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Abstract

The inverse problem of Lagrangian dynamics is solved for the geodesic spray associated to the canonica
symmetric linear connection on a Lie group of dimension three or less. The degree of generality is obtained in
each case and concrete Lagrangians are written down.
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1. Introduction

The inverse problem of Lagrangian dynamics consists of finding necessary and sufficient conditions
for a system of second order ODE’s to be the Euler—Lagrange equations of a regular Lagrangian functior
and in case they are, to describe all possible such Lagrangians. We mention [5,6,8] and references there
as recent contributions in the area. In [1] an algorithm for solving the inverse problem in a concrete
situation was given and it is that procedure that will be adopted here. In Section 3 we give a very brief
outline of the algorithm but refer the reader to [1] for complete details and worked examples.

One aspect of the inverse problem which seems to remain unexplored is the very special case of th
geodesic equations of the canonical symmetric connection, that we shall deriéidblpnging to any
Lie group G. This connection was introduced in [3]. In Section 2 we review the main properti€s of
In the case wher& is semi-simpleV is the Levi-Civita connection of the Killing form bu¥ does not
seem to have been studied much in the more general context.

In this paper we shall solve the inverse problem for the case of Lie groups up through dimension three.
Our investigation will be exclusively of a local nature. In every case we shall be able to write down a
family of Lagrangians that give rise to the system of geodesic equations in question. The Lagrangians
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are constructed by implementing the algorithm described in detail in [1]. The fact that the procedure can
be carried out is because one is able to find plenty of explicit first integrals for the geodesic equations
in each case. We have elected, however, not to follow the moving frame approach adopted in [1] since
in all cases we are able to find fairly explicit formulas, if not for the Lagrangian, then for its Hessian.
In the case of the Euclidean group and several others, we do use the Cartan—Kéahler theorem in a rathe
informal way, so as to obtain the degree of generality of possible Lagrangians. In Section 5 we study a
particular case in detail, namely, the Euclidean group of the pi&@e. We then use the same method

as in Section 5 folE (2) and give explicit Lagrangians in each case. In Section 6 we follow Jacobson’s
classification [10] of the Lie algebras of dimension three or less and give the corresponding geodesic
equations. As a final remark we note that the examples appearing below seem to furnish new examples ¢
Berwald spaces [2], that is to say, spaces with symmetric connections whose geodesic equations are tt
Euler—Lagrange equations of some regular Lagrangian function. The summation convention on repeate
indices applies throughout.

2. Thecanonical connection on a Liegroup

In this section we shall outline the main properties of the canonical symmetric conn&ctiora Lie
groupG. In factV is defined on left invariant vector field§ andY by

VyY = %[X, Y] (2.1)

and then extended to arbitrary vector fields by makihgensorial in theX argument and satisfy the
Leibnitz rule in theY argument. Following the conventions of [9] a left invariant vector figld denoted
by X, that is X(g) L,.X. Likewise the right invariant vector field induced Byis denoted beR<g>
so thatX #®) = (R,), X. It follows that

X*® = (Ad(g™HX),
where Ad denotes the adjoint representatior. 1§ a second tangent vector then
ik ¥ = Viagenx- (Adg™HY)”
=1/2[(Ad(g™HX) ", (Ad(g™HY)]
— 1/2[§R(g)’ f/’R(g)]_

Thus in (2.1)X andY could equally well denote right invariant rather than left invariant vector fields.
It can be shown tha¥ is symmetric, bi-invariant and that the curvature tensor on left invariant vector
fields is given by

1
R(X,Y)Z= 21[Z, (X, Y]] (2.2)

Furthermore G is a symmetric space in the sense tRais a parallel tensor field. Indeed suppose that
W, X, Y andZ are left-invariant vector fields. Then from (2.1) and (2.2) we have that

AVyR(X,Y)Z=1/2[W,[Z,[X.Y]]] —4R(VwX,Y)Z —4R(X,VywY)Z —4R(X,Y)VyZ
=1/2[W,[Z,1X. Y]] - [Z. VWX, Y]] = [Z,[X, VwY]] = [VWZ.[X, Y]]
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=1/2[W,[Z,[X.Y]]] - 1/2[Z,[[W, X], Y]]
—1/2[Z,[X, W, Y]]] - 1/2[[W, Z] [X, Y]]
=1/2([z, [w.[x.Y]]] - [Z. [[W.X1. Y]] - [Z. [X. W, Y]]]) =0

because of the Jacobi identity. Also, the Ricci tensova$ symmetric. In fact, if E;} is a basis of left
invariant vector fields then

[Ei, Ej]1=C}Ex, (2.3)
whereij are the structure constants and relative to this basis the Ricci tBpsisrgiven by

1
R = chmc;’; (2.4)

from which the symmetry oR;; becomes apparent. Singeis a parallel tensor field and the Ricci tensor
is symmetric it follows that Ricci gives rise to a quadratic Lagrangian which may, however, not be regular.
For further properties of the connecti®we refer to [3] and [9].

Turning now to the geodesic flow of V we note that sinc& is bi-invariant any left invariant vector
field Z will be a Killing vector field or affine collineation oV. Indeed ifX andY are also left invariant
one finds that Lie derivative of by Z is given by

(LzV)xY =[Z,VxY]=Vizx)Y = Vx[Z,Y]
=1/2([z,[X, Y]] +[[X, Z]. Y] + [ X1V, Z]1])
=1/2([Z.[X, Y]] +[[X. Z]. Y]+ [X[Y. Z]]) =0

by the Jacobi identity. If such a vector field is denotedzit follows that onT G the fieldsI” and Z¢
commute whereZ€ is the complete lift ofZ to T G. A very interesting consequence of the latter remark
is that whenevetl. is a Lagrangian that engendersas its Euler—Lagrange vector field, the functiohL

is another, possibly degenerate, Lagrangian. See [11] for a further discussion of this point.

3. Theinverse problem for second order ODE’s

We wish to be able to construct a Lagrangian function defined on the tangent HuGidié G so that
its Euler—-Lagrange equations are equivalent to the geodesic flow engendevedrbthe special case
whereG is a semi-simple Lie group we know that the Killing form is a bi-invariant pseudo-Riemannian
metric whose Levi-Civita connection 8. Thus, paradoxically, the inverse problem is mainly of interest
whengG is not semi-simple.

The inverse problem of the calculus of variations has had a long history and the most important
contribution to the field is undoubtedly the 1941 article of Douglas [7]. We mention also the following
references [4-6,8,12] as a sample of recent activity in the area but we shall follow the procedure outlined
in [1]. Let us briefly summarize the method for a general system of second order ODE of the form

i = i, 17). (3.1)

In fact, we shall denotg’ by u'.
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The first step in the method is to construct the n matrix of functions® defined by
- 1d [af! aft  1af aft
Q= _-— ) - - 3.2
j 2dt(8u/> ax/  Aouk dul 3.2)
Actually thecbj. are in a certain sense the components of a tensor field known as the Jacobi endomorphisrr
field [4]. One now finds the algebraic solution fgiof the equation

8P =(g®), (3.3)

which expresses the self-adjointnesgafelative tog. The symmetric matrig will represent the Hessian
with respect to the' variables of a putative Lagrangidn Since there is just a single matrx, one can

always find non-degenerate solutions to (3.3), whatever the algebraic northahaly be. In fact, (3.3)
imposes at most;) conditions on the ") components of.

In the general theory there is a hierarcﬂg;of matrices defined recursively by

n+1 d n 110 n
o

- (3.4)

and the multiplierg is such that eacl% is self-adjoint relative tqz. However, as we shall explain in

Section 4, for the case of linear connections, the factRhigtparallel entails that all the higher ordér‘s
vanish identically.

There is, in general, a second hierarchy of algebraic conditions that must be satisfie®éfne
functions¥, by

o 1/0D0 yopi
wio=-(—L - %), 35
ik 3(8uk 8u1> (3.5)

The lI/}k are the principal components of the curvature of the linear connection associated to the ODE
system (3.1) (see [4] for further details). For reasons that we shall explain below we can ignore the
higher ordenZ -tensors in the present context and we need only consider the first set of conditions in the
hierarchy, namely,

According to the general theory we now assume that we have a basis of solutions to the double
hierarchy of algebraic conditions. If we cannot find a non-singular solution then we can be sure at this
stage that no regular Lagrangian exists for the problem under consideration.

Using our basis of solutions we can think of each basis element as giving a “Cartan two-form” for
(3.1). The problem is that such a two-form need not be closed. One of the auxiliary conditions that must
be satisfied by if the corresponding two-form is closed is

dg;; 1of* 1ofk
% E%gkj + E#gh =0. (3.7)

Now (3.7) is a system of ODE’s and it is possible, in principle, to scale basis elements which are
solutions to (3.3) by first integrals of (3.1) so that (3.7) is satisfied. To carry out the preceding step
in practice depends on having explicit first integrals of (3.1) available. Such integrals do exist for the
examples considered in Sections 5 and 6.
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After we have obtained a basis of solutions for (3.3), each of which satisfies (3.7), the final step is to
impose the so-called closure conditions

dg;i 0g;
88ij 98k _ g, (3.8)

ouk  ou’
This step is accomplished by looking for linear combinations of the basis elements over the ring of first
integrals for (3.1) so that (3.8) is satisfied. Then (3.3) and (3.7) still hold and the resulting closed two-
forms, if indeed they exist, will be Cartan two-forms, albeit possibly degenerate. We remark that (3.3),
(3.7) and (3.8) together with the symmetry and non-degeneragyconstitute the Helmholtz conditions
for the inverse problem for (3.1).

4. Theinverse problem for linear connections

Let us explain next how the general theory of Section 3 simplifies for the case of the geodesic equations
associated to a linear connection. In this case the métiixof the form

D! = R u‘ul, (4.1)

whereR,ij, are the components of the curvature R of the connection relative to a coordinate éystem
The higher orderb-tensors in this case just correspond to covariant derivatives of the curvature so that,
for example,

ll

D= Rkﬂ ukulu™, (4.2)

In particular if R is parallel then all the higher ord@rtensors vanish.
For the case of a linear connection, one finds that
lI/jk = leku (4.3)
and again the higher ordér’s correspond to covariant derivatives of R. Thus, for example,

1i
v jk— Rl]k m (44)

Again if R is parallel the higher orde¥ -tensors vanish.
The condition coming fron® is

(gml R;]q gﬂR;mq)u”uq =0, (4.5)
while the condition coming fron& is

(gmiR;)jq + gl]iR;mj + gjiR;;qm)up = 0 (46)
If we contractu? into (4.6) we find from (4.5) that

8qi R;mjupuq =0. (4.7)

Thus, for the special case of a linear connection, (4.7) is equivalent to (4.5) in the presence of (4.6).
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5. TheEuclidean group E(2)

In this section we shall apply the theory developed in the previous sections to the Euclidea® (pup
of the plane which we shall identify as the group of 3 matrices of the for g 1] whereA € O(2) and
x € R2.If A preserves orientation then it will correspond to a mar™ *"“] and we shall use, y
andz as coordinates on the three-dimensional Lie gréup).

It is easy to check that a basis for the right invariant vector field& @) is given byX = % Y =

andZ = 3% + y% — x% One may obtain the canonical connecti@ron E(2) which we encode in its
geodesic equations with v andw standing forx, y andz, respectively. Thus

9

u=vw, V= —uw, w=0. (5.1

The connection forna is given by

1 0 —dz —dy
w=3 [dz 0 dx } (5.2)
0O O 0
and the curvature two-forig® is given by
1 0 0 dxndz
Q=Z|:O 0 dy/\dzi|. (5.3)
0 0 0

We now proceed with the construction of a Lagrangian function whose Euler—Lagrange equations will
coincide with (5.1). One finds that the matkxis given by

w 0 —u
P = 7 |: 0 w —v:| (5.4)
0O 0 O
and the solutions of Eq. (3.3) consist of
0O w —v w 0 —u 0O 0 O 0 0O
g:,o|:w 0 —u:|+k|:0 0 0:|+,u|:0 w —v:|+v|:0 0 O:|. (5.5)
—v —u O —u 0 O 0O —-v O 0 0 1
We now choose, A, u andv so that (3.7) is satisfied. We have to solve the following system of ODE:
A —pw=0, (5.6)
f+ pw =0, (5.7)
wf)-l—(uz—vz),o—l—uv(u—)»):O, (5.8)
20+wh—pn)=0, (5.9)
2up + 2vi + 2wvp +uw(h — ) =0, (5.10)
2uh + 2vp — 2uwp + vw(h — ) = 0. (5.11)

It turns out that (5.10) and (5.11) are actually redundant. The solution for (5.6)—(5.9) is given by

A=wP —wLcogz+ K), (5.12)
uw=wP+wLcogz+ K), (5.13)
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v=L[(v —u )cos(z+K)+2uvsm(z+K)] (5.14)
o =wLsinz + K), (5.15)
whereK, L, P andR are first integrals of (5.1).
The final step in constructing a Lagrangian for (5.1) is to impose the closure conditions which we shall

write in the following form, whereA is defined to be the operatot’- + v2 + w-2 and we denote by
ands, cogz + K) and sirn(z + K), respectively:

L,+LK,=cP,+sP,, (5.16)
L,—LK,=sP,—cP,, (5.17)
(BL+ AL —v(L,+LK,))c— (AK-L+v(L,—LK,))s —3P — AP +vP, =0, (5.18)
(3L + AL +u(LK,—L,))c— (AK-L—u(L,+ LK,))s+3P+ AP —uP, =0, (5.19)
((v* = u?)L, +2uvLK, + vwLK,, —uwL, — 3uL)c +uP

+uwP, + ((u®* —v*)K,L +2uvL, +vwL,LK, +3vL)s + R, =0, (5.20)
((v2 —u )LU + 2uvLK, +vwL, +uwLK,v+ 3vL)c +vP +vwhP,

+ ((u? = v*)K,L + 2uvL, + uwL, — vwLK, +3uL)s + R, =0, (5.21)
(AK -L —u(L,+LK,))c+ (BL+ AL —u(LK,+L,))s +uP, =0, (5.22)
(AK -L+v(L,—LK,))c+ (8L + AL —v(LK,+L,))s +vP,=0. (5.23)

Leaving aside (5.20) and (5.21) the remaining conditions imply that
S3L+AL=3P+AP=AK-L=0 (5.24)

and we still have to satisfy (5.16), (5.17), (5.20) and (5.21). In considering (5.24) the case here
vanishes implies that

w? 0 —uUw 0O 0O
g=P|: 0 w? —uw}+[(u2+v2)P+A][o 0 o}, (5.25)
—uw —vw 0 0 0 1
where P and A depend only orw. However, (5.25) will lead to a flat connection and so we proceed by
assuming thah L + 3L and A K both vanish.
If we now use (5.24) and (5.16) and (5.17), we find that (5.20) and (5.21) may be rewritten as

R,=2uP + (u* + v?) P,, (5.26)

R,=2vP + (u2 + UZ)PU. (5.27)
Hence

R=(u®+v?)P+F, (5.28)

whereF may depend o, y, z andw. However since:? + v? is a first integral so too i§' and thusF is
a function ofw only.

Let us summarize our analysis of (5.16)—(5.23) thus far. We know that apart from the arbitrary function
F of w, R is determined fromP by means of (5.28). Thus it remains only to satisfy (5.16) and (5.17)
subject only to the vanishing e K, AL + 3L andA P + 3P, knowing, of course, thak, L and P are
first integrals.
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To continue we note that the functions, u — yw, v + xw, cOSzu — Sinzv, and cogv + Sinzu
constitute a maximal set of time-independent, functionally independent first integrals of (5.1). It follows
that we may write
_A(x,y,u,v)
= 3

p(x,y,u,v)

K=K, y,i,7), L , P= —— (5.29)
w

where K, ¢ and p are arbitrary smooth functions of their respective argumentsxafdiz, andv are
defined by

F=x+ 2, (5.30)
w
_ u
Goy X (5.31)
w
coszu — sin
z _ Coszu —sinzv. (5.32)
w
5 Sinzw + Cosxv. (5.33)
w

If we make the change of variables corresponding to (5.30)—(5.33) togethef with w = w we find
that (5.16) and (5.17) become, on dropping the bars in the new variables:

¢, — LK, = p,cosK + p,sink, (5.34)
¢y + LK, = p,C0SK — p,sink, (5.35)
¢, — LK, = p,cosK — p,sink, (5.36)
¢, + K, = p,CcosK — p,sink. (5.37)

We claim that (5.34)—(5.37) is an involutive PDE system and ¢hat, y, v) is as-regular coordinate
system. In fact the characters of the system turn out @& 2, 0). On the other hand, the codimension
of the number of second order conditions obtained by prolonging (5.34)—(5.37) turns out te-i& 39
15. (Note that there are only 15 independent second order conditions!) NAw-3 x 2+2x 3+0x 4 =
15 and so by Cartan’s test the system is involutive. According to the Cartan—Kahler theorem the solution
of the PDE system depends on “two functions of three variables”.

In order to obtain some actual Lagrangians for (5.1) we shall continue by reverting to the unbarred
coordinates and by making the assumption #ias zero. By eliminatingP from (5.16) and (5.17) we
obtain the following condition

2cL,, +s(L,, —Ly,,)=0. (5.38)
Taking into account (5.24), the general solution of (5.38) may be written as
w3l = f x,y,z,icosi— Y sins +g x,y,z,isiniiklcosE , (5.39)
w 2 w2 w2 w 2

where f andg are smooth functions of their respective arguments. Furthermore (5.16) and (5.17) imply
that

Puwi=g—f+C, (5.40)
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where( is a function ofx, y, z andw only. However, because and P are first integrals it follows that
f andg must in fact be constant. We thus write

£
L == _37 (5.41)
w
p=LX, (5.42)
w
2 2
R_””§”)+Gmx (5.43)
wheref and p are constants and is an arbitrary function ofv.
The LagrangiarC now must necessarily be of the form
2 — u?)cosz + 2uvsin 2402
ﬁ:(v u<) Ccosz + 2uv z+p(u +v)+F(w), (5.44)

2w 2w

where F is an arbitrary function ofv. A short calculation reveals that given by (5.34) has Euler—
Lagrange equations that are the geodesics of a linear connection but that we obtain (5.1) only in the
case wherg is zero. We also have to assume tl#gt, is non-zero in order thaf should be a regular
Lagrangian.

The class of Lagrangians given by (5.34) with= 0 can be extended by translatingpy a constant. In
fact, 3% is a left-invariant vector field and so this one-parameter family of Lagrangians owes its existence
to the remark made at the end of Section 1.

6. Solution of the problem in dimensions up through three

In this section we shall outline a proof of the fact that all the canonical connections on Lie groups of
dimension 3 or less have variational geodesic equations. Again, the results are local in nature and so w
shall be working at the Lie algebra rather than group level. Jacobson [10] has discussed Lie algebras o
dimension 3 or less and we appeal to Lie's first Theorem [9] for the existence of the corresponding local
Lie group.

Clearly, any abelian Lie algebra will lead to a flat canonical connection and so will be locally
variational. Up to isomorphism the Lie algebra of the affine group of the line is the only non-abelian
Lie algebra in dimension two. In appropriate coordinatesy) a basis for the right-invariant vector
fields consists oK = % Y= x% + % The geodesic equations are easily seen to be, after making the
simple change of coordinatés, y) — (Iny, x)

i=iy, =0 (6.1)
and they are known to be the Euler-Lagrange equations of the Lagrangian
)'62 )')2
L=€"—+—. 6.2
25 T2 (6.2)

The last result was obtained in [13].
The most general Lagrangian for (6.1) can be described in the following way. Solve the second order
PDE

20 + 20, + eyz -0, =0, (63)
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wherez stands fort/y. Then, subject to regularity considerations, the functiént (y) whereyr is
an arbitrary function ofy, engenders (6.1). Again the reader may see more details in [13].

Jacobson’s classification of the 3-dimensional Lie algebras depends primarily on the dimension of the
first derived algebrg’ whereg is the original algebra. Of course, digl) = 0 iff g is abelian and if
dim(g’) = 1 there are, up to isomorphism, two algebras distinguished according to whethergbliest
inside the center of. In the former casg may be realized as the Lie algebra of the group of matrices

1
of the form Oi§j| (x,y,z € R) andg is the Heisenberg algebra. It gives a flat connection and so is
001

variational. In the latter casgis isomorphic to the Lie algebra of the group of nhon-singular 2 upper
triangular matrices. This algebra is a direct sum of the non-abelian two-dimensional algebra and a one:
dimensional factor and so is easily seen to be variational. I{glim= 3 theng is simple and we have
g =s€(2,R) or g = s0(3). In both cases the Killing form provides a metric and so the connection is
variational.

It remains to discuss the case where dirs= 2. Jacobson shows that such algebras are in one to one
correspondence with the two-dimensional collineation gieGh.(2, R) andad — bc # 0,

B B B] B B]
X=—, Y=—, Z = by)— dy)— + —. 6.4
P 5 (ax + y)ax+(cx+ y)ay—i-aZ (6.4)
Then we have
[X,Y]=0, [X,Z]=aX +cY, [Y,Z]=bX +dY. (6.5)

The equations of the geodesics of the canonical connection are easily shown to be
= (au + bv)w, V= (cu +dv)w, w=0 (6.6)
and the®-matrix is given by

(@ +bo)yw bla+dw —((a?+bc)u+ bla+d)v) }
. (6.7)

40 = (—w) [ cla+dw (d?+bo)w —(cla+d)u+ (d?+bc)v)
0 0 0

By calculating the connection and curvature forms one finds that the non-zero components of the
curvature are given by

Ry =a?+bc,  R%,=cla+d), Ri,=ba+d), RZ,=a’+bc. (6.8)

It is interesting to observe that conditions (4.7) already imply that a Lagrangian corresponding to (6.6)
must necessarily be of the form

L=we(x,y,z,1,3> + ¥ (w) (6.9)
w w

for some smooth function and.
Turning next to (4.6) we have just the single condition

(a+d)(—bgi1+ (a —d)g12+ cgo2) =0. (6.10)
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By making a suitable change of basis, it may be assumed that the r[n?aﬁﬂlxs at the outset, in one of
the following normal forms:

. 1 0
Ot
i | 2} (ad(a —d) £0),

a

iy | Z} (b£0, a®+ b2 =1),

. :1 1

(iv) 0 1} .

We shall make a further sub-division of the four cases listed above according to whether (6.10) is or is
not satisfied identically. Thus we consider apart from (ii) and (iii)

o |5 5
i) [_01 (1)]

However, we note that (vi) is just the Euclidean group case discussed in Section 5. There are thus five
subcases that remain to be considered.
Let us now suppose that *] = [ 3 9. The solution of Eq. (4.5) may be written as

pw ow —(pu +ov)
g= |: ov Tw —(au+tv)j| (6.11)
—(pu+ov) —(ou+r1tV) v
and Eq. (4.6) is identically satisfied. Corresponding to (6.11) the solution to (3.7) is given by
p=Ke?, (6.12)
c=Me*, (6.13)
2 (Ku? + 2M Lv?
v:N+e (Ku®~+2Muv + v), (6.15)
w

whereK, L, M and N are first integrals. Finally the closure conditions are easily seen to be equivalent
to:

AK + 2K =0, (6.16)
AL +2L =0, (6.17)
AM +2M =0, (6.18)
K, — M, =0, (6.19)
L,— M, =0, (6.20)
u(AK + 2K) + v(AM + 2M) + €wN,, =0, (6.21)

u(AM +2M) +v(AL + 2L) + €wN, =0. (6.22)
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Clearly (6.16)—(6.22) imply tha¥ is independent ofi andv and, since it is a first integral, thaf is a
function ofw only.

Our search for a Lagrangian thus reduces to an examination of (6.16)—(6.20). We note that
the functionsw, € %u, € %v, wx — u, wy — v form a maximal set of functionally independent, time
independent first integrals. We can thus encode (6.16)—(6.18) in the following way:

K:k(x,y,u,w)’ Lzﬁ(x,y,u,v), M:m(x,y,u,v)
x2 2
wherex = x — %, y=y— %, U= e‘zﬁ, V= e‘Z% andk, £ andm are arbitrary smooth functions of their
arguments. Conditions (6.19) and (6.20) imply that

myz —ky =€ *(mz; — ky), (6.24)
my — Ly =€"(m; —Ly). (625)

Since none of the functioris £ andm involve z it follows that all four expressions occurring in (6.24)
and (6.25) are zero. The resulting PDE system is involutive. The argument is very similar to the Euclidean
group case and the numbers turn out to be the same so we leave the details to the reader.
We conclude our discussion of this example by noting that the function
e (Ku?+ 2Muv + Lv?)

L= ¥ (w), (6.26)
w

(6.23)

w

whereK, L andM are constant an#f L — M2 # 0 andy is an arbitrary, smooth, non-linear function of
w gives a Lagrangian depending on 3 constants and one arbitrary function.

The case wherg® *] = [ %] is very similar to the preceding one, so we will just summarize the
results. It turns out that the solution to Eqg. (4.5) is identical to the previous case as given by (6.11). The

analog of (6.12)—(6.15) is given by

p=Ke?, (6.27)
o=M, (6.28)
T=L¢, (6.29)
e Ku?+2MUV + €& Lv?
yon o S Ku MUV e Lv (6.30)
w
whereK, L, M andN are first integrals. The closure conditions are equivalent to
AK =0, (6.31)
AL =0, (6.32)
AM =0, (6.33)
e K, =M,, (6.34)
€L, =M,, (6.35)
e “uAK +vAM + w3N, =0, (6.36)
uAM + €vAL + wiN, =0. (6.37)

It foIIows that N is a function ofw only and thatkK, L and M are functions ofi = w“ v = efz”,
X =x — = andy = y + - only. The existence of a Lagrangian then reduces to solving (6.34) and (6.35),
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knowing thatK, L and M are first integrals. As in the previous case we obtain a first order PDE system

K; = Mg, (6.38)
Ly=—M:, (6.39)
Li=M;, (6.40)
Ly =—M;, (6.41)

which is involutive with the same characters as in the last example. The analog of Eq. (6.26) is given by

B K e u?+2Muv + L €v?
w

where agairnk, L, M € R and+ is an arbitrary non-linear function af.
Let us suppose thdt’ ©] has second form above, namefy, %] where in additiora + d # 0. The
solution of Egs. (4.5) and (4.6) is given by

pow 0 —pu
g={ 0 tw —rv}, (6.43)

—pu  —TV v

L + ¥ (w), (6.42)

and corresponding to (6.43) the solution of (3.7) is given by

p=Ke %, (6.44)
r=Le %, (6.45)
K e %y? + L e~%%y?
V= + N, (6.46)
w

whereK, L andN are first integrals.
The closure conditions corresponding to (6.44)—(6.46) turn out to be:

K,=0, (6.47)
L,=0, (6.48)
uk, +wk, +2K =0, (6.49)
vL,+wL, +2L =0, (6.50)
N, +ue*“K, =0, (6.51)
N, +ve L, =0. (6.52)

Using the fact thaty, e %u, e %v, u —axw, v — dyw are first integrals we obtain a closed form solution
of (6.47)—(6.52) as

(4, 4 —ax)
K=k 2 (6.53)
edU v
o ov g
L—¢lu T 28 (6.54)
w

N =Nw), (6.55)
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wherek, £ and N are arbitrary functions of the indicated arguments. By choosing particular forms for
k, ¢ andN we can obtain the corresponding Lagrangian. The simplest such Lagrangian is given by

ke2u? + ¢ e 922

I = + w2, (6.56)
w

wherek and¢ are non-zero constants. We remark finally that this class of examples belong to “case llal”
in the terminology of [4] and so the geodesic equations can be decoupled by geometrically natural, albeit
not point, transformations.

We shall next consider the case whéfé ] =[ “ "] anda andb are both non-zero. The solutions to
Egs. (4.5) and (4.6) may be written as

w 0 -—u 0O w —v 0 0O
g:,o|:0 —w v:|+a|:w 0 —u:|+r|:0 0 0:| (6.57)
—u v 0 —v —u O 0 0 1
and the solution to (3.7) as
I At
—K L wkoul 4 N
whereK, L andN are first integrals. The closure conditions turn out to be equivalent to
AK + K =0, (6.58)
AL+ L=0, (6.59)
K,—L,=0, (6.60)
K,+L,=0, (6.61)
N, =0, (6.62)
N, =0. (6.63)

A complete set of time-independent first integrals is givenuoyw — (ax + by)w,v + (bx —
ay)w, € **(u cosbhz — vsinbz), e % (usinbz + v cosbz). The solution fork, L and N may be written as

R Ca | (6.64)
w

N =N(w), (6.65)
whered andN are arbitrary functions of their respective arguments. The degree of generality of solutions
to (6.59)—(6.64) is the same as in the previous case. A concrete Lagrangian for this case if given by

e * .

> [(v® — u?) cos(bz) + 2uv sin(bz) | + f(w), (6.66)
where againf is smooth andf,,,, is non-zero. Again one obtains an equivalent class of Lagrangians by
translatingz by a constant.

We now consider the case where’] = [ 1]. The algebraic solution to Egs. (4.5) and (4.6) may be
written as

K+iL:6(

L=

0 ow —0ov
g= |: ow Tw —(ou+ rv:| . (6.67)
—ov —(ou-+r1tv) v
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The solution corresponding to (3.7) is given by

0 wkK —vK
g=e7| wk €My’ _ Kuw —EwM : (6.68)
—vK  —€Mw K4 eEMu+N)
whereK, L andN are first integrals. The closure conditions arising from (6.69) are
K,=0, (6.69)
wL, —e€*ukK,+ K) =0, (6.70)
?Nu + AK + 2K =0, (6.71)
AK + 2K =0, (6.72)
N, — (AL +2L) =0, (6.73)
AL+2L =0. (6.74)

It follows from (6.70)—6.75) thad is a function ofw only since it is a first integral.

We note that in the present case the function® — yw, € *v, € *(u — zv) andwx — u + v form a
complete set of time-independent first integrals. If we defirex + “—*, y=y — >, u = W and

V= % the solution to (6.70)—6.75) may be written in closed form as

k(y,v) £(y,v) + xvky + u(k — vky)
9 L == 9
w2 w2
wherek and{ are arbitrary functions of andv. A simple example of a concrete Lagrangian in this case
is given by

K= (6.75)

e 2

L=ullnv—Inw—z]+ + yw + w?. (6.76)
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