
Journal of Combinatorial Theory, Series A 119 (2012) 1692–1710

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

Proofs of two conjectures of Kenyon and Wilson on Dyck
tilings

Jang Soo Kim

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 September 2011
Available online 7 June 2012

Keywords:
Dyck paths
Dyck tilings
Hermite histories
Matchings
Hermite polynomials

Recently, Kenyon and Wilson introduced a certain matrix M in
order to compute pairing probabilities of what they call the
double-dimer model. They showed that the absolute value of each
entry of the inverse matrix M−1 is equal to the number of certain
Dyck tilings of a skew shape. They conjectured two formulas on the
sum of the absolute values of the entries in a row or a column of
M−1. In this paper we prove the two conjectures. As a consequence
we obtain that the sum of the absolute values of all entries of
M−1 is equal to the number of complete matchings. We also find
a bijection between Dyck tilings and complete matchings.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A Dyck path of length 2n is a lattice path from (0,0) to (n,n) consisting of up steps (0,1) and
down steps (1,0) that never goes below the line y = x. The set of Dyck paths of length 2n is denoted
Dyck(2n). In this paper we will sometimes identify a Dyck path λ with a partition as shown in Fig. 1.
For λ,μ ∈ Dyck(2n), if μ is above λ, then the skew shape λ/μ is well defined.

For two Dyck paths λ and μ, we define λ � μ if λ can be obtained from μ by choosing some
matching pairs of up steps and down steps and exchanging the chosen up steps and down steps, see
Fig. 2. In order to compute pairing probabilities of so-called the double-dimer model, Kenyon and
Wilson [9,10] introduced a matrix M defined as follows. The rows and columns of M are indexed
by λ,μ ∈ Dyck(2n), and Mλ,μ = 1 if λ � μ, and Mλ,μ = 0 otherwise.

A ribbon is a connected skew shape which does not contain a 2 × 2 box. A Dyck tile is a ribbon
such that the centers of the cells form a Dyck path. The length of a Dyck tile is the length of the Dyck
path obtained by joining the centers of the cells, see Fig. 3.
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Fig. 1. A Dyck path identified with the partition (4,2,2,1).

Fig. 2. An example of the order � on Dyck paths.

Fig. 3. A Dyck tile of length 6.

For λ,μ ∈ Dyck(2n), a (cover-inclusive) Dyck tiling of λ/μ is a tiling with Dyck tiles such that for
two Dyck tiles T1 and T2, if T1 has a cell to the southeast of a cell of T2, then a southeast translation
of T2 is contained in T1. We denote by D(λ/μ) the set of Dyck tilings of λ/μ. For T ∈ D(λ/μ), we
denote by |T | the number of tiles in T . Note that D(λ/λ) has only one tiling, the empty tiling ∅ with
|∅| = 0.

Kenyon and Wilson [10, Theorem 1.5] showed that the inverse matrix M−1 of M can be expressed
using Dyck tilings:

M−1
λ,μ = (−1)|λ/μ| × ∣∣D(λ/μ)

∣∣,
where |λ/μ| denotes the number of cells in λ/μ.

In this paper we prove two conjectures of Kenyon and Wilson on q-analogs of the sum of the
absolute values of the entries in a row or a column of M−1. In order to state the conjectures we need
the following notions.

A chord of a Dyck path λ is a matching pair of an up step and a down step. We denote by Chord(λ)

the set of chords of λ. For c ∈ Chord(λ), the length |c| of c is defined to be the difference between the
x-coordinates of the starting point of the up step and the ending point of the down step. The height
ht(c) of c is defined to be i if c is between the lines y = x + i − 1 and y = x + i. See Fig. 4 for an
example.

We use the standard notations for q-integers:

[n]q = 1 + q + · · · + qn−1, [n]q! = [1]q[2]q · · · [n]q.

Also, we denote [n] = {1,2, . . . ,n}, which should not be confused with the q-integers.
We now state the main theorems.

Theorem 1.1. (See [10, Conjecture 1].) Given a Dyck path λ ∈ Dyck(2n), we have

∑
μ∈Dyck(2n)

∑
T ∈D(λ/μ)

q(|λ/μ|+|T |)/2 = [n]q!∏
c∈Chord(λ)[|c|]q

.
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Fig. 4. The lengths (left) and the heights (right) of the chords of a Dyck path.

Theorem 1.2. (See [10, Conjecture 2].) Given a Dyck path μ ∈ Dyck(2n), we have∑
λ∈Dyck(2n)

∑
T ∈D(λ/μ)

q|T | =
∏

c∈Chord(μ)

[
ht(c)

]
q.

Our proof of Theorem 1.2 is simpler than the proof of Theorem 1.1. So we will first present the
proof of Theorem 1.2.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.2. In Section 3
we introduce truncated Dyck tilings, which are very similar to Dyck tilings, and some properties
of them. We then state a generalization of Theorem 1.1. In Section 4 we prove the generalization
of Theorem 1.1. In Section 5 we give another proof of an important identity used in the proof of the
generalization of Theorem 1.1. In Section 6 we construct a bijection between Dyck tilings and complete
matchings, and discuss some applications of the bijection. In Section 7 we give final remarks.

2. Proof of Theorem 1.2

We denote by δn−1 the staircase partition (n − 1,n − 2, . . . ,1). Note that if μ ∈ Dyck(2n), we have
μ ⊆ δn−1.

We will prove Theorem 1.2 by induction on the number m(μ) of cells in |δn−1/μ|, where n is the
half-length of μ. If m(μ) = 0, then μ = δn−1 and the theorem is clear. Assume m � 1 and the theorem
is true for all ν with m(ν) < m. Now suppose μ ∈ Dyck(2n) with m(μ) = m. Since |δn−1/μ| = m � 1,
we can pick a cell s ∈ δn−1/μ such that μ ∪ s is also a partition. Let h be the height of the chord of
μ contained in s. Consider a tiling T ∈D(λ/μ) for some λ ∈ Dyck(2n). Then there are two cases.

Case 1: s by itself is a tile in T . Let μ′ = μ ∪ {s}. Then T ′ = T \ {s} is a tiling in D(λ/μ′). Thus the
sum of q|T | for all such choices of λ and T equals∑

λ∈Dyck(2n)

∑
T ′∈D(λ/μ′)

q|T ′|+1.

By the induction hypothesis, the above sum is equal to

q
∏

c∈Chord(μ′)

[
ht(c)

]
q = q[h − 1]q

[h]q

∏
c∈Chord(μ)

[
ht(c)

]
q, (1)

where we use the fact that μ′ has one more chord of height h − 1 and one less chord of height h
than μ, see Fig. 5.

Case 2: Otherwise we have either s /∈ λ/μ or s is covered by a Dyck tile of length greater than 0.
Then we collapse the slice containing s, in other words, remove the region in λ/μ bounded by the
two lines with slope −1 passing through the northeast corner and the southwest corner of s and
attach the two remaining regions, see Fig. 6. Let λ′ , μ′ , and T ′ be the resulting objects obtained
from λ, μ, and T in this way. Since the collapsed slice is completely covered by Dyck tiles of length
greater than 0, the original objects λ, μ, and T can be obtained from λ′ , μ′ , and T ′ . We also have
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Fig. 5. μ ∪ {s} has one more chord of height h − 1 and one less chord of height h than μ.

Fig. 6. Collapsing the slice containing s.

|T | = |T ′|. Thus, by the induction hypothesis, the sum of q|T | for all possible choices of λ and T is
equal to

∑
λ′∈Dyck(2n)

∑
T ′∈D(λ′/μ′)

q|T ′| =
∏

c∈Chord(μ′)

[
ht(c)

]
q = 1

[h]q

∏
c∈Chord(μ)

[
ht(c)

]
q. (2)

Summing (1) and (2), the theorem is also true for μ. By induction, the theorem is proved.
We note that the proof in this section was also discovered independently by Matjaž Konvalinka

(personal communication with Matjaž Konvalinka).
It is not difficult to construct a bijection between Dyck tilings and Hermite histories (see Section 6

for the definition) by the same recursive manner as in the proof in this section. In fact, the bijection
obtained in this way has a non-recursive description, which we will present in Section 6.

3. Truncated Dyck tilings

In this section we state a generalization of Theorem 1.1. We first need to reformulate Theorem 1.1.
For a Dyck tiling T we define ‖T ‖ to be the sum of the half-lengths of all Dyck tiles in T .

Lemma 3.1. For T ∈D(λ/μ), we have

q(|λ/μ|+|T |)/2 = q|λ/μ|−‖T ‖.

Proof. Let η be a Dyck tile in T . We will compute the contribution of η as a factor in both sides of
the equation. Suppose η is of length 2k. Then |η| = 2k + 1, and the contribution of η in the left-hand
side (respectively right-hand side) is q((2k+1)+1)/2 = qk+1 (respectively q(2k+1)−k = qk+1). Since each
tile contributes the same factor in both sides we get the equation. �
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Fig. 7. The ∗ operation on two Dyck paths.

Fig. 8. A Dyck tile and the corresponding truncated Dyck tile.

By Lemma 3.1, we can rewrite Theorem 1.1 as follows.

Theorem 3.2. Given a Dyck path λ ∈ Dyck(2n), we have

∑
μ∈Dyck(2n)

∑
T ∈D(λ/μ)

q|λ/μ|−‖T ‖ = [n]q!∏
c∈Chord(λ)[|c|]q

.

For two Dyck paths λ and μ (not necessarily of the same length) we define λ ∗ μ to be the Dyck
path obtained from λ by attaching μ at the end of λ, see Fig. 7. For a nonnegative integer k, we
denote by �k the Dyck path of length 2k consisting of k consecutive up steps and k consecutive
down steps. For nonnegative integers k1, . . . ,kr , we define

�k1,...,kr = �k1 ∗ · · · ∗ �kr .

For an object X , which may be a point, a lattice path, or a tile, we denote by X + (i, j) the
translation of X by (i, j). So far, we have only considered λ/μ for two Dyck paths λ and μ starting
and ending at the same points. We extend this definition as follows.

Suppose λ is a Dyck path from O = (0,0) to N = (n,n) and μ is a lattice path from P = O +(−a,a)

to Q = N + (−b,b) for some nonnegative integers a and b such that μ never goes below λ. Then we
define λ/μ to be the region bounded by λ, μ, and the segments O P and N Q . We denote by |λ/μ|
the area of the region λ/μ. Note that this notation is consistent with the number |λ/μ| of cells of
λ/μ when λ/μ is a skew shape. Given λ, a, and b, we denote by L(λ;a,b) the set of all lattice paths
from P to Q which never go below λ.

Definition 1. A truncated Dyck tile is a tile obtained from a Dyck tile of positive length by cutting off
the northeast half-cell and the southwest half-cell as shown in Fig. 8. A (cover-inclusive) truncated
Dyck tiling of a region λ/μ is a tiling T of a sub-region of λ/μ with truncated Dyck tiles satisfying
the following conditions:

• For each tile η ∈ T , if (η + (1,−1)) ∩ λ/μ �= ∅, then there is another tile η′ ∈ T containing (η +
(1,−1)).

• There are no two tiles sharing a border with slope −1.

Let T D(λ/μ) denote the set of truncated Dyck tilings of λ/μ.

If μ ∈ L(λ;0,0), there is a natural bijection between D(λ/μ) and T D(λ/μ) as follows. For every
tile in T ∈ D(λ/μ), remove the northeast half-cell and the southwest half-cell as shown in Fig. 9.
Note that the Dyck tiles of length 0 simply disappear.
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Fig. 9. A Dyck tiling and the corresponding truncated Dyck tiling.

Let

Bq(λ;a,b) =
∑

μ∈L(λ;a,b)

∑
T ∈T D(λ/μ)

q|λ/μ|−‖T ‖.

Note that Bq(λ;a,b) is not necessarily a polynomial in q, but a polynomial in q1/2. In fact Bq(λ;a,b)

is a polynomial in q if and only if a ≡ b mod 2.
We now state a generalization of Theorem 3.2, or equivalently, Theorem 1.1.

Theorem 3.3. For λ ∈ Dyck(2n), nonnegative integers a and b, we have

Bq(λ;a,b) = [n]q!∏
c∈Chord(λ)[|c|]q

Bq(�n;a,b).

Note that if a = b = 0 in Theorem 3.3, we obtain Theorem 3.2. Although it is not necessary for our
purpose, it is possible to find a formula for Bq(�n;a,b), see (15).

We will prove Theorem 3.3 in the next section. For the rest of this section we prove several
lemmas which are needed in the next section.

Lemma 3.4. For T ∈ T D(λ/μ), every tile in T lies between λ+ (−i + 1, i − 1) and λ+ (−i, i) for some i � 0.

Proof. This lemma easily follows from the definition of truncated Dyck tilings. �
Lemma 3.5. Given Dyck paths λ1 , λ2 , λ = λ1 ∗ λ2 , and lattice paths μ1 ∈ L(λ1;a, i), μ2 ∈ L(λ2; i,b), and
μ = μ1 ∗ μ2 , there is a bijection

φ :T D(λ/μ) → T D(λ1/μ1) × T D(λ2/μ2)

such that if φ(T ) = (T1, T2), then ‖T ‖ = ‖T1‖ + ‖T2‖.

Proof. We can find such a bijection φ naturally as follows. Suppose λ1 ∈ Dyck(2n1) and λ2 ∈
Dyck(2n2). Let O = (0,0), N = (n1 + n2,n1 + n2), A = O + (−a,a), B = N + (−b,b), P = (n1,n1),
Q = P + (−i, i). For T ∈ T D(λ/μ), define φ(T ) = (T1, T2) where T1 and T2 are the tilings of λ1/μ1
and λ2/μ2 obtained from T by cutting the tiles of T with the segment P Q , see Fig. 10. We need
to show that T1 and T2 are truncated Dyck tilings of λ1/μ1 and λ2/μ2. Since the two conditions in
Definition 1 are obvious, it is enough to show that each tile is a truncated Dyck tile.

Suppose η ∈ T . If η is not divided by the segment P Q , it is a truncated Dyck tile in T1 or T2.
Otherwise, η is divided into two tiles η1 ∈ T1 and η2 ∈ T2. Let s1 and s2 be the southwest cell and
the northeast cell of η respectively, and s the cell where η is divided by the segment P Q , see Fig. 11.
In order to prove that η1 and η2 are truncated Dyck tiles, it suffices to show that ht(s) = ht(s1),
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Fig. 10. The definition of the map φ.

Fig. 11. The truncated Dyck tile η and the cells s, s1, s2.

where ht(s) is the distance between s and the line y = x. Since η is a truncated Dyck tile, we have
ht(s) � ht(s1). On the other hand, by Lemma 3.4, η lies between λ + (−i + 1, i − 1) and λ + (−i, i)
for some i � 0. Since λ touches the line y = x at P , the cell s has the minimal height among all cells
between λ + (−i + 1, i − 1) and λ + (−i, i). Thus ht(s)� ht(s1), and we get ht(s) = ht(s1). This proves
that (T1, T2) ∈ T D(λ1/μ1) × T D(λ2/μ2). Conversely, for such a pair (T1, T2) we can construct T by
taking the union of T1 and T2 and attaching each two tiles if they share a border on the segment
P Q . Thus φ is a bijection. If φ(T ) = (T1, T2), we clearly have ‖T ‖ = ‖T1‖ + ‖T2‖. �

Using Lemma 3.5 one can easily obtain the following lemma.

Lemma 3.6. We have

Bq(λ1 ∗ λ2;a,b) =
∑
i�0

Bq(λ1;a, i)Bq(λ2; i,b).

We use the standard notations for q-binomial coefficients:[
n
k

]
q
= [n]q!

[k]q![n − k]q! ,
[

n1 + · · · + nk
n1, . . . ,nk

]
q
= [n1 + · · · + nk]q!

[n1]q! · · · [nk]q! .
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Fig. 12. A truncated Dyck tiling of �n/μ corresponding to the partition (5,4,2,0). Here an additional grid is drawn to visualize
the partition.

Lemma 3.7. Let μ be a lattice path in L(�n;a,b) passing through P + (−t, t) for some integer t � 0, where
P = (0,n), the peak of �n. Then

∑
T ∈T D(�n/μ)

q‖T ‖ =
[

n + t
n

]
q
.

Proof. Let T ∈ T D(�n/μ). By Lemma 3.4, every tile η in T lies between �n + (−i + 1, i − 1) and
�n + (−i, i) for some i ∈ [t]. Moreover, η is the unique tile between �n + (−i + 1, i − 1) and �n +
(−i, i) because �n has only one peak.

For i ∈ [t], let hi be the half-length of the tile in T between �n + (−i + 1, i − 1) and �n + (−i, i).
If there is no such tile, we define hi = 0. Then ν = (h1, . . . ,ht) is a partition contained in a t × n
box, and ‖T ‖ = |ν|, see Fig. 12. This gives a bijection between T D(�n/μ) and the set of partitions
contained in a t × n box. It is well known that the sum of q|ν| for such partitions ν is equal to the
right-hand side, see [17, Proposition 1.7.3]. �
4. Proof of Theorem 3.3

In this section we prove Theorem 3.3 in three steps. In the first step we prove the theorem in the
case λ = �n1,...,nk and a = b = 0. In the second step we prove theorem in the case λ = �n1,...,nk , and a
and b are arbitrary. In the third step we prove the theorem without restrictions.

4.1. Step 1: λ = �n1,...,nk and a = b = 0

In this subsection we prove Theorem 3.3 for λ = �n1,...,nk ∈ Dyck(2n) and a = b = 0. In other words,
we show that

Bq(�n1,...,nk ;0,0) =
[

n
n1, . . . ,nk

]
q
. (3)

Throughout this subsection λ denotes �n1,...,nk and for i ∈ [k], Pi denotes the peak of the ith
sub-Dyck path �ni , i.e.

Pi = (n1 + · · · + ni−1,n1 + · · · + ni).

Consider a lattice path μ ∈ L(λ;0,0). For each i ∈ [k], we can find the intersection Q i of μ and
the line with slope −1 passing through Pi . Then we have Q i = Pi + (−ti, ti) for some integer ti � 0.
Note that t1 = tk = 0. We define L′(λ; t1, . . . , tk) to be the set of such lattice paths μ. Then,

Bq(λ;0,0) =
∑

t1,...,tk�0
t =t =0

∑
μ∈L′(λ;t1,...,tk)

q|λ/μ| ∑
T ∈T D(λ/μ)

q−‖T ‖. (4)
1 k
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Fig. 13. Dividing μ into k sub-paths for k = 4.

Suppose μ ∈ L′(λ; t1, . . . , tk). For i ∈ [k − 1], let �i be the line with slope −1 passing through
(n1 + · · ·+ni,n1 + · · ·+ni), the ending point of �ni . Let μ1, . . . ,μk be the paths obtained by dividing
μ using the lines �1, . . . , �k−1, see Fig. 13. By Lemma 3.5, we have

∑
T ∈T D(λ/μ)

q−‖T ‖ =
k∏

i=1

∑
T ∈T D(�ni /μi)

q−‖T ‖.

Since μi passes through Q i = Pi + (−ti, ti), by Lemma 3.7, we have

∑
T ∈T D(�ni /μi)

q−‖T ‖ =
[

ni + ti
ni

]
q−1

.

Thus (4) can be written as

Bq(λ;0,0) =
∑

t1,...,tk
t1=tk=0

k∏
i=1

[
ni + ti

ni

]
q−1

∑
μ∈L′(λ;t1,...,tk)

q|λ/μ|. (5)

The latter sum in (5) can be computed as follows.

Lemma 4.1. Suppose t1 = tk = 0. Then

∑
μ∈L′(λ;t1,...,tk)

q|λ/μ| =
k−1∏
i=1

qniti+ni+1ti+1+ 1
2 (ti−ti+1)2

[
ni + ni+1

ni + ti − ti+1

]
q
.

Proof. Let μ ∈ L′(λ; t1, . . . , tk). Then μ passes through the points Q i = Pi + (−ti, ti) for i = 1,2, . . . ,k.
For i = 1,2, . . . ,k − 1, we define νi to be the sub-path of μ from Q i to Q i+1, and Ri to be the
region bounded by νi , Pi Q i , Pi+1 Q i+1 and λ. Since t1 = tk = 0, |λ/μ| is the sum of the areas of
R1, . . . , Rk−1. We can divide the region Ri as shown in Fig. 14. In such a division, the area of region 1
(respectively region 2) is niti (respectively ni+1ti+1). Since region 3 is an isosceles right triangle such
that the length of the hypotenuse is

√
2|ti − ti+1|, the area of region 3 is equal to 1

2 (t1 − ti+1)
2. If

we add q raised to the area of region 4 for all possible lattice paths νi from Q i to Q i+1, we get[ ni+ni+1
n +t −t

]
. Summing these results we obtain the lemma. �
i i i+1 q
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Fig. 14. Dividing the region Ri into four regions.

Since t1 = tk = 0 and qniti
[ ni+ti

ni

]
q−1 = [ ni+ti

ni

]
q , by (5) and Lemma 4.1, we have

Bq(λ;0,0) =
∑

t1,...,tk�0
t1=tk=0

k−1∏
i=1

qni+1ti+1+ 1
2 (ti−ti+1)2

[
ni + ti

ni

]
q

[
ni + ni+1

ni + ti − ti+1

]
q

=
∑

t1,...,tk�0
t1=tk=0

k−1∏
i=1

qti+1(ni+1+ti+1−ti)

[
ni + ti

ni

]
q

[
ni + ni+1

ni + ti − ti+1

]
q
,

where the following equality is used:

k−1∑
i=1

1

2
(ti − ti+1)

2 =
k−1∑
i=1

(
t2

i+1 − titi+1
)
.

Now (3) follows from the lemma below.

Lemma 4.2. For integers k � 1, and n1, . . . ,nk � 0, we have

∑
t1,...,tk�0
t1=tk=0

k−1∏
i=1

qti+1(ni+1−ti+ti+1)

[
ni + ti

ni

]
q

[
ni + ni+1

ni + ti − ti+1

]
q
=

[
n1 + · · · + nk

n1, . . . ,nk

]
q
. (6)

Proof. This can be done in a straightforward manner by induction on k using the q-Chu–
Vandermonde identity (see [17, p. 190, Solution to Exercise 100 in Chapter 1]):

∑
i�0

qi(m−k+i)
[

m
k − i

]
q

[
n
i

]
q
=

[
m + n

k

]
q
. �

4.2. Step 2: λ = �n1,...,nk and a,b are arbitrary

In this subsection we prove Theorem 3.3 when λ = �n1,...,nk ∈ Dyck(2n), and a and b are arbitrary.
In other words, we show that
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Bq(�n1,...,nk ;a,b) =
[

n
n1, . . . ,nk

]
q

Bq(�n;a,b). (7)

We will prove (7) by induction on (a,b). We have showed this when (a,b) = (0,0) in Step 1. Let
(a,b) �= (0,0) and suppose (7) is true for all pairs (a′,b′) �= (a,b) with a′ � a and b′ � b. By symmetry
we can assume a �= 0.

Consider the two Dyck paths �a,n1,...,nk and �a,n . By the induction hypothesis, we have

Bq(�a,n1,...,nk ;0,b) =
[

a + n
a,n1, . . . ,nk

]
q

Bq(�a+n;0,b),

Bq(�a,n;0,b) =
[

a + n
n

]
q

Bq(�a+n;0,b).

Combining the above two equations we get

Bq(�a,n1,...,nk ;0,b) =
[

n
n1, . . . ,nk

]
q

Bq(�a,n;0,b). (8)

Lemma 4.3. We have

Bq(�a ∗ λ;0,b) =
a∑

i=0

qi2/2
[

a
i

]
q

Bq(λ; i,b).

Proof. By Lemma 3.6, we have

Bq(�a ∗ λ;0,b) =
∑
i�0

Bq(�a;0, i)Bq(λ; i,b).

Since Bq(�a;0, i) = qi2/2
[ a

i

]
q , we are done. �

By Lemma 4.3 we have

Bq(�a,n1,...,nk ;0,b) =
a∑

i=0

qi2/2
[

a
i

]
q

Bq(�n1,...,nk ; i,b), (9)

Bq(�a,n;0,b) =
a∑

i=0

qi2/2
[

a
i

]
q

Bq(�n; i,b). (10)

By (8), (9), and (10) we get

a∑
i=0

qi2/2
[

a
i

]
q

Bq(�n1,...,nk ; i,b) =
[

n
n1, . . . ,nk

]
q

a∑
i=0

qi2/2
[

a
i

]
q

Bq(�n; i,b). (11)

By the induction hypothesis, for all i < a, we have

Bq(�n1,...,nk ; i,b) =
[

n
n1, . . . ,nk

]
q

Bq(�n; i,b).

Thus the summands in both sides of (11) equal for all i < a, forcing the summands for i = a to be
equal as well. This implies that

qa2/2 Bq(�n1,...,nk ;a,b) =
[

n
n1, . . . ,nk

]
q
qa2/2 Bq(�n; i,b).

Thus we have that (7) is also true for (a,b), and by induction, we are done.
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Fig. 15. The tiling T ′ is a truncated Dyck tiling of the region λ′/μ− whose boundary is drawn with thick lines.

In particular, if k = 2, we have the following.

Proposition 4.4. We have

Bq(�n1 ∗ �n2;a,b) =
[

n1 + n2
n1

]
q

Bq(�n1+n2;a,b).

4.3. Step 3: Without restrictions

In this subsection we prove Theorem 3.3 without restrictions. To do this we need another lemma.
For a lattice path ν , we define ν− to be the lattice path obtained from ν by deleting the first step
and the last step.

Lemma 4.5. If λ ∈ Dyck(2n) cannot be expressed as λ1 ∗ λ2 , we have

Bq(λ;a,b) =
∑
i�0

∑
0�r,s�1

q(n−2)i+a+b−(r+s)/2 Bq
(
λ−;a − i − r,b − i − s

)
.

Proof. Let μ ∈ L(λ;a,b), T ∈ T D(λ/μ), and O = (0,0), N = (n,n), A = O + (−a,a), B = N + (−b,b).
Suppose T has exactly i tiles of length 2n. Since λ cannot be expressed as λ1 ∗ λ2, we have

λ− ∈ Dyck(2n − 2). Let λ′ = λ− + (−i, i). We denote the starting point and the ending point of λ′ (re-
spectively μ−) by O ′ and N ′ (respectively A′ and B ′), see Fig. 15. Then A′ = O ′ + (−a + i + r,a − i − r)
and B ′ = N ′ + (−b − i + s,b + i − s) for some r, s ∈ {0,1} depending on μ. Note that μ− ∈
L(λ′;a − i − r,b − i − s). Let T ′ be the set of tiles in T except the i tiles of length 2n. Then we
can consider T ′ as a tiling in T D(λ′/μ−), or by translating it by (i,−i), a tiling in T D(λ−/μ′),
where μ′ = μ− + (i,−i) ∈ L(λ−;a − i − r,b − i − s). Note that T is determined by i and T ′ . It is easy
to check that

|λ/μ| = ∣∣λ−/μ′∣∣ + 2(n − 1)i + a + b − (r + s)/2, ‖T ‖ = ∥∥T ′∥∥ + ni.

Thus,

Bq(λ;a,b) =
∑

μ∈L(λ;a,b)

∑
T ∈T D(λ/μ)

q|λ/μ|−‖T ‖

=
∑
i�0

∑
0�r,s�1

∑
μ′∈L(λ−;a−i−r,b−i−s)

∑
T ′∈T D(λ−/μ′)

q|λ−/μ′|−‖T ′‖+(n−2)i+a+b−(r+s)/2

=
∑
i�0

∑
0�r,s�1

q(n−2)i+a+b−(r+s)/2 Bq
(
λ−;a − i − r,b − i − s

)
. �
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We now prove Theorem 3.3 by induction on n. If n = 0, it is clear. Suppose n > 0 and the theorem
is true for all integers less than n.

Case 1: λ can be written as λ1 ∗λ2. Suppose λ1 ∈ Dyck(2n1) and λ2 ∈ Dyck(2n2). Then n = n1 +n2.
By Lemma 3.6, we have

Bq(λ;a,b) =
∑
i�0

Bq(λ1;a, i)Bq(λ2; i,b). (12)

Since both n1 and n2 are smaller than n, by the induction hypothesis, we have

Bq(λ1;a, i) = [n1]q!∏
c∈Chord(λ1)[|c|]q

Bq(�n1;a, i), (13)

Bq(λ2; i,b) = [n2]q!∏
c∈Chord(λ2)[|c|]q

Bq(�n2; i,b). (14)

By (12), (13), (14), and the fact that Chord(λ) = Chord(λ1) � Chord(λ2), we have

Bq(λ;a,b) = [n1]q![n2]q!∏
c∈Chord(λ)[|c|]q

∑
i�0

Bq(�n1;a, i)Bq(�n2; i,b)

= [n1]q![n2]q!∏
c∈Chord(λ)[|c|]q

Bq(�n1,n2;a,b) (by Lemma 3.6)

= [n1]q![n2]q!∏
c∈Chord(λ)[|c|]q

[
n1 + n2

n1

]
q

Bq(�n;a,b) (by Proposition 4.4)

= [n]q!∏
c∈Chord(λ)[|c|]q

Bq(�n;a,b).

Case 2: λ cannot be expressed as λ1 ∗ λ2. Then λ− ∈ Dyck(2n − 2) and

{|c|: c ∈ Chord(λ)
} = {|c|: c ∈ Chord

(
λ−)} ∪ {n}.

Thus Bq(λ;a,b) is equal to

∑
i�0

∑
0�r,s�1

q(n−2)i+a+b−(r+s)/2 Bq
(
λ−;a − i − r,b − i − s

)
(by Lemma 4.5)

= [n − 1]q!∏
c∈Chord(λ−)[|c|]q

∑
i�0

∑
0�r,s�1

q(n−2)i+a+b−(r+s)/2 Bq(�n−1;a − i − r,b − i − s)

(by ind. hyp.)

= [n]q!∏
c∈Chord(λ)[|c|]q

Bq(�n;a,b) (by Lemma 4.5).

Since Theorem 3.3 is true for n in both cases, by induction we are done.

5. Another proof of Proposition 4.4

The reader may notice that in the proof of Theorem 3.3 all we need in Steps 1 and 2 is Proposi-
tion 4.4. In this section we give another proof of Proposition 4.4 using hypergeometric series.

Suppose μ ∈ L(�n1,n2 ;a,b). Let P1 and P2 be the peaks of �n1 and �n2 . Then there are unique
i � 0 and j � 0 such that μ passes through Q 1 = P1 + (−i, i) and Q 2 = P2 + (− j, j). Let μ1, μ2, μ3
be the paths obtained from μ by dividing it at Q 1 and Q 2. We can divide the region �n1,n2/μ as
shown in Fig. 16. Then
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Fig. 16. Dividing the region into 10 regions.

area(1) = area(2) = n1i, area(3) = area(4) = n2 j,

area(5) = 1

2
(a − i)2, area(6) = 1

2
(i − j)2, area(7) = 1

2
(b − j)2.

Once i and j are fixed, the sums of area(8), area(9), and area(10) for all possible μ1, μ2, and μ3 are
respectively

[ n1
a−i

]
q ,

[ n1+n2
n1+i− j

]
q , and

[ n2
b− j

]
q . Let ν1 and ν2 be the lattice paths obtained by dividing μ

with the line of slope −1 passing through (n1,n1). Then μ = ν1 ∗ν2. By Lemmas 3.5 and 3.7, we have
∑

T ∈T D(�n1,n2 /μ)

q−‖T ‖ =
∑

T ∈T D(�n1 /ν1)

q−‖T ‖ ∑
T ∈T D(�n2 /ν2)

q−‖T ‖

=
[

n1 + i
n1

]
q−1

[
n2 + j

n2

]
q−1

= q−n1i−n2 j
[

n1 + i
n1

]
q

[
n2 + j

n2

]
q
.

Thus Bq(�n1,n2 ;a,b) is equal to

∑
i, j�0

qn1 i+n2 j+ 1
2 (a−i)2+ 1

2 (i− j)2+ 1
2 (b− j)2

[
n1

a − i

]
q

[
n1 + n2

n1 + i − j

]
q

[
n2

b − j

]
q

[
n1 + i

n1

]
q

[
n2 + j

n2

]
q

=
∑

i, j�0

q
a2+b2

2 +(n1−a)i+(n2−b) j−i j+i2+ j2

×
[

n1
a − i

]
q

[
n1 + n2

n1 + i − j

]
q

[
n2

b − j

]
q

[
n1 + i

n1

]
q

[
n2 + j

n2

]
q
.

Similarly, one can check that

Bq(�n;a,b) =
∑
i�0

q
a2+b2

2 +(n−a−b)i+i2
[

n + i
i

]
q

[
n

a − i

]
q

[
n

b − i

]
q
. (15)

Therefore, to prove Proposition 4.4 it remains to show the following proposition.

Proposition 5.1. For nonnegative integers n1,n2,a,b, and n = n1 + n2 , we have
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∑
i, j�0

q(n1−a)i+(n2−b) j−i j+i2+ j2
[

n1
a − i

]
q

[
n2

b − j

]
q

[
n1 + n2

n1 + i − j

]
q

[
n1 + i

n1

]
q

[
n2 + j

n2

]
q

=
[

n
n1

]
q

∑
i�0

q(n−a−b)i+i2
[

n + i
i

]
q

[
n

a − i

]
q

[
n

b − i

]
q
.

Proof. We will follow the standard notation in hypergeometric series, see [4]. It is straightforward to
check that the identity in this proposition is the (a,b, x, y) �→ (q−a,q−b,qn1 ,qn2 ) specialization of

∑
i, j�0

(−x)i(−y) jq(i+1
2 )+( j+1

2 )−i j (a, xq;q)i(b, yq;q) j

(q,axq;q)i(q,byq;q) j(xq;q)i− j(yq;q) j−i

= (xq, yq,axyq,bxyq;q)∞
(xyq, xyq,axq,byq;q)∞

3φ2

[
a,b, xyq

axyq,bxyq
;q, xyq

]
. (16)

We now prove (16) as follows. Observe that the left-hand side of (16) can be written as

∑
i�0

(xyq)i(a,1/y;q)i

(q,axq;q)i
3φ2

[
b, yq,q−i/x
byq, yq1−i ;q, xyq

]

= (yq,bxyq;q)∞
(xyq,byq;q)∞

∑
i�0

(xyq)i(a,1/y;q)i

(q,axq;q)i
3φ2

[
b, xyq,q−i

bxyq, yq1−i ;q, yq

]

= (yq,bxyq;q)∞
(xyq,byq;q)∞

∑
i�0

(xyq)i(a,1/y;q)i

(q,axq;q)i

∑
j�0

(b, xyq,q−i;q) j

(q,bxyq, yq1−i;q) j
(yq) j,

where we use [4, Eq. (III.9)] with (a,b, c,d, e) �→ (b, yq,q−i/x, yq1−i,byq). By replacing i with i + j
and interchanging the sums, we obtain that the above equals

(yq,bxyq;q)∞
(xyq,byq;q)∞

∑
j�0

(xyq) j(a,b, xyq;q) j

(q,axq,bxyq;q) j
2φ1

[
aq j,1/y
axq j+1 ;q, xyq

]
.

The q-Gauss sum [4, Eq. (II.8)] completes the proof of (16). �
6. A bijection from Dyck tilings to matchings

In this section we find a bijection sending Dyck tilings to Hermite histories, which are in simple
bijection with complete matchings. We start by defining these objects.

A (complete) matching on [2n] is a set of pairs (i, j) of integers in [2n] with i < j such that each in-
teger in [2n] appears exactly once. We denote by M(2n) the set of matchings on [2n]. It is convenient
to represent π ∈ M(2n) by the diagram obtained by joining i and j with an arc for each (i, j) ∈ π
as shown in Fig. 17. We define the shape of π to be the Dyck path such that the ith step is an up
step if (i, j) ∈ π for some j, and a down step otherwise, see Fig. 17. For a Dyck path μ, the set of
matchings with shape μ is denoted by M(μ). A crossing (respectively nesting) of π ∈M(2n) is a set
of two pairs (i, j) and (i′, j′) in π such that i < i′ < j < j′ (respectively i < i′ < j′ < j). The number
of crossings (respectively nestings) of π is denoted by cr(π) (respectively ne(π)). For example, if π
is the matching in Fig. 17, we have cr(π) = 2 and ne(π) = 1.

A Hermite history of length 2n is a pair (μ, H) of a Dyck path μ ∈ Dyck(2n) and a labeling H of
the down steps of μ such that the label of a down step of height h is an integer in {0,1, . . . ,h − 1}.
We denote by H(2n) the set of Hermite histories of length 2n, and by H(μ) the set of Hermite
histories with Dyck path μ. There is a well-known bijection ζ :M(2n) → H(2n), see [20] or [7]. For
π ∈M(2n), the corresponding Hermite history ζ(π) = (μ, H) is defined as follows. The Dyck path μ
is the shape of π . For a down step D of μ, if it is the jth step, there is a pair (i, j) ∈ π . Then the



J.S. Kim / Journal of Combinatorial Theory, Series A 119 (2012) 1692–1710 1707
Fig. 17. The diagram (left) of the matching {(1,5), (2,3), (4,7), (6,8)} and its shape (right).

Fig. 18. An example of the map ψ .

label of D is defined to be the number of pairs (i′, j′) ∈ π such that i < i′ < j < j′ . For example, if
π is the matching in Fig. 17, then μ is the Dyck path in Fig. 17 and the labels of the downs steps
are 0, 1, 1, and 0 in this order. Note that ζ is also a bijection from M(μ) to H(μ).

For μ ∈ Dyck(2n) and (μ, H) ∈H(2n), we define

ht(μ) =
∑

c∈Chord(μ)

(
ht(c) − 1

)
, ‖H‖ =

∑
i∈H

i.

The next lemma easily follows from the construction of the map ζ .

Lemma 6.1. Let ζ(π) = (μ, H). Then ‖H‖ = cr(π) and ht(μ) = cr(π) + ne(π).

From now on we will use the following notations: for λ,μ ∈ Dyck(2n),

D(λ/∗) =
⋃

ν∈Dyck(2n)

D(λ/ν),

D(∗/μ) =
⋃

ν∈Dyck(2n)

D(ν/μ),

D(2n) =
⋃

ν,ρ∈Dyck(2n)

D(ν/ρ).

For a Dyck tile η, we define the entry (respectively exit) of η to be the north border (respec-
tively the south border) of the northeast cell (respectively the southwest cell) of η.

For T ∈ D(∗/μ), we define ψ(T ) = (μ, H) as follows. The label of a down step s of μ is the
number of Dyck tiles that we pass in the following process. We start from s and travel to the south
until we reach a border that is not an entry; if we arrive at the entry of a Dyck tile, then continue
traveling from the exit of the Dyck tile, see Fig. 18. Observe that every tile is traveled exactly once,
which can be checked using the definition of a truncated Dyck tiling. Thus we have |T | = ‖H‖. It is
easy to see that the map ψ has the same recursive structure as the proof of Theorem 1.2 in Section 2.
Thus ψ : D(∗/μ) → H(μ) is a bijection. It is also possible to construct the inverse map of ψ , but it
is more complicated than ψ .
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Theorem 6.2. Given a Dyck path μ ∈ Dyck(2n), the map ψ gives a bijection ψ :D(∗/μ) → H(μ) such
that if ψ(T ) = (μ, H), then |T | = ‖H‖. Thus, ζ−1 ◦ ψ :D(∗/μ) → M(μ) is a bijection such that if
(ζ−1 ◦ ψ)(T ) = π , then |T | = cr(π).

We now discuss several applications of Theorem 6.2. First of all, since

∑
H∈H(μ)

q‖H‖ =
∏

c∈Chord(μ)

[
ht(c)

]
q. (17)

Theorem 6.2 gives a bijective proof of Theorem 1.2.
By Theorem 6.2, D(2n), H(2n), and M(2n) have the same cardinality (2n − 1)!! = 1 · 3 · · · (2n − 1).

Therefore, we have

∣∣D(2n)
∣∣ = (2n − 1)!!,

which was also conjectured by Kenyon and Wilson (private communication with David Wilson).
For T ∈D(λ/μ), we define ht(T ) = ht(μ).

Corollary 6.3. We have

∑
T ∈D(2n)

pht(T )−|T |q|T | =
∑

π∈M(2n)

pne(π)qcr(π).

Proof. By Lemma 6.1 and Theorem 6.2, we have

∑
T ∈D(2n)

pht(T )−|T |q|T | =
∑

μ∈Dyck(2n)

∑
T ∈D(∗/μ)

pht(μ)−|T |q|T |

=
∑

μ∈Dyck(2n)

∑
π∈M(μ)

pne(π)qcr(π)

=
∑

π∈M(2n)

pne(π)qcr(π). �

It is known that the two statistics cr and ne have joint symmetric distribution over matchings, see
[12, Corollary 1.4] or [8, (1.7)]. In other words,

∑
π∈M(2n)

pne(π)qcr(π) =
∑

π∈M(2n)

pcr(π)qne(π).

Thus, by Corollary 6.3 we get the following non-trivial identity:

∑
T ∈D(2n)

p|T |qht(T )−|T | =
∑

T ∈D(2n)

pht(T )−|T |q|T |.

Let Dn(p,q) be the sum in Corollary 6.3:

Dn(p,q) =
∑

T ∈D(2n)

pht(T )−|T |q|T |.

By Flajolet’s theory on continued fractions [3], we have

∑
n�0

Dn(p,q)xn = 1

1 − [1]p,qx

1− [2]p,q x

,

1−···
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where [n]p,q = pn−1 + pn−2q +· · ·+ pqn−2 +qn−1. By Viennot’s theory [19,20], Dn(p,q) is equal to the
2nth moment of the orthogonal polynomial Hn(x; p,q) defined by H−1(x; p,q) = 0, H0(x; p,q) = 1,
and the three term recurrence

Hn+1(x; p,q) = xHn(x; p,q) − [n]p,q Hn−1(x; p,q).

In particular, Hn(x;1,q) is the continuous q-Hermite polynomial and Hn(x;q,q2) is the discrete q-
Hermite polynomial, see [5,16]. There are known formulas for the 2nth moments of Hn(x;1,q) and
Hn(x;q,q2). For the 2nth moment of Hn(x;1,q), we have the Touchard–Riordan formula which has
various proofs, see [2,6,7,13–15,18]:

∑
π∈M(2n)

qcr(π) = 1

(1 − q)n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−1)kq(k+1

2 ). (18)

For the 2nth moment of Hn(x;q,q2), we have the following formula, see [5, Proof of Corollary 2] or
[16, Eq. (5.4)]:∑

π∈M(2n)

q2cr(π)+ne(π) = [2n − 1]q!!, (19)

where [2n − 1]q!! = [1]q[3]q · · · [2n − 1]q .
By Corollary 6.3, (18) and (19) we obtain the following corollary.

Corollary 6.4. We have

∑
T ∈D(2n)

q|T | = 1

(1 − q)n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−1)kq(k+1

2 ),

∑
T ∈D(2n)

qht(T )+|T | = [2n − 1]q!!.

7. Final remarks

We can generalize the matrix M in the introduction as follows. The matrix M(p,q) is defined by

M(p,q)λ,μ =
{

p|λ/μ|qd(λ,μ), if λ � μ;
0, otherwise,

where d(λ,μ) is the number of reversed matching pairs when going from μ to λ. Then M = M(1,1).
Recall that Kenyon and Wilson [10, Theorem 1.5] proved that

M−1
λ,μ = (−1)|λ/μ| × ∣∣D(λ/μ)

∣∣.
It is not hard to see that the proof of the above identity in [10] also implies the following identity,
which was first observed by Matjaž Konvalinka (personal communication with Matjaž Konvalinka):

M(p,q)−1
λ,μ =

∑
T ∈D(λ/μ)

(−p)|λ/μ|q|T |. (20)

Note that Theorem 1.1 (respectively Theorem 1.2) is a formula for the sum of the absolute values
of the entries in a row of M(q1/2,q1/2) (respectively a column of M(1,q)). Such a sum using M(p,q)

does not factor nicely, so it seems more difficult to find a formula for the sum.
In Section 6 we have found a bijection ψ :D(∗/μ) → H(μ) which gives a bijective proof of Theo-

rem 1.2. A bijective proof of Theorem 1.1 is given in [11].
Finally we note that, although it is not directly related to this paper, Dyck tiles are also used in [1]

as a combinatorial tool for Kazhdan–Lusztig polynomials.
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