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Abstract

The inverse problem of Lagrangian dynamics is solved for the geodesic spray associated to the c
symmetric linear connection on a Lie group of dimension three or less. The degree of generality is obta
each case and concrete Lagrangians are written down.
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1. Introduction

The inverse problem of Lagrangian dynamics consists of finding necessary and sufficient con
for a system of second order ODE’s to be the Euler–Lagrange equations of a regular Lagrangian
and in case they are, to describe all possible such Lagrangians. We mention [5,6,8] and reference
as recent contributions in the area. In [1] an algorithm for solving the inverse problem in a co
situation was given and it is that procedure that will be adopted here. In Section 3 we give a ve
outline of the algorithm but refer the reader to [1] for complete details and worked examples.

One aspect of the inverse problem which seems to remain unexplored is the very special cas
geodesic equations of the canonical symmetric connection, that we shall denote by∇, belonging to any
Lie groupG. This connection was introduced in [3]. In Section 2 we review the main properties∇.
In the case whereG is semi-simple∇ is the Levi-Civita connection of the Killing form but∇ does not
seem to have been studied much in the more general context.

In this paper we shall solve the inverse problem for the case of Lie groups up through dimensio
Our investigation will be exclusively of a local nature. In every case we shall be able to write d
family of Lagrangians that give rise to the system of geodesic equations in question. The Lagra
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are constructed by implementing the algorithm described in detail in [1]. The fact that the procedu
be carried out is because one is able to find plenty of explicit first integrals for the geodesic eq
in each case. We have elected, however, not to follow the moving frame approach adopted in [
in all cases we are able to find fairly explicit formulas, if not for the Lagrangian, then for its Hes
In the case of the Euclidean group and several others, we do use the Cartan–Kähler theorem in
informal way, so as to obtain the degree of generality of possible Lagrangians. In Section 5 we
particular case in detail, namely, the Euclidean group of the planeE(2). We then use the same meth
as in Section 5 forE(2) and give explicit Lagrangians in each case. In Section 6 we follow Jacob
classification [10] of the Lie algebras of dimension three or less and give the corresponding g
equations. As a final remark we note that the examples appearing below seem to furnish new exa
Berwald spaces [2], that is to say, spaces with symmetric connections whose geodesic equation
Euler–Lagrange equations of some regular Lagrangian function. The summation convention on r
indices applies throughout.

2. The canonical connection on a Lie group

In this section we shall outline the main properties of the canonical symmetric connection∇ on a Lie
groupG. In fact∇ is defined on left invariant vector fieldsX andY by

(2.1)∇XY = 1

2
[X,Y ]

and then extended to arbitrary vector fields by making∇ tensorial in theX argument and satisfy th
Leibnitz rule in theY argument. Following the conventions of [9] a left invariant vector fieldX is denoted
by X̃, that is,X̃(g)= Lg∗X. Likewise the right invariant vector field induced byX is denoted bỹXR(g)

so thatX̃R(g) = (Rg)∗X. It follows that

X̃R(g) = (
Ad(g−1)X

)∼
,

where Ad denotes the adjoint representation. IfY is a second tangent vector then

∇X̃R(g) Ỹ
R(g) = ∇(Ad(g−1)X)∼

(
Ad(g−1)Y

)∼

= 1/2
[(

Ad(g−1)X
)∼
,
(
Ad(g−1)Y

)∼]
= 1/2

[
X̃R(g), Ỹ R(g)

]
.

Thus in (2.1)X andY could equally well denote right invariant rather than left invariant vector field
It can be shown that∇ is symmetric, bi-invariant and that the curvature tensor on left invariant ve

fields is given by

(2.2)R(X,Y )Z= 1

4

[
Z, [X,Y ]].

Furthermore,G is a symmetric space in the sense thatR is a parallel tensor field. Indeed suppose t
W,X,Y andZ are left-invariant vector fields. Then from (2.1) and (2.2) we have that

4∇WR(X,Y )Z= 1/2
[
W,

[
Z, [X,Y ]]] − 4R(∇WX,Y )Z− 4R(X,∇WY )Z− 4R(X,Y )∇WZ

= 1/2
[
W,

[
Z, [X,Y ]]] − [

Z, [∇WX,Y ]] − [
Z, [X,∇WY ]] − [∇WZ, [X,Y ]]
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[
W,

[
Z, [X,Y ]]] − 1/2

[
Z,

[[W,X], Y ]]
− 1/2

[
Z,

[
X, [W,Y ]]] − 1/2

[[W,Z], [X,Y ]]
= 1/2

([
Z,

[
W, [X,Y ]]] − [

Z,
[[W,X], Y ]] − [

Z,
[
X, [W,Y ]]]) = 0

because of the Jacobi identity. Also, the Ricci tensor of∇ is symmetric. In fact, if{Ei} is a basis of left
invariant vector fields then

(2.3)[Ei, Ej ] = Ck
ijEk,

whereCk
ij are the structure constants and relative to this basis the Ricci tensorRij is given by

(2.4)Rij = 1

4
Cl
jmC

m
il

from which the symmetry ofRij becomes apparent. SinceR is a parallel tensor field and the Ricci tens
is symmetric it follows that Ricci gives rise to a quadratic Lagrangian which may, however, not be re
For further properties of the connection∇ we refer to [3] and [9].

Turning now to the geodesic flowΓ of ∇ we note that since∇ is bi-invariant any left invariant vecto
field Z will be a Killing vector field or affine collineation of∇. Indeed ifX andY are also left invarian
one finds that Lie derivative of∇ byZ is given by

(LZ∇)XY = [Z,∇XY ] − ∇[Z,X]Y − ∇X[Z,Y ]
= 1/2

([
Z, [X,Y ]] + [[X,Z], Y ] + [

X[Y,Z]])
= 1/2

([
Z, [X,Y ]] + [[X,Z], Y ] + [

X[Y,Z]]) = 0

by the Jacobi identity. If such a vector field is denoted byZ it follows that onTG the fieldsΓ andZC

commute whereZC is the complete lift ofZ to TG. A very interesting consequence of the latter rem
is that wheneverL is a Lagrangian that engendersΓ as its Euler–Lagrange vector field, the functionZCL

is another, possibly degenerate, Lagrangian. See [11] for a further discussion of this point.

3. The inverse problem for second order ODE’s

We wish to be able to construct a Lagrangian function defined on the tangent bundleTG of G so that
its Euler–Lagrange equations are equivalent to the geodesic flow engendered by∇. In the special cas
whereG is a semi-simple Lie group we know that the Killing form is a bi-invariant pseudo-Rieman
metric whose Levi-Civita connection is∇. Thus, paradoxically, the inverse problem is mainly of inte
whenG is not semi-simple.

The inverse problem of the calculus of variations has had a long history and the most im
contribution to the field is undoubtedly the 1941 article of Douglas [7]. We mention also the follo
references [4–6,8,12] as a sample of recent activity in the area but we shall follow the procedure o
in [1]. Let us briefly summarize the method for a general system of second order ODE of the form

(3.1)ẍi = f i
(
xj , ẋj

)
.

In fact, we shall denotėxi by ui .



258 G. Thompson / Differential Geometry and its Applications 18 (2003) 255–270

orphism

n

)

n

e ODE
re the
in the

double
at this

m” for
t must

ch are
g step
for the
The first step in the method is to construct then× n matrix of functionsΦ defined by

(3.2)Φi
j = 1

2

d

dt

(
∂f i

∂uj

)
− ∂f i

∂xj
− 1

4

∂f i

∂uk

∂f k

∂uj
.

Actually theΦi
j are in a certain sense the components of a tensor field known as the Jacobi endom

field [4]. One now finds the algebraic solution forg of the equation

(3.3)gΦ = (gΦ)t ,

which expresses the self-adjointness ofΦ relative tog. The symmetric matrixg will represent the Hessia
with respect to theui variables of a putative LagrangianL. Since there is just a single matrixΦ, one can
always find non-degenerate solutions to (3.3), whatever the algebraic normal ofΦ may be. In fact, (3.3
imposes at most

(
n
2

)
conditions on the

(
n+1

2

)
components ofg.

In the general theory there is a hierarchy
n

Φ of matrices defined recursively by

(3.4)
n+1
Φ = d

dt

( n

Φ
) + 1

2

[
∂f

∂u
,
n

Φ

]
and the multiplierg is such that each

n

Φ is self-adjoint relative tog. However, as we shall explain i

Section 4, for the case of linear connections, the fact thatR is parallel entails that all the higher order
n

Φ ’s
vanish identically.

There is, in general, a second hierarchy of algebraic conditions that must be satisfied byg. Define
functionsΨ i

jk by

(3.5)Ψ i
jk = 1

3

(
∂Φi

j

∂uk
− ∂Φi

k

∂uj

)
.

TheΨ i
jk are the principal components of the curvature of the linear connection associated to th

system (3.1) (see [4] for further details). For reasons that we shall explain below we can igno
higher orderΨ -tensors in the present context and we need only consider the first set of conditions
hierarchy, namely,

(3.6)gmiΨ
m
jk + gmkΨ

m
ij + gmjΨ

m
ki = 0.

According to the general theory we now assume that we have a basis of solutions to the
hierarchy of algebraic conditions. If we cannot find a non-singular solution then we can be sure
stage that no regular Lagrangian exists for the problem under consideration.

Using our basis of solutions we can think of each basis element as giving a “Cartan two-for
(3.1). The problem is that such a two-form need not be closed. One of the auxiliary conditions tha
be satisfied byg if the corresponding two-form is closed is

(3.7)
dgij

dt
+ 1

2

∂f k

∂ui
gkj + 1

2

∂f k

∂uj
gki = 0.

Now (3.7) is a system of ODE’s and it is possible, in principle, to scale basis elements whi
solutions to (3.3) by first integrals of (3.1) so that (3.7) is satisfied. To carry out the precedin
in practice depends on having explicit first integrals of (3.1) available. Such integrals do exist
examples considered in Sections 5 and 6.
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After we have obtained a basis of solutions for (3.3), each of which satisfies (3.7), the final ste
impose the so-called closure conditions

(3.8)
∂gij

∂uk
− ∂gik

∂uj
= 0.

This step is accomplished by looking for linear combinations of the basis elements over the ring
integrals for (3.1) so that (3.8) is satisfied. Then (3.3) and (3.7) still hold and the resulting close
forms, if indeed they exist, will be Cartan two-forms, albeit possibly degenerate. We remark tha
(3.7) and (3.8) together with the symmetry and non-degeneracy ofg constitute the Helmholtz condition
for the inverse problem for (3.1).

4. The inverse problem for linear connections

Let us explain next how the general theory of Section 3 simplifies for the case of the geodesic eq
associated to a linear connection. In this case the matrixΦ is of the form

(4.1)Φi
j =Ri

kjlu
kul,

whereRi
kjl are the components of the curvature R of the connection relative to a coordinate syste(xi).

The higher orderΦ-tensors in this case just correspond to covariant derivatives of the curvature s
for example,

(4.2)
1
Φ

i

j=Ri
kjl;mu

kulum.

In particular if R is parallel then all the higher orderΦ-tensors vanish.
For the case of a linear connection, one finds that

(4.3)Ψ i
jk =Ri

ljku
l

and again the higher orderΨ ’s correspond to covariant derivatives of R. Thus, for example,

(4.4)
1
Ψ

i

jk=Ri
ljk;mu

lum.

Again if R is parallel the higher orderΨ -tensors vanish.
The condition coming fromΦ is

(4.5)
(
gmiR

i
pjq − gjiR

i
pmq

)
upuq = 0,

while the condition coming fromΨ is

(4.6)
(
gmiR

i
pjq + gqiR

i
pmj + gjiR

i
pqm

)
up = 0.

If we contractuq into (4.6) we find from (4.5) that

(4.7)gqiR
i
pmju

puq = 0.

Thus, for the special case of a linear connection, (4.7) is equivalent to (4.5) in the presence of (4.
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5. The Euclidean group E(2)

In this section we shall apply the theory developed in the previous sections to the Euclidean grouE(2)
of the plane which we shall identify as the group of 3×3 matrices of the form

[
A x
0 1

]
whereA ∈ O(2) and

x ∈ R
2. If A preserves orientation then it will correspond to a matrix

[ cosz sinz
−sinz cosz

]
and we shall usex, y

andz as coordinates on the three-dimensional Lie groupE(2).
It is easy to check that a basis for the right invariant vector fields onE(2) is given byX = ∂

∂x
, Y = ∂

∂y

andZ = ∂
∂z

+ y ∂
∂x

− x ∂
∂y
. One may obtain the canonical connection∇ onE(2) which we encode in its

geodesic equations withu, v andw standing forẋ, ẏ andż, respectively. Thus

(5.1)u̇= vw, v̇ = −uw, ẇ= 0.

The connection formω is given by

(5.2)ω= 1

2

[ 0 −dz −dy
dz 0 dx

0 0 0

]
and the curvature two-formΩ is given by

(5.3)Ω = 1

4

[0 0 dx ∧ dz

0 0 dy ∧ dz

0 0 0

]
.

We now proceed with the construction of a Lagrangian function whose Euler–Lagrange equatio
coincide with (5.1). One finds that the matrixΦ is given by

(5.4)Φ = w

4

[
w 0 −u
0 w −v
0 0 0

]
and the solutions of Eq. (3.3) consist of

(5.5)g = ρ

[ 0 w −v
w 0 −u
−v −u 0

]
+ λ

[
w 0 −u
0 0 0

−u 0 0

]
+µ

[0 0 0
0 w −v
0 −v 0

]
+ ν

[0 0 0
0 0 0
0 0 1

]
.

We now chooseρ, λ, µ andν so that (3.7) is satisfied. We have to solve the following system of OD

(5.6)λ̇− ρw= 0,

(5.7)µ̇+ ρw = 0,

(5.8)wν̇ + (
u2 − v2)ρ + uv(µ− λ)= 0,

(5.9)2ρ̇ +w(λ−µ)= 0,

(5.10)2uρ̇ + 2νµ̇+ 2wvρ + uw(λ−µ)= 0,

(5.11)2uλ̇+ 2vρ̇ − 2uwρ + vw(λ−µ)= 0.

It turns out that (5.10) and (5.11) are actually redundant. The solution for (5.6)–(5.9) is given b

(5.12)λ=wP −wLcos(z+K),

(5.13)µ=wP +wLcos(z+K),
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(5.14)ν = L
[(
v2 − u2

)
cos(z+K)+ 2uv sin(z+K)

] +R,

(5.15)ρ =wLsin(z+K),

whereK,L,P andR are first integrals of (5.1).
The final step in constructing a Lagrangian for (5.1) is to impose the closure conditions which w

write in the following form, where/ is defined to be the operatoru ∂
∂u

+ v ∂
∂v

+w ∂
∂w

and we denote byc
ands,cos(z+K) and sin(z+K), respectively:

(5.16)Lv +LKu = cPv + sPu,

(5.17)Lu −LKv = sPv − cPu,

(5.18)
(
3L+/L− v(Lv +LKu)

)
c− (

/K ·L+ v(Lu −LKv)
)
s − 3P −/P + vPv = 0,

(5.19)
(
3L+/L+ u(LKv −Lu)

)
c− (

/K ·L− u(Lv +LKu)
)
s + 3P +/P − uPu = 0,((

v2 − u2
)
Lu + 2uvLKu + vwLKw − uwLw − 3uL

)
c+ uP

(5.20)+ uwPw + ((
u2 − v2)KuL+ 2uvLu + vwLwLKw + 3vL

)
s +Ru = 0,((

v2 − u2
)
Lv + 2uvLKv + vwLw + uwLKwv + 3vL

)
c+ vP + vwPw

(5.21)+ ((
u2 − v2

)
KvL+ 2uvLv + uwLw − vwLKw + 3uL

)
s +Rv = 0,

(5.22)
(
/K ·L− u(Lv +LKu)

)
c+ (

3L+/L− u(LKv +Lu)
)
s + uPv = 0,

(5.23)
(
/K ·L+ v(Lu −LKv)

)
c+ (

3L+/L− v(LKu +Lv)
)
s + vPu = 0.

Leaving aside (5.20) and (5.21) the remaining conditions imply that

(5.24)3L+/L= 3P +/P =/K ·L= 0

and we still have to satisfy (5.16), (5.17), (5.20) and (5.21). In considering (5.24) the case wL
vanishes implies that

(5.25)g = P

[
w2 0 −uw
0 w2 −vw

−uw −vw 0

]
+ [(

u2 + v2
)
P +A

][0 0 0
0 0 0
0 0 1

]
,

whereP andA depend only onw. However, (5.25) will lead to a flat connection and so we procee
assuming that/L+ 3L and/K both vanish.

If we now use (5.24) and (5.16) and (5.17), we find that (5.20) and (5.21) may be rewritten as

(5.26)Ru = 2uP + (
u2 + v2

)
Pu,

(5.27)Rv = 2vP + (
u2 + v2)Pv.

Hence

(5.28)R = (
u2 + v2)P +F,

whereF may depend onx, y, z andw. However sinceu2 + v2 is a first integral so too isF and thusF is
a function ofw only.

Let us summarize our analysis of (5.16)–(5.23) thus far. We know that apart from the arbitrary fu
F of w, R is determined fromP by means of (5.28). Thus it remains only to satisfy (5.16) and (5
subject only to the vanishing of/K,/L+ 3L and/P + 3P , knowing, of course, thatK,L andP are
first integrals.
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To continue we note that the functionsw,u − yw,v + xw,coszu − sinzv, and coszv + sinzu
constitute a maximal set of time-independent, functionally independent first integrals of (5.1). It f
that we may write

(5.29)K =K(x̄, ȳ, ū, v̄), L= 3(x̄, ȳ, ū, v̄)

w3
, P = p(x̄, ȳ, ū, v̄)

w3
,

whereK,3 andp are arbitrary smooth functions of their respective arguments andx̄, ȳ, ū, and v̄ are
defined by

(5.30)x̄ = x + v

w
,

(5.31)ȳ = y − u

w
,

(5.32)ū= coszu− sinzv

w
,

(5.33)v̄ = sinzw+ cosxv

w
.

If we make the change of variables corresponding to (5.30)–(5.33) together withz̄ = z, w̄ = w we find
that (5.16) and (5.17) become, on dropping the bars in the new variables:

(5.34)3x − 3Ky = pv cosK + pu sinK,

(5.35)3y + 3Kx = pu cosK − pv sinK,

(5.36)3u − 3Kv = py cosK − px sinK,

(5.37)3v + 3Ky = px cosK − py sinK.

We claim that (5.34)–(5.37) is an involutive PDE system and that(x, u, y, v) is aδ-regular coordinate
system. In fact the characters of the system turn out to be(3,3,2,0). On the other hand, the codimensi
of the number of second order conditions obtained by prolonging (5.34)–(5.37) turns out to be 30− 15=
15. (Note that there are only 15 independent second order conditions!) Now 3×1+3×2+2×3+0×4 =
15 and so by Cartan’s test the system is involutive. According to the Cartan–Kähler theorem the s
of the PDE system depends on “two functions of three variables”.

In order to obtain some actual Lagrangians for (5.1) we shall continue by reverting to the un
coordinates and by making the assumption thatK is zero. By eliminatingP from (5.16) and (5.17) we
obtain the following condition

(5.38)2cLuv + s(Luu −Lvv)= 0.

Taking into account (5.24), the general solution of (5.38) may be written as

(5.39)w3L= f

(
x, y, z,

u

w
cos

z

2
− v

w
sin

z

2

)
+ g

(
x, y, z,

u

w
sin

z

2
+ v

w
cos

z

2

)
,

wheref andg are smooth functions of their respective arguments. Furthermore (5.16) and (5.17)
that

(5.40)Pw3 = g− f +C,
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whereC is a function ofx, y, z andw only. However, becauseL andP are first integrals it follows tha
f andg must in fact be constant. We thus write

(5.41)L= 3

w3
,

(5.42)P = p

w3
,

(5.43)R = p(u2 + v2)

w3
+G(w),

where3 andp are constants andG is an arbitrary function ofw.
The LagrangianL now must necessarily be of the form

(5.44)L= (v2 − u2)cosz+ 2uv sinz

2w
+ p(u2 + v2)

2w
+ F(w),

whereF is an arbitrary function ofw. A short calculation reveals thatL given by (5.34) has Euler
Lagrange equations that are the geodesics of a linear connection but that we obtain (5.1) onl
case wherep is zero. We also have to assume thatFww is non-zero in order thatL should be a regula
Lagrangian.

The class of Lagrangians given by (5.34) withk = 0 can be extended by translatingz by a constant. In
fact, ∂

∂z
is a left-invariant vector field and so this one-parameter family of Lagrangians owes its exi

to the remark made at the end of Section 1.

6. Solution of the problem in dimensions up through three

In this section we shall outline a proof of the fact that all the canonical connections on Lie gro
dimension 3 or less have variational geodesic equations. Again, the results are local in nature an
shall be working at the Lie algebra rather than group level. Jacobson [10] has discussed Lie alg
dimension 3 or less and we appeal to Lie’s first Theorem [9] for the existence of the correspondin
Lie group.

Clearly, any abelian Lie algebra will lead to a flat canonical connection and so will be lo
variational. Up to isomorphism the Lie algebra of the affine group of the line is the only non-a
Lie algebra in dimension two. In appropriate coordinates(x, y) a basis for the right-invariant vecto
fields consists ofX = ∂

∂x
, Y = x ∂

∂x
+ ∂

∂y
. The geodesic equations are easily seen to be, after makin

simple change of coordinates(x, y) �→ (lny, x)

(6.1)ẍ = ẋẏ, ÿ = 0

and they are known to be the Euler–Lagrange equations of the Lagrangian

(6.2)L= e−y ẋ
2

2ẏ
+ ẏ2

2
.

The last result was obtained in [13].
The most general Lagrangian for (6.1) can be described in the following way. Solve the secon

PDE

(6.3)zθzz + zθzx + θyz − θx = 0,
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wherez stands forẋ/ẏ. Then, subject to regularity considerations, the functionẏθ + ψ(ẏ) whereψ is
an arbitrary function oḟy, engenders (6.1). Again the reader may see more details in [13].

Jacobson’s classification of the 3-dimensional Lie algebras depends primarily on the dimensio
first derived algebrag′ whereg is the original algebra. Of course, dim(g′) = 0 iff g is abelian and if
dim(g′)= 1 there are, up to isomorphism, two algebras distinguished according to whether or notg′ lies
inside the center ofg. In the former caseg may be realized as the Lie algebra of the group of matr

of the form

[
1 x y

0 1 z
0 0 1

]
(x, y, z ∈ R) andg is the Heisenberg algebra. It gives a flat connection and

variational. In the latter caseg is isomorphic to the Lie algebra of the group of non-singular 2× 2 upper
triangular matrices. This algebra is a direct sum of the non-abelian two-dimensional algebra and
dimensional factor and so is easily seen to be variational. If dim(g′)= 3 theng is simple and we hav
g = s3(2,R) or g = so(3). In both cases the Killing form provides a metric and so the connectio
variational.

It remains to discuss the case where dimg′ = 2. Jacobson shows that such algebras are in one to
correspondence with the two-dimensional collineation groupPGL(2,R) andad − bc �= 0,

(6.4)X= ∂

∂x
, Y = ∂

∂y
, Z = (ax + by)

∂

∂x
+ (cx + dy)

∂

∂y
+ ∂

∂z
.

Then we have

(6.5)[X,Y ] = 0, [X,Z] = aX+ cY, [Y,Z] = bX+ dY.

The equations of the geodesics of the canonical connection are easily shown to be

(6.6)u̇= (au+ bv)w, v̇ = (cu+ dv)w, ẇ = 0

and theΦ-matrix is given by

(6.7)4Φ = (−w)
[
(a2 + bc)w b(a + d)w −((a2 + bc)u+ b(a + d)v)

c(a + d)w (d2 + bc)w −(c(a + d)u+ (d2 + bc)v)

0 0 0

]
.

By calculating the connection and curvature forms one finds that the non-zero components
curvature are given by

(6.8)R1
331= a2 + bc, R2

331= c(a + d), R1
332= b(a + d), R2

332= a2 + bc.

It is interesting to observe that conditions (4.7) already imply that a Lagrangian corresponding t
must necessarily be of the form

(6.9)L=wθ

(
x, y, z,

u

w
,
v

w

)
+ψ(w)

for some smooth functionsθ andψ .
Turning next to (4.6) we have just the single condition

(6.10)(a + d)
(−bg11 + (a − d)g12 + cg22

) = 0.
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By making a suitable change of basis, it may be assumed that the matrix
[
a b
c d

]
is at the outset, in one o

the following normal forms:

(i)

[
1 0
0 1

]
,

(ii)

[
a 0
0 d

]
(ad(a − d) �= 0),

(iii)

[
a b

−b a

]
(b �= 0, a2 + b2 = 1),

(iv)

[
1 1
0 1

]
.

We shall make a further sub-division of the four cases listed above according to whether (6.10)
not satisfied identically. Thus we consider apart from (ii) and (iii)

(v)

[
1 0
0 −1

]
,

(vi)

[
0 1

−1 0

]
.

However, we note that (vi) is just the Euclidean group case discussed in Section 5. There are t
subcases that remain to be considered.

Let us now suppose that
[
a b
c d

] = [
1 0
0 1

]
. The solution of Eq. (4.5) may be written as

(6.11)g =
[

ρw σw −(ρu+ σv)

σv τw −(σu+ τv)

−(ρu+ σv) −(σu+ τv) ν

]
and Eq. (4.6) is identically satisfied. Corresponding to (6.11) the solution to (3.7) is given by

(6.12)ρ =K e−z,
(6.13)σ =M e−z,
(6.14)τ = Le−2z,

(6.15)ν =N + e−z(Ku2 + 2Muv +Lv2)

w
,

whereK,L,M andN are first integrals. Finally the closure conditions are easily seen to be equi
to:

(6.16)/K + 2K = 0,

(6.17)/L+ 2L= 0,

(6.18)/M + 2M = 0,

(6.19)Kv −Mu = 0,

(6.20)Lu −Mv = 0,

(6.21)u(/K + 2K)+ v(/M + 2M)+ ezwNu = 0,

(6.22)u(/M + 2M)+ v(/L+ 2L)+ ezwNv = 0.



266 G. Thompson / Differential Geometry and its Applications 18 (2003) 255–270

te that
e

ir

4)
clidean

of

the
1). The

6.35),
Clearly (6.16)–(6.22) imply thatN is independent ofu andv and, since it is a first integral, thatN is a
function ofw only.

Our search for a Lagrangian thus reduces to an examination of (6.16)–(6.20). We no
the functionsw,e−zu,e−zv,wx − u,wy − v form a maximal set of functionally independent, tim
independent first integrals. We can thus encode (6.16)–(6.18) in the following way:

(6.23)K = k(x̄, ȳ, ū, w̄)

x2
, L= 3(x̄, ȳ, ū, v̄)

w2
, M = m(x̄, ȳ, ū, v̄)

w2
,

wherex̄ = x− u
w

, ȳ = y− v
w

, ū= e−z u
w

, v̄ = e−z v
w

andk, 3 andm are arbitrary smooth functions of the
arguments. Conditions (6.19) and (6.20) imply that

(6.24)mx̄ − kȳ = e−z(mū − kv̄),

(6.25)mȳ − 3x̄ = e−z(mv̄ − 3ū).

Since none of the functionsk, 3 andm involve z it follows that all four expressions occurring in (6.2
and (6.25) are zero. The resulting PDE system is involutive. The argument is very similar to the Eu
group case and the numbers turn out to be the same so we leave the details to the reader.

We conclude our discussion of this example by noting that the function

(6.26)L= e−z(Ku2 + 2Muv +Lv2)

w
+ψ(w),

whereK,L andM are constant andKL−M2 �= 0 andψ is an arbitrary, smooth, non-linear function
w gives a Lagrangian depending on 3 constants and one arbitrary function.

The case where
[
a b
c d

] = [ 1 0
0 −1

]
is very similar to the preceding one, so we will just summarize

results. It turns out that the solution to Eq. (4.5) is identical to the previous case as given by (6.1
analog of (6.12)–(6.15) is given by

(6.27)ρ =K e−z,
(6.28)σ =M,

(6.29)τ = Lez,

(6.30)ν =N − e−zKu2 + 2MUV + ezLv2

w
,

whereK,L,M andN are first integrals. The closure conditions are equivalent to

(6.31)/K = 0,

(6.32)/L= 0,

(6.33)/M = 0,

(6.34)e−zKv =Mu,

(6.35)ezLu =Mv,

(6.36)e−zu/K + v/M +w3Nu = 0,

(6.37)u/M + ezv/L+w3Nv = 0.

It follows thatN is a function ofw only and thatK,L andM are functions ofū = e−zu
w

, v̄ = e−zv
w

,
x̄ = x − u

w
andȳ = y + v

w
only. The existence of a Lagrangian then reduces to solving (6.34) and (
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knowing thatK,L andM are first integrals. As in the previous case we obtain a first order PDE sy

(6.38)Kȳ =Mū,

(6.39)Lv̄ = −Mx̄,

(6.40)Lū =Mȳ,

(6.41)Lx̄ = −Mv̄,

which is involutive with the same characters as in the last example. The analog of Eq. (6.26) is gi

(6.42)L= K e−zu2 + 2Muv +Lezv2

w
+ψ(w),

where againK,L,M ∈ R andψ is an arbitrary non-linear function ofw.
Let us suppose that

[
a b
c d

]
has second form above, namely,

[
a 0
0 d

]
where in additiona + d �= 0. The

solution of Eqs. (4.5) and (4.6) is given by

(6.43)g =
[
ρw 0 −ρu
0 τw −τv

−ρu −τv ν

]
,

and corresponding to (6.43) the solution of (3.7) is given by

(6.44)ρ =K e−az,
(6.45)τ = Le−dz,

(6.46)ν = K e−azu2 +Le−dzv2

w
+N,

whereK,L andN are first integrals.
The closure conditions corresponding to (6.44)–(6.46) turn out to be:

(6.47)Kv = 0,

(6.48)Lu = 0,

(6.49)uKu +wKw + 2K = 0,

(6.50)vLv +wLw + 2L= 0,

(6.51)Nu + ue−azKw = 0,

(6.52)Nv + v e−dzLw = 0.

Using the fact thatw,e−azu,e−dzv, u−axw,v−dyw are first integrals we obtain a closed form solut
of (6.47)–(6.52) as

(6.53)K = k
(e−azu

w
, u
w

− ax)

w2
,

(6.54)L= 3
(edzv

w
, v
w

− dy)

w2
,

(6.55)N =N(w),
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wherek, 3 andN are arbitrary functions of the indicated arguments. By choosing particular form
k, 3 andN we can obtain the corresponding Lagrangian. The simplest such Lagrangian is given b

(6.56)L= k eazu2 + 3e−dzv2

w
+w2,

wherek and3 are non-zero constants. We remark finally that this class of examples belong to “cas
in the terminology of [4] and so the geodesic equations can be decoupled by geometrically natura
not point, transformations.

We shall next consider the case where
[
a b
c d

] = [
a b

−b a
]

anda andb are both non-zero. The solutions
Eqs. (4.5) and (4.6) may be written as

(6.57)g = ρ

[
w 0 −u
0 −w v

−u v 0

]
+ σ

[ 0 w −v
w 0 −u
−v −u 0

]
+ τ

[0 0 0
0 0 0
0 0 1

]
and the solution to (3.7) as

g =


(uK+vL)w
u2+v2

(vK−uL)w
u2+v2 −K

(vK−uL)w
u2+v2 − (uK+vL)w

u2+v2 L

−K L uK−vL
w

+N

 ,

whereK,L andN are first integrals. The closure conditions turn out to be equivalent to

(6.58)/K +K = 0,

(6.59)/L+L= 0,

(6.60)Ku −Lv = 0,

(6.61)Kv +Lu = 0,

(6.62)Nu = 0,

(6.63)Nv = 0.

A complete set of time-independent first integrals is given byw,u − (ax + by)w, v + (bx −
ay)w,e−az(ucosbz− v sinbz),e−az(usinbz+ v cosbz). The solution forK,L andN may be written as

(6.64)K + iL= θ

(
u+ iv

w
− (a − ib)(x + iy),e(−a+ib)z

(
u+ iv

w

))
,

(6.65)N =N(w),

whereθ andN are arbitrary functions of their respective arguments. The degree of generality of so
to (6.59)–(6.64) is the same as in the previous case. A concrete Lagrangian for this case if given

(6.66)L= e−az

2w

[(
v2 − u2

)
cos(bz)+ 2uv sin(bz)

] + f (w),

where againf is smooth andfww is non-zero. Again one obtains an equivalent class of Lagrangian
translatingz by a constant.

We now consider the case where
[
a b
c d

] = [
1 1
0 1

]
. The algebraic solution to Eqs. (4.5) and (4.6) may

written as

(6.67)g =
[ 0 σw −σv
σw τw −(σu+ τv

]
.

−σv −(σu+ τv) ν
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The solution corresponding to (3.7) is given by

(6.68)g = e−z
 0 wK −vK
wK ezMw2

v
− Kuw

v
−ezwM

−vK −ezMw Kuv
w

+ ez(Mv +N)

 ,

whereK,L andN are first integrals. The closure conditions arising from (6.69) are

(6.69)Ku = 0,

(6.70)wLu − e−z(uKv +K)= 0,

(6.71)
w ez

v
Nu +/K + 2K = 0,

(6.72)/K + 2K = 0,

(6.73)Nv − (/L+ 2L)= 0,

(6.74)/L+ 2L= 0.

It follows from (6.70)–6.75) thatN is a function ofw only since it is a first integral.
We note that in the present case the functionsw,v − yw,e−zv,e−z(u− zv) andwx − u+ v form a

complete set of time-independent first integrals. If we definex̄ = x + v−u
w

, ȳ = y − v
w

, ū= e−z(u−zv)
w

and

v̄ = e−zv
w

the solution to (6.70)–6.75) may be written in closed form as

(6.75)K = k(ȳ, v̄)

w2
, L= 3(ȳ, v̄)+ x̄v̄kȳ + ū(k − v̄kv̄)

w2
,

wherek and3 are arbitrary functions of̄y andv̄. A simple example of a concrete Lagrangian in this c
is given by

(6.76)L= u[ln v − lnw− z] + e−zv2

w
+ yw+w2.
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