic nuclei
(SCN) of the hypothalamus that rhythmically inhibit the output
of the PVN [5, 6]. Consequently, the production of melatonin is
intimately associated with the dark phase of the LD cycle, and
the rhythmic pattern of its secretion persists when animals are
exposed to continuous darkness, with levels of the hormone
rising spontaneously during each subjective night [7–10]. The
melatonin pattern is sculpted to the LD cycle because light
acutely inhibits sympathetic outflow from the PVN to the pineal
gland and suppresses NAT activity, such that the period of
secretion closely matches the duration of the dark phase of
the LD cycle [11]. Hence, continuous lighting, which most
mammals experience only as an artificial experimental treat-
ment but which is a characteristic feature of the polar summer,
abolishes rhythmicity, and blood levels of melatonin generally
remain permanently below the level of detection [12, 13].

The regulation of melatonin observed in our study diverges
strongly from the standard model in which secretion of the
hormone is tightly gated by the circadian clock. The duration
of the daily melatonin signal in reindeer seems instead to be
controlled by a strict ‘‘hourglass’’-like mechanism and does
not involve gating by the circadian axis. This is a novel finding
in mammals and has previously been reported only in trout
(Oncorhynchus mykiss) [14] and lizard (Dipsosaurus dorsalis)
[15]. The data reported here are also consistent with our earlier
observations that reindeer maintained under natural photope-
riodic conditions at 70�N fail to exhibit robust melatonin
rhythms in midwinter [16]. In the earlier study, peak nocturnal
concentrations of melatonin exhibited marked seasonal varia-
tion, with maximal concentrations coincident with the equi-
noxes [16], the time of year also used in the present study.

Fibroblast Clock Gene Rhythmicity

Fibroblast cells in species including laboratory rodents and
man [17–19] display robust rhythmic regulation of circadian
clock genes and therefore provide a convenient model in
which to examine the basis of the observed absence of
circadian input. To measure rhythmic activity in clock genes,
we generated ‘‘insulated’’ Bmal1 or Per2 murine promoter
constructs, which earlier studies have shown to exhibit robust
cell-autonomous oscillations for up to 7 days in fibroblast cells
[20]. These were packaged into lentiviral vectors to allow
transduction of primary cells. The validity of the approach
was tested by infecting mouse fibroblast cells derived from
skin and lung tissue. All transduced primary mouse fibroblast
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Figure 1. Melatonin Rhythms in Reindeer

Plasma melatonin concentrations in reindeer (n = 3) subjected to two cycles

of 2.5 hr light/2.5 hr dark during the photophase in September.
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cultures displayed robust and persistent rhythms (period for
Bmal1::luc, 23.18 + 0.12 hr; period for Per2::luc, 22.74 + 0.33 hr;
n = 6) (Figure 2A). The oscillations of these two promoters
were in antiphase to each other when cultures were synchro-
nized at the same time, as predicted from the known function
of these genes [21]. Similar results were obtained in Syrian
hamster skin-derived fibroblasts (data not shown).

Next, we tested the same constructs in reindeer fibroblast
cells derived from three different animals. After transduction,
cells were synchronized with forskolin before biolumines-
cence recording. Transduction efficiency was high, as judged
by the production of a strong luciferase signal. However, in
contrast to mice, reindeer fibroblasts transduced with these
reporters failed to exhibit overt circadian oscillations. Using
normalization against a 24 hr moving average [20], we checked
to see whether we could identify any low-amplitude residual
rhythmicity. In some instances, a normalized rhythm was
detectable, but only for two to three cycles after synchroniza-
tion (Figure 2B), after which the signal degenerated and
became arrhythmic. In these cases, we did observe an initial
antiphase oscillation of Bmal1 and Per2, but in contrast to
the mouse data, there was a wide range of periods, from 19
to 31 hr. Furthermore, our reindeer samples showed that
only a low percentage of the variance of the normalized data
could be explained by rhythmic oscillations, in marked
contrast to the mouse data (11%–59% versus 79%–80% in
mice; see Table S1 available online).

In order to assess whether the synchronization protocol
that we used above (forskolin) was in some way less effective
in reindeer fibroblasts, we used a glucocorticoid treatment
(100 nM dexamethasone, Dex). Here, Dex induced a sustained
rise in luciferase signal but, again, no overt circadian rhyth-
micity. Following normalization, we were able to detect
low-amplitude oscillations over a few cycles in some cultures
(with a wide range of periods), but most showed no significant
oscillations. In contrast, the same procedure applied to a fibro-
blast cell line revealed strong sustained oscillations with a tight
range of periods around 22.5 hr. Thus, we conclude from two
different synchronization protocols that reindeer fibroblasts
do not exhibit clear circadian rhythms (Figure S1).
Seasonal Rhythms in Reindeer
Measurement of photoperiodic change is normally intimately
dependent on circadian mechanisms [22], and the resulting
signal is coded as a 24 hr melatonin cycle that is interpreted
and translated by ‘‘calendar cells’’ in structures such as the
pituitary pars tuberalis [23, 24]. Dual control of pineal mela-
tonin production, involving both endogenous and exogenous
components, provides the organism with a robust, precise,
and flexible biological timer [1]. The regulation of melatonin
production in reindeer appears to be fundamentally different
in that it lacks circadian input. Our results trace this novel
observation to the molecular clocks that normally drive cellular
circadian rhythms throughout the body, including in the SCN.

It is generally believed that circadian rhythmicity has a
significant survival value to the organism [25]. However, there
can be little selective advantage to an animal being driven
through subjective 24 hr cycles in an environment that, in
effect, lacks 24 hr rhythmicity. Indeed, strong circadian mech-
anisms constrain opportunistic behavior and are therefore
likely to be selected against under such circumstances [2, 26].
The absence of robust circadian clock mechanisms in reindeer
(see also [2, 26]) may be an adaptive evolutionary conse-
quence for life in the extreme photic environment to which
these animals are naturally exposed (Figure 3). At high lati-
tudes, there are long periods with continuous light in summer
(‘‘polar day’’) and darkness in winter (‘‘polar night’’), whereas
LD cycles occur for only a few weeks around the spring and
autumn equinoxes. Our previous studies of telemetered free-
ranging reindeer have shown that the mainland subspecies
(used here) only exhibits clear daily (24 hr) patterns of behavior
for part of the year, coincident with the equinoxes and likely
entrained to the prevailing equinoctial LD cycle [26]. To date,
no studies have been undertaken to determine whether
behavioral cycles in mainland reindeer can free run in the
absence of external entrainment (i.e., are truly circadian).
Intriguingly, in the northern subspecies inhabiting the archi-
pelago of Svalbard, no clear patterns of daily activity can be
detected at any time of the year [26]. Although differences in
behavior of these two subspecies may be attributable to local
prevailing photoperiods, an underlying genetic contribution
cannot be ruled out, an option which could be tested by exam-
ining responses of fibroblast cells from the two populations.

Synchronization of seasonal cycles in mammals is a promi-
nent feature of physiological adaptation in northern temperate
and Arctic species (see [26, 27]). Studies of seasonal sheep
reveal that melatonin signals need only be present for a few
weeks of the year to entrain an annual reproductive cycle
[28]. It is attractive to speculate that in reindeer, informative
melatonin signals associated with equinoxes directly entrain
a ‘‘circannual clock’’ [24, 29] that, at least in reindeer, may
not involve circadian mechanisms (Figure 3).
Experimental Procedures

Blood Sampling for Melatonin Assay

The experiment was conducted at the University of Tromsø (69�460N) with

three castrated reindeer (Rangifer tarandus tarandus) 15 months of age.

At this age, intact reindeer are reproductively competent. The animals had

free access to pelleted feed and water and were kept indoors, subject to

LD cycles closely matching outdoors conditions (September; LD 17:7, lights

on at 04:10). Cannulation of the exterior jugular vein allowed repeated

collection of heparinized blood samples (4 ml) from each animal during

two periods of darkness (each lasting 2.5 hr) separated by 2.5 hr with lights

on, beginning 9 hr after morning lights on. Blood samples were collected

twice at 30 min intervals prior to lights off. During darkness, four samples



Figure 2. Molecular Circadian Rhythms in Mouse and Reindeer Primary Fibroblasts

Representative bioluminescence recordings from fibroblasts of mice and reindeer are shown. Each panel represents raw data (left) or normalized data

(right).

(A) Mouse fibroblasts transduced with Bmal1::luc or Per2::luc reporters.

(B) Reindeer fibroblasts transduced with Bmal1::luc or Per2::luc reporters.

(C) Mouse fibroblast data (same as in A) replotted as spline fit (MATLAB).

(D) Reindeer fibroblast data (same as in B) replotted as spline fit (MATLAB). See also Table S1 and Figure S1.
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were initially taken at 15 min intervals followed by three at 30 min intervals.

This sampling regime was repeated in the intervening light period and

during the second dark period. Three samples at 15 min intervals were taken

after the final transfer to light. Immediately after each sampling, plasma was

separated by centrifugation and stored at 220�C until assay.

A red light yielding <0.1 lux at the animals’ heads remained on during

darkness. The mean intensity of white light was 300 lux at the animals’

heads, measured by a handheld sensor (EC1, Hagner AB). Permission to

conduct the experiment on reindeer was granted by the National Animal

Research Authority of Norway (NARA).

Radioimmunoassay

Plasma melatonin was assayed via a radioimmunoassay procedure

described previously [30]. Reindeer plasma was spiked with 25 or 50 pg/ml

melatonin. Levels measured in two assays were 5.2 and 5.9 pg/ml in

untreated plasma, 28.6 and 30.5 pg/ml for 25 pg spike, and 46.0 and

44.4 pg/ml for 50 pg spike. Intra-assay coefficients of variation were

13.8%, 9.6%, and 7.3% at 13.6, 40.6, and 82.8 pg/ml, respectively.

Primary Fibroblast Culture from Mice and Reindeer

Primary mouse fibroblasts were generated from lung tissue by a standard

enzymatic digestion procedure [19, 20]. Cells were then dissociated by

collagenase digestion, filtered through a sterile nylon mesh, washed twice,

and centrifuged in chilled Hank’s solution. Pellets were resuspended in
culture medium and plated on a T25 cell culture flask. Cultures were main-

tained at 37�C (5% CO2) for 2–3 days until confluent and ready for splitting.

Mouse fibroblasts were then cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum and antibiotics

(100 U/ml penicillin and 100 mg/ml streptomycin).

Primary mouse and reindeer skin fibroblasts cultures were established via

a tissue explant adherent method. Briefly, skin samples were cut into pieces

of 2 mm size and put into culture flasks for an initial 15 min. After the tissue

pieces attached to the flasks, culture medium (Amniomax II, GIBCO Invitro-

gen) was added. Typical spindle-like cells organized in ‘‘whirls’’ indicate the

healthy growth of the fibroblast population.

Generation of Reporter Constructs

Lentiviral transfer construct pLV and packaging plasmids pMD2-VSV-G,

pMDLg/pRRE, and pRSV-REV were a gift from O.T. Jones (University of

Manchester, UK). To generate a plasmid mediating transduction of mBmal1

and mPer2 by lentivirus (pLV-Bmal1 or pLV-Per2), we digested pGL4-

Bmal1-luc and pGL4-Per2-luc [20] with the restriction enzymes NdeI and

SalI. The resulting fragments were then cloned into the corresponding sites

of the lentiviral transfer vector. The promoter constructs had been engi-

neered with chicken beta-globin insulator sequences to avoid inappropriate

gene silencing or positioning effects of chromatin [20]. The identity of all

constructs was confirmed by DNA sequencing (University of Manchester,

Core Facility).



Figure 3. Schematic Model for Circadian and Circannual Clocks in Rodents

and Reindeer

In a short-lived nocturnal rodent, strong clock gene circadian oscillations

have been reported for multiple tissues, including primary fibroblasts.

Furthermore, activity cycles are robustly circadian under constant condi-

tions and are entrained to the prevailing light/dark cycle, allowing the animal

to ‘‘light sample’’ and constrain activity to the hours of darkness [36].

Hormone rhythms are also strongly rhythmic and, in the case of melatonin,

track the prevailing photoperiod cycle. In seasonal rodents (e.g., Syrian and

Siberian hamsters), melatonin-regulated reproductive cycles are activated

by photoperiod change, but there is no evidence in such short-lived animals

for the occurrence of spontaneous ‘‘circannual’’ reproductive rhythms when

exposed to constant photoperiods. In reindeer, strong molecular oscilla-

tions of clock genes are not detected, and this is associated with lack of

free-running activity cycles under constant photic conditions in the wild

[26]. Melatonin is acutely responsive to photoperiod but is not regulated

by a circadian clock ([3], present study). In contrast to short-lived nocturnal

rodents, long-lived seasonal mammals exhibit robust circannual cycles,

which we speculate in reindeer may be entrained by a short period of mela-

tonin information provided at the two equinoxes, which act as a seasonal

‘‘zeitgeber.’’
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Viral Packaging and Transduction

Recombinant lentiviral particles were produced by transient cotransfection

of HEK293FT cells (Invitrogen) via the calcium phosphate method [31].

After 2 days, supernatants from transfected cells were collected, concen-

trated with Vivaspin 20 centrifugal concentrators (Sartorius Ltd.), and

used immediately. Lentiviral transduction of mouse and reindeer fibroblast

cells was performed by adding 100 ml of the viral preparation (see above) to

cell culture medium (50% confluence) in 35 mm dishes. After 48 hr, cells

were subjected to real-time bioluminescence recording. All steps were per-

formed under level II biosafety conditions.

Real-Time Bioluminescence Recording

Confluent cells in 35 mm dishes were synchronized by treatment with

forskolin (10 mM) for 1 hr. The medium was changed to non-phenol red

DMEM supplemented with 0.1 mM luciferin substrate [32]. Each 35 mm

dish was sealed with vacuum grease and placed in a light-tight and
temperature-controlled environment at 37�C. Light emission (biolumines-

cence) was measured continuously with a photomultiplier tube (H6240

MOD1, Hamamatsu Photonics). Data are presented as photon counts per

minute. Baseline correction was calculated by using a 24 hr moving average

and then subjected to spline fit (MATLAB). In some instances, a second

corticosterone treatment (200nM, 500 nM, or 1 mM concentration) or 0.1%

dimethyl sulfoxide (vehicle control) was administered, and samples were

monitored continuously for at least 6 days. Periods were analyzed by RAP

software [33].

Bioluminescence signals from reindeer cells were assessed with Clock-

wise curve fitting software (developed in-house by T. Brown, University of

Manchester) [34, 35] to determine the period and significance of circadian

variation. Briefly, data were normalized such that they spanned a range of

values between 100 and 2100. Normalized data were fit with the equation

Y = A sin[B(x + C)] via the Newton-Raphson iterative method, where A

equaled the amplitude of the rhythm, B equaled the period in radians per

hour, and C determined the phase. Initial values of A, B, and C were esti-

mated from the best-fitting curve of a series of >3000 standard curves

with periodicities between 3 and 34 hr and a range of different amplitudes

and phasing. Significant rhythmic variation in the data was assessed by

repeating the curve fitting procedure 1000 times with the same data set,

but with the order of observations randomized with respect to time.
Supplemental Information

Supplemental Information includes one table and one figure and can be

found with this article online at doi:10.1016/j.cub.2010.01.042.
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