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Abstract In many applications, finding target unit is required, particularly when decision maker

(DM) wants to search along the effi\cient frontier to locate the most preferred solution. Wong

et al. [Wong, Y.H., Luque, M., Yang, J.B., 2009. Using interactive multiple objective methods to

solve DEA problem with value judgments. Computers and Operations Research 36, 623–636] estab-

lished an equivalence model between output-oriented dual DEA models and multiple objective lin-

ear programming (MOLP). In a similar vein, the aim of this paper is to establish an equivalence

model between the general combined-oriented CCR model and multiple objective linear program-

ming and also using Zionts–Wallenius’s method to integrate combined-oriented CCR performance

assessment and target setting such that the DM’s preference can be taken into account in an inter-

active fashion. Our proposed model gives the most preferred solution for DM with trade off anal-

ysis on both input and output values of DMUs. The applicability of the proposed equivalence

model is illustrated, using a real data set as a case study, which consists of 20 bank branches.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA) is a mathematical program-
ming technique for identifying efficient frontiers for peer deci-

sion making units (DMUs) with multiple inputs and multiple
outputs. The units are assumed to operate under similar condi-
tions. Based on information about existing data on the perfor-
mance of the units and some preliminary assumptions, DEA

forms an empirical efficient surface (frontier). If a DMU lies
on the surface, it is referred to as an efficient unit, otherwise
inefficient. DEA also provides efficiency scores and reference

set for inefficient DMU. The efficiency scores are used in prac-
tical applications as performance indicators of the DMUs. The
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reference set for inefficient units consists of efficient units and

determines a virtual unit on the efficient surface. The virtual
unit can be regarded as a target unit for the inefficient unit.
The target unit is found in DEA by projecting an inefficient
DMU radially to the efficient surface that usually does not in-

clude a decision maker’s (DM) preference structure or value
judgments. Emrouznejad et al. (2010a,b) proposed a semi-
oriented radial measure (SORM) which yield a measure of

efficiency and target unit and can handle variables that take
positive values for some and negative values for other DMUs.
However, to incorporate DM’s preference information in

DEA, various techniques have been proposed such as the goal
and target setting models of Athanassopoulis (1998) and
Thompson et al. (1990) and weight restrictions models includ-

ing imposing bounds on individual weights (Dyson and
Thanassoulis, 1988), assurance region (Wierzbicki, 1980),
restricting composite inputs and outputs, weight ratios and
proportions (Zhu, 1996), and the cone ratio concept by adjust-

ing the observed input–output levels or weights to capture
value judgment to belong to a given closed cone (Charnes
and Cooper, 1990; Charnes et al., 1994). However, all the

above-mentioned techniques would require prior articulated
preference knowledge from the DM, which in most cases can
be subjective and difficult to obtain.

On the other hand, relationships between DEA and MOLP
have been studied from several viewpoints by many authors.
For instance, Golany (1988) first proposed an interactive mod-
el combining both of these approaches where the DM will allo-

cate a set of level of inputs as resources and be able to select
the most preferred set of level of outputs from alternative
points on the efficient frontier. Belton (1992) and Belton and

Vickers (1993) measured efficiency as a weighted sum of input
and output. Thanassoulis and Allen (1998) showed the equiv-
alence between the CCR model and some linear value function

model for multiple outputs and multiple inputs. Shin and
Ravindran (1991) combined the use of DEA and interactive
multiple goal programming where preference information is

incorporated interactively with the DM by adjusting the upper
and lower feasible boundaries of the input and output levels.
Then Joro et al. (1998) proved structural correspondences be-
tween DEA models and multiple objective linear programming

using an achievement scalarizing function proposed by Wong
and Beasley (1990). Further, the concept of value efficiency
analysis (VEA) that effectively incorporate preference infor-

mation in DEA introduced in Joro et al. (2003) and Korhonen
et al. (2002). Zionts and Wallenius (1976) proposed a model
that calculates efficiency scores incorporating the DM prefer-

ence information. Halme et al. (1999) evaluated an efficiency
of DMU in terms of pseudo-concave value function, by con-
sidering a tangent cone of the feasible set as the most preferred

solution of the decision maker. Hosseinzadeh Lotfi et al.
(2010a,b) obtained an equivalence relationship between
min-ordering formulation in MOLP and DEA based on
output-oriented CCR dual model. Also, Yang et al. (2009)

established the equivalence relationship between the output-
oriented DEA dual models and minimax reference point ap-
proach of MOLP, showing how a DEA problem can be solved

interactively without any prior judgments by transforming it
into an MOLP formulation. They applied interactive tech-
niques in MOLP to solve DEA problems and further located

the MPS along the efficient frontier for each DMU. They
showed that the MPS generated using interactive MOLP
methods provides a rich insight into the performance assess-

ment and the efficiency analysis of each DMU with realistic
and technically feasible target values that incorporate DM’s
value judgments. In a similar way, Wong et al. (2009) estab-
lished equivalence relationship between the output-oriented

DEA dual models and the minimax formulations that led to
the construction of the three equivalence models namely the
super-ideal point model, the ideal point model and the shortest

distance model. In a similar vein, the aim of this paper is to
establish an equivalence model between the general com-
bined-oriented CCR model and multiple objective linear pro-

gramming and also using Zionts–Wallenius’s method (1976)
to integrate the general combined-oriented CCR performance
assessment and target setting such that the DM’s preference

can be taken into account in an interactive fashion.
This paper is organized as follows: Section 2 reviewed some

existing approaches on relationships between data envelop-
ment analysis and multiple objective linear programming

(MOLP) as well as a brief description of the DEA technique
and MOLP structure. Section 3 gives the equivalence relation
between the general combined-oriented CCR model and

MOLP as well as an interactive multiobjective programming
method namely Zionts–Wallenius method. An application on
the performance measurement of a bank in IRAN is examined

in Section 4. Finally, we conclude in Section 5.

2. Literature review

In this section, we review some existing approaches on rela-
tionships between data envelopment analysis and multiple
objective linear programming. Before that, we give a brief

description of the DEA technique and MOLP structure.
DEA, suggested by Charnes et al. (1978), is a nonparamet-

ric frontier estimation methodology based on linear program-

ming to measure the relative efficiency of a decision making
unit and provide DMUs with relative performance assessment
on multiple inputs and outputs. It also provides reference units

known as composite or virtual units which lie on the efficient
frontier and are used as target units for inefficient DMUs to
benchmark against.

We assume that there are n DMUs to be evaluated, indexed
by j= 1, 2, . . . , n and each DMU is assumed to produce s dif-
ferent outputs from m different inputs. Let the observed input
and output vectors of DMUj be Xj = (x1j, x2j, . . . , xmj) and

Yj = (y1j, y2j, . . . , ysj), respectively, that all components of vec-
tors Xj and Yj for all DMUs are non-negative and each DMU
has at least one strictly positive input and output. The follow-

ing linear programming model is the output-oriented CCR
model for efficiency analysis:

max bp

s:t:
Xn
j¼1

kjxij 6 xip; i ¼ 1; 2; . . . ;m

Xn
j¼1

kjyrj P bpyrp; r ¼ 1; 2; . . . ; s

kj P 0; j ¼ 1; 2; . . . ; n

ð1Þ

In this model, the inverse of bp is the efficiency score of DMUp.
If bp > 1, DMUp is not efficient and the parameter bp indicates
the extent by which DMUp has to increase its outputs to be-

come efficient. For an inefficient DMUp, we define its reference
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set as Ep ¼ fk�j jk
�
j > 0; j ¼ 1; 2; . . . ; ng where k� ¼ ðk�1; k

�
2; . . . ;

k�nÞ is the optimal solution of (1). In this case, the pointP
j2Ep

k�j xj

P
j2Ep

k�j yi
� �

on the efficient frontier is used to evalu-

ate the performance of DMUp and can be regarded as a target

unit for the inefficient unit DMUp. This target unit usually does

not include a decision maker’s preference structure or value

judgments. So, it needs to use an interactive method in MOLP.

A multiobjective linear programming problem is to opti-
mize a vector of linear functions in the presence of linear con-

straints and can be formulated as follows:

max fðxÞ ¼ ½fxðxÞ; . . . ; frðxÞ; . . . ; fxðkÞ�
s:t: x 2 X

ð2Þ

Involving s (P2) conflicting objective functions fr : X fi R that
we want to maximize simultaneously. The decision variables
x = (x1, x2, . . . , xn)

T belong to the nonempty feasible region

X= {x : Ax = b, x P 0, x e Rm}, where A is a m · n matrix.
Objective vectors in objective space Rm consist of objective val-
ues f(x) = (f1(x), f2(x), . . . , fs(x))

T and the image of the feasi-

ble region is called a feasible objective region Z= f(X).
In MOLP problem, there does not necessarily exist solution

that optimizes all objective functions, like in single-objective

linear programming, and then the task of MOLP is to find
nondominated solutions and to help select a most preferred
one. In fact, a solution represented by a point in decision var-
iable space, is a nondominated solution if it is not possible to

move the point within the feasible region to improve an objec-
tive function value without deteriorating at least one of the
other objectives. In multiple criteria terminology, a nondomi-

nated solution is also called an efficient solution. Thus, to pre-
vent possible confusion with DEA’s efficiency concept, we will
use the term ‘‘nondominated’’.

Hosseinzadeh Lotfi et al. (2010a) assumed that the feasible
space of MOLP (2) be as follows:

X¼ kj

Xn
j¼1

kjxij 6 xip ði¼ 1;2; . . . ;mÞ;
����� kj P 0 ðj¼ 1;2; . . . ;nÞ

( )

Then, they wrote the MOLP formulation (2) in a weighted
min-ordering approach as:

max min
16r6s
ffrðkÞg

s:t: k 2 X
ð3Þ

The min-ordering formulation (3) can then be written as fol-

lows by introducing an auxiliary variable h:

max h

s:t: h 6 frðkÞ; r ¼ 1; 2; . . . ; s

k 2 X

ð4Þ

By the assumption yrp > 0 (r = 1, 2, . . . , s), they established
the relationship between the output-oriented CCR model (1)

and the min-ordering formulation (4). Finally, they proved that
efficiency score of the inefficient DMUp and its target unit can
be generated by solving the following formulation and hence
used an interactive MOLP method to solve the DEA problem:

max
1

y1j

Xn
j¼1

kjy1j; . . . ;
1

yrj

Xn
j¼1

kjyrj; . . . ;
1

ysj

Xn
j¼1

kjysj

" #

s:t: x 2 X

ð5Þ
In a similar manner, Yang et al. (2009) (see also Wong et al.,

2009) stated the MOLP formulation (2) in a weighted minimax
approach as follows with f* as the ideal point:

minmax
16r6s
fwrðf�r � frðkÞÞg

s:t: k 2 X
ð6Þ

The weighted minimax MOLP formulation can then be written
as follows by introducing an auxiliary variable h:

min h

s:t: h P wrðf�r � frðkÞÞ; r ¼ 1; 2; . . . ; s

k 2 X

ð7Þ

By the assumption yrp > 0 (r = 1, 2, . . . , s), they established
the relationship between the output-oriented CCR model (1)
and the weighted minimax formulation (7). Finally, they

proved that efficiency score of the inefficient DMUp and its
target unit can be generated by solving the following formula-
tion and hence used some interesting interactive methods in

MOLP to solve the DEA problem:

max
Xn
j¼1

kjy1j; . . . ;
Xn
j¼1

kjyrj; . . . ;
Xn
j¼1

kjysj

" #

s:t: x 2 X

ð8Þ

These models only consider the output-oriented dual DEA
model, which is a radial model that focuses more on output in-

crease. In this paper, we extend the model of Yang et al. (2009)
such that it can be considered both the decrease in total input
consumption and the increase in total output production based

on a radial method.

3. An improved equivalence model

In this section, we extend the approach proposed by Yang
et al. (2009) to establish an equivalence model between the gen-

eral combined-oriented CCR model and the weighted minimax
MOLP formulation. In fact, the proposed equivalence model
by Yang et al. (2009) is a special case of our proposed equiva-
lence model. Also, Yang et al. (2009) assumed that all of com-

ponents of output vectors for all DMUs are positive. This
assumption does not hold in many applications, while such
assumption is not necessary in our model and so our proposed

equivalence model is more practical.

3.1. The general combined-oriented CCR model

Based on different empirical axioms and corresponding to dif-
ferent characteristics of the production possibility set and pro-

duction frontiers, different DEA models, are developed and
applied in practice. In this paper, without loss of generality,
we will consider a DEA model by using a general directional
vector d = (dx, dy) (for a discussion on directional distance

functions, see (Chambers et al., 1998). Halme et al. (1999)
called the model a general combined model. Following Char-
nes et al. (1978), we assume that the technology set is estimated

by:

Tc ¼ fðX;YÞjX P kX; Y 6 kY; k P 0g
To obtain the general combined model, we define the com-
bined efficiency measure as maxfhpjðXp � hpdx;Ypþ
hpdyÞ 2 Tcg, that lead to the following problem:
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max hp

s:t: ðXp � hpdx;Yp þ hpdyÞ 2 Tc

ð9Þ

By considering Tc, we have the following linear programming,
known as the general combined-oriented CCR model:

max hp

s:t:
Xn
j¼1

kjxij 6 xip � hpdix; i ¼ 1; 2; . . . ;m

Xn
j¼1

kjyrj P yrp þ hpdry; r ¼ 1; 2; . . . ; s

kj P 0; j ¼ 1; 2; . . . ; n

ð10Þ

where the directional vector d = (dx, dy) = (d1x, . . . , dmx,
d1y, . . . , dsy) shows the direction that DMUp can move to lie
on efficient frontier. In fact, DMUp lies on efficient frontier
by at most decreasing in its inputs and at most increasing in

its outputs.
In the combined-oriented CCR model (10), kj represents the

proportion to which DMUj is used to construct the composite

unit for DMUp (j = 1, 2, . . . , n). Also, the composite unit pro-
duces inputs that are at most equal (Xp � hpdx) and consumes
outputs at least equal to (Yp + hpdy) with 0 < hp 6 1, where

the 1 � hp is the efficiency score of DMUp. If 0 < hp < 1,
DMUp is inefficient and the parameter hpdx indicates the
extent by which DMUp has to decrease its inputs and the

parameter hpdy indicates the extent by which DMUp has to
increase outputs to become efficient.

3.2. Conducting combined-oriented CCR model performance
assessment using an MOLP method

In the combined-oriented CCR model (10), an efficiency score

is generated for a DMU by maximizing outputs and minimiz-
ing inputs simultaneously. Either way, this can be regarded as
a kind of multiple objective optimization problem. In this sub-

section, the theoretical considerations of combining MOLP
and the combined-oriented CCR model are presented.

Suppose an optimization problem has m+ s objectives
reflecting the different purposes and desires of the DM. Such

a problem can be represented in a general form as follows:

max fðkÞ ¼ ½g1ðkÞ; . . . ;giðkÞ; . . . ;gmðkÞ;h1ðkÞ; . . . ;hrðkÞ . . . ;hsðkÞ�
s:t: k 2 K

ð11Þ

where K is the feasible decision space, giðkÞ ði ¼ 1; 2; . . . ;mÞ
and hrðkÞ ðr ¼ 1; 2; . . . ; sÞ are continuously differentiable

objective functions.

Definition 3.1. A feasible solution k� 2 K is called efficient
solution or nondominated solution to (11), if there is no other
k 2 K such that fðkÞP fðk�Þand fðkÞ – fðk�Þ.

Definition 3.2. The point f� ¼ ðg�1; . . . ; g�i ; . . . ; g�m; h
�
1; . . . ;

h�r ; . . . ; h�s Þ given by g�1 ¼ maxk2KgiðkÞ ði ¼ 1; 2; . . . ;mÞ and
h�r ¼ maxk2KhrðkÞ ðr ¼ 1; 2; . . . ; sÞ is called the ideal point of
(11).

We recall that in a MOLP problem, it is generally impossi-

ble to find a solution that optimizes all objectives simulta-
neously. Therefore, in order to reach to a special
nondominated extreme point, the MOLP formulation (11)

can be written in minimax approach (Stewart, 1996; Wong
et al., 2009) as follows:

min max
16i6m;16r6s

fwiðg�i � giðkÞÞ;wrðh�r � hrðkÞÞg

s:t: k 2 K
ð12Þ

In the above minimax formulation, for a given weight vec-

tor the DM is assumed to be satisfied with an efficient solution
k 2 K at which fðkÞ has the shortest weighted distance from
f* = (g*, h*) measured in 1-norm in the objective space.
The minimax formulation (12) can then be written as follows

by introducing an auxiliary variable h:

min h

s:t: h P wiðg�i � giðkÞÞ; i ¼ 1; 2; . . . ;m

h P wrðh�r � hrðkÞ; r ¼ 1; 2; . . . ; s

k 2 K

ð13Þ

Let

GiðkÞ ¼ xip �
Xn
j¼1

kjxij; hrðkÞ ¼
Xn
j¼1

kjyrj � yrp ð14Þ

Therefore, the combined-oriented CCR model, as shown in
formulation (10), can be equivalently rewritten as follows:

max h

s:t: hpdix � giðkÞ 6 0; i ¼ 1; 2; . . . ;m

hpdry � hrðkÞ 6 0; i ¼ 1; 2; . . . ; s

k 2 Kp

ð15Þ

where Kp ¼ fk ¼ ðk1; . . . ; knÞjkj P 0; j ¼ 1; 2; . . . ; ng.
The reason for establishing the equivalence condition be-

tween the combined-oriented CCR model (15) and the mini-
max formulation (13) is to use the interactive methods in

MOLP to locate the most preference solution (MPS) on the
efficient frontier for target setting and resource allocation.

Suppose �gipðkÞ ¼ giðkiÞ, in which ki is the optimal solution

of the following problem:

max
k2K

giðkÞ ¼ xip �
Xn
j¼1

kjxij ð16Þ

Also, suppose �hrpðkÞ ¼ hrðkrÞ in which kr is the optimal solu-
tion of the following problem:

max
k2K

hrðkÞ ¼
Xn
j¼1

kjyrj � yrp ð17Þ
Theorem 3.1. Suppose dix > 0 (i = 1, 2, . . . , m) and dry > 0
(r = 1, 2, . . . , s). The combined-oriented CCR model (15) can

be equivalently transformed to the minimax formulation (13)
using formulations (14), (16) and (17) and the following
equations:

wi ¼
1

dix
ði ¼ 1; 2; . . . ;mÞ; wr ¼

1

dry
ðr ¼ 1; 2; . . . ; sÞ ð18Þ

g�i ¼
umax

wi

¼ umaxdix ði ¼ 1; 2; . . . ;mÞ;

h�r ¼
umax

wr

¼ umaxdry ðr ¼ 1; 2; . . . ; sÞ ð19Þ



Equivalence relationship between the general combined-oriented CCR model and the weighted 51
h ¼ umax � hp; K ¼ Kp ð20Þ

Umax ¼ max
16i6m;16r6s

fwi�gip;wr
�hrpg ¼ max

16i6m;16r6s

�gip
dix
;

�hrp
dry

� �
ð21Þ

Proof. Using (18), the combined-oriented CCR model (15) can
be rewritten as follows:

max h

s:t: hp

1

wi

� giðkÞ 6 0; i ¼ 1; 2; . . . ;m

hp

1

wr

� hrðkÞ 6 0; i ¼ 1; 2; . . . ; s

k 2 Kp

ð22Þ

The first m constraints in (22) can be equivalently transformed
as follows:

hp

1

wi

� giðkÞ 6 0() � giðkÞwi 6 �hp

() umax � giðkÞwi 6 umax � hp

() wi

umax

wi

� giðkÞ
� �

6 h ð23Þ

() wiðg�i � giðkÞ 6 h

Similar way the second s constraints in (22) can be equivalently
transformed as follows:

wrðh�r � hrðkÞÞ 6 h ð24Þ

Moreover, the objective function of (22) becomes:

maxðhpÞ ¼ �minð�hpÞ ¼ �minðumax � hpÞ ¼ �minðhÞ ð25Þ

Also, for any k 2 K, we have:

h ¼ umax � hp P wi�gip � hp P 0; i ¼ 1; 2; . . . ;m ð26Þ

h ¼ umax � hp P wr
�hrp � hp P 0; r ¼ 1; 2; . . . ; s ð27Þ

g�i ¼
umax

wi

¼ umaxdix P
wi�gip
wi

¼ �gip ¼ max
k2K

giðkÞ;

i ¼ 1; 2; . . . ;m ð28Þ

h�i ¼
umax

wr

¼ umaxdry P
wi

�hrp
wr

¼ �hrp ¼ max
k2K

hrðkÞ;

r ¼ 1; 2; . . . ; s ð29Þ

The equivalence model between the combined-oriented CCR

model (15) and the minimax formulation of (13) is established,
since (23)–(25) hold. h

From Theorem 3.1 the general combined-oriented CCR
model can be equivalently rewritten as a minimax formulation
of (13) as follows:

min h

s:t: h P wiðg�i � giðkÞÞ; i ¼ 1; 2; . . . ;m

h P wrðh�r � hrðkÞÞ; r ¼ 1; 2; . . . ; s

kj P 0; j ¼ 1; 2; . . . ; n

ð30Þ

In fact, the above theorem shows that the general combined-
oriented CCR model is actually constructed to locate a specific

efficient solution, termed as DEA efficient solution on the
efficient frontier of the following generic MOLP formulation

for the observed DMUp:

max x1p�
Xn
j¼1

kjx1j; . . . ;xmp�
Xn
j¼1

kjxmj;
Xn
j¼1

kjy1j�y1p; . . . ;
Xn
j¼1

kjysj�ysp

" #

s:t: k2K

ð31Þ

The generic MOLP problem (31) defines the production possi-
bility set for the observed DMUp in which there may be more
preferred efficient solutions than the DEA efficient solution.

We note that formulation (30) is equivalent to formulation
(15) if wi (i = 1, 2, . . . , m) and wr (r = 1, 2, . . . , s) are calcu-
lated using (18), g�i ði ¼ 1; 2; . . . ;mÞ in formulation (30) is cal-

culated using g�i ¼ umaxdix and h�r ðr ¼ 1; 2; . . . ; sÞ is calculated
using h�r ¼ umaxdry. Likewise, formulation (31) is equivalent
to formulation (15). So, the efficiency score of DMUp can be
generated by solving formulation (31). Therefore, an interac-

tive MOLP method can be used to solve the DEA problem.
It needs to point out that in the model proposed by Yang

et al. (2009) the MPS obtained with trade off only on output

values of DMUs. But in our proposed model the MPS ob-
tained with trade off on both input and output values of
DMUs.
3.3. Method of Zionts–Wallenius

It is an issue how decision makers decide one from the set of
nondominated solutions as the final solution. Consequently,
interactive MOLP methods have been developed to this end.
In fact, Interactive multiple objective programming methods

constitute techniques that allow the DM to search for different
solutions along the efficient frontier, so that the DM can reach
his most preferred solution (MPS). At each stage, the current

solution is adapted to the structure of preferences of the
DM. It can be said that an interactive method is designed to
drive the DM towards his MPS, in the sense that it is accept-

able by the DM.
In this paper, we use the Zionts–Wallenius’s method to

integrate combined-oriented CCR performance assessment

and target setting such that the DMs preference can be taken
into account in an interactive fashion. This method is applica-
ble to the problem in (31) where the objective functions are
concave and the feasible space is a convex set. The overall util-

ity function is assumed to be unknown explicitly to the DM,
but is implicitly a linear function and more generally a concave
function of the objective functions. The method makes use of

such an implicit function on an interactive basis. The first step
of the method is to choose an arbitrary set of positive multipli-
ers or weights and generate a composite objective function or

utility function using these multipliers. The composite objec-
tive function is then optimized to produce a nondominated
solution to the problem. From the set of nonbasic variables,
a subset of efficient variables is selected (an efficient variable

is one which, when introduced into the basis, cannot increase
one objective without decreasing at least one other objective).
For each efficient variable a set of tradeoffs is defined by which

some objectives are increased and others reduced. A number of
such tradeoffs are presented to the DM, who is requested to
state whether the tradeoffs are desirable, undesirable or nei-

ther. From his/her answers a new set of consistent multipliers
is constructed and the associated nondominated solution is
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found. The process is then repeated, and a new set of tradeoffs

is presented to the DM at the current solution, convergence to
an overall optimal solution with respect to the DM’s implicit
utility function is assured.

4. An example with real world data

We now apply this approach to some commercial bank

branches in Iran. There are 20 branches in this district. Each
branch uses three inputs to produce five outputs. The three in-
puts are namely payable interest, personnel and non-performing

loans, while the five outputs are namely the total sum of four
main deposits, other deposits, loans granted, received interest
and fee. Table 1 shows the kind of these inputs and outputs.

Also the data set for 20 branches of that bank is given in Ta-
ble 2 (taken from Hosseinzadeh Lotfi et al. (2010a)).

The result of the general combined-oriented CCR model is

shown in Table 3. In fact, the general combined-oriented CCR
model is run to find the respective efficiency scores, reference
set of inefficient branches and the proportion to which efficient
branch is used to construct the composite unit for inefficient

branches. As shown in Table 3, branches 1, 4, 6, 7, 8, 9, 10,
11, 17 and 19 are efficient branches and branches 2, 3, 5, 12,
13, 14, 15, 16, 18 and 20 are inefficient branches of the bank.

For example, branch 12 has an efficient score 0.59 implying
that it is operating as an inefficient branch and also its compos-
ite unit on the efficient frontier can be represented as a linear
Table 1 Inputs and outputs.

Inputs Outputs

1 Payable interest The total some of four main deposits

2 Personnel Other deposits

3 Non-performing loans Loans granted

4 Received interest

5 Fee

Table 2 Input-data and output-data for 20 branches of bank.

DMU I1 I2 I3 O1

1 5007.37 36.29 87,243 2,696,995

2 2926.81 18.8 9945 340,377

3 8732.7 25.74 47,575 1,027,546

4 945.93 20.81 19,292 1,145,235

5 8487.07 14.16 3428 390,902

6 13,759.35 19.46 13,929 988,115

7 587.69 27.29 27,827 144,906

8 4646.39 24.52 9070 408,163

9 1554.29 20.47 412,036 335,070

10 17,528.31 14.84 8638 700,842

11 2444.34 20.42 500 641,680

12 7303.27 22.87 16,148 453,170

13 9852.15 18.47 17,163 553,167

14 4540.75 22.83 17,919 309,670

15 3039.58 39.32 51,582 286,149

16 6585.81 25.57 20,975 321,435

17 4209.18 27.59 41,960 618,105

18 1015.52 13.63 18,641 248,125

19 5800.38 27.12 19,500 640,890

20 1445.65 28.96 31,700 119,948
combination of 0.29 of branch 4, 0.22 of branch 6, 0.06 of

branch 8, 0.04 of branch 10 and 0.06 of branch 11. In fact,
the composite unit of branch 12 is given as follows:

(I1, I2, I3) = (4427.9529, 13.6061, 9578.78).

(O1, O2, O3, O4, O5) = (640,527.71, 114,656.46,
496,061.96, 52,111.5666, 511.8362).

This means the first input (payable interest) should be re-
duced to 4427.9529, the second input (personnel) should be re-
duced to 13.6061 and the third input (non-performing loans)

should be reduced from 9945 to 9578.78 for branch 12 to be-
come efficient. Also, the outputs O1, O2, O3, O4 and O5
should be increased to 640,527.71, 114,656.46, 496,061.96,

52,111.5666 and 511.8362, respectively. But, the DM has not
accepted the DEA composite input and output values as the
MPS for branch 12. So, it is needed to search MPS along
the frontier for branch 12 using interactive MOLP method.

The first iteration of the interactive Z–W method gives an unit
as a linear combination of 0.27 of branch 10, 0.49 of branch 11
and 0.32 of branch 17 as follows:

(I1, I2, I3) = (7277.3079, 22.8414, 16,004.46).
(O1, O2, O3, O4, O5) = (701,444.14, 137,991.73,

4,316,364.28, 198,096.0937, 1430.594).

The DM is still not satisfied with the solution obtained by
the first iteration. In iteration 2, the solution is as a linear com-

bination of 0.04 of branch 10 and 0.67 of branch 11 with the
following input and output values:

(I1, I2, I3) = (2338.8402, 14.275, 897.2).
(O1, O2, O3, O4, O5) = (497,597.82,
77,077.73, 1,150,203.67, 38,252.487, 719.7983).

Now, the DM is completely satisfied with the above input
and output values. This means the MPS has been found and

hence the interactive process terminate.
O2 O3 O4 O5

263,643 1,675,519 108,634.76 965.97

95,978 377,309 32,396.65 304.67

37,911 1,233,548 96,842.33 2285.03

229,646 468,520 32,362.8 207.98

4929 129,751 12,662.71 63.32

74,133 507,502 53,591.3 480.16

180,530 288,513 40,507.97 176.58

405,396 1,044,221 56,260.09 4654.71

337,971 1,584,722 176,436.81 560.26

14,378 2,290,745 662,725.21 58.89

114,183 1,579,961 17,527.58 1070.81

27,196 245,726 35,757.83 375.07

21,298 425,886 45,652.24 438.43

20,168 124,188 8143.79 936.62

149,183 787,959 106,798.63 1203.79

66,169 360,880 89,971.47 200.36

244,250 9,136,507 33,036.79 2781.24

3063 26,687 9525.6 240.04

490,508 2,946,797 66,097.16 961.56

14,943 297,674 21,991.53 282.73



Table 3 Efficiency scores and observed DMUs composite unit.

DMU 1 � h 1 4 6 7 8 9 10 11 17 19

1 1 1

2 0.65 0.25 0.14 0.04 0.14

3 0.93 0.32 0.45 0.07 0.02

4 1 1

5 0.85 0.32 0.36

6 1 1

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 0.59 0.29 0.22 0.06 0.04 0.06

13 0.74 0.05 0.07 0.41 0.06 0.06

14 0.54 0.04 0.15 0.06 0.27

15 0.97 1.13 0.22 0.04 0.07

16 0.54 0.27 0.15 0.04 0.17

17 1 1

18 0.56 0.29 0.06 0.01

19 1 1

20 0.57 0.05 0.49 0.05 0.01 0.01 0.02
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Also, the efficiency score of branch 20 is 0.57 implying that
it is operating as an inefficient branch too. The general com-
bined-oriented composite unit for inefficient branch 20 is as
a linear combination of 0.05 of branch 4, 0.49 of branch 7,

0.05 of branch 8, 0.01 of branch 9, 0.01 of branch 10 and
0.02 of branch 17 with the following input and output values:

(I1, I2, I3) = (842.5937, 16.5435, 20099.27).
(O1, O2, O3, O4, O5) = (171,395.06, 128,620.29,
438,493.23, 33,332.4058, 391.475).

This solution does not satisfy DM and then the interactive
Z–W method is used to search MPS. Initially, this method
generates a target unit as ‘‘0.17 branch 4 + 0.04 branch

9 + 0.29 branch 17’’ with I1 = 1443.6429; I2 = 12.3576,
I3 = 31,929.48, O1 = 238,462.65, O2 = 123,391.16, O3 =
279,262.31, O4 = 22,139.8175 and O5 = 864.3266 that DM

does not accept this unit as the MPS for branch 20. The second
iteration gives an unit as ‘‘0.01 branch 4 + 0.48 branch
7 + 0.07 branch 17’’ with the input and output values as

follows:

(I1, I2, I3)=(586.1931, 15.2386, 16433.45).

(O1, O2, O3, O4, O5) = (124,274.58, 106,035.4,
782,726.93, 22,080.0289, 281.525).

Now, DM completely accepted this solution as the MPS for

branch 20 and hence the interactive method terminate.
As we show, the general combined-oriented CCR efficiency

results generated do not consider the value judgments of the

DM. Hence, interactive MOLP methods search the MPS along
the efficient frontier for inefficient branches.
5. Conclusion

In this paper, we obtained an equivalence relation between the

general combined-oriented CCR model and the weighted
minimax MOLP model and showed how a DEA problem
can be solved interactively by transforming it into MOLP for-
mulation. This approach results in a decrease in total input
consumption and a permissible increase in total output pro-

duction instead of only an increase in outputs. Also, in our
model it was not necessary that all of components of output
vectors for all DMUs be positive. The proposed equivalence

model provided the basis to apply interactive methods in
MOLP to solve DEA problems and further locate the MPS
along the efficient frontier for each inefficient DMU. We used

Zionts–Wallenius method to reflecting the DM preferences in
the process of assessing efficiency. An application example
illustrated how the equivalence model and the interactive pro-
cedure can be implemented to support integrated efficiency

analysis and target setting. We emphasize that for the sake
of illustrating the performance of the our approach, it has been
developed using the Z–W method, but there is no restriction at

all to use any interactive MOLP method. In fact, comparisons
of the results among the several interactive MOLP methods
can be made on which method best may fit the data set and

the DM’s preferences. This will be an interesting research work
in the future.
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