The weight distribution of some irreducible cyclic codes

Anuradha Sharmaa, *, Gurmeet K. Bakshib

a Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India
b Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India

\begin{abstract}
Let F_q be the finite field with q elements, p be an odd prime co-prime to q and $m \geq 1$ be an integer. In this paper, we explicitly determine the weight distribution of all the irreducible cyclic codes of length p^m over F_q from their generating polynomials in three different cases, when (i) the multiplicative order of q modulo p^m is $\phi(p^m)$, (ii) the multiplicative order of q modulo p^m is a power of p, and (iii) the multiplicative order of q modulo p^m is twice a power of p.
\end{abstract}

\section{1. Introduction}

Let F_q be the finite field with q elements and let n be a positive integer co-prime to q. A cyclic code C of length n over F_q is a linear subspace of F_q^n with the property that if $(a_0, a_1, a_2, \ldots, a_{n-1}) \in C$, then the cyclic shift $(a_{n-1}, a_0, a_1, \ldots, a_{n-2})$ is also in C. A cyclic code C of length n over F_q is also called a q-ary cyclic code of length n. We can also regard C as an ideal in the principal ideal ring $R_n := F_q[x]/(x^n - 1)$ under the vector space isomorphism from F_q^n to R_n given by $(a_0, a_1, \ldots, a_{n-1}) \mapsto a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. It is known that any ideal C in R_n is generated by a unique monic polynomial $g(x)$, which is a divisor of $(x^n - 1)$, called the generating polynomial of C. A minimal ideal in R_n is called an irreducible cyclic code of length n over F_q.

If C is a cyclic code of length n over F_q and $v \in C$, then the weight of v, $wt(v)$, is defined to be the number of non-zero coordinates in v. If $A_{w}^{(n)}$ denotes the number of codewords in C of weight w, $w \geq 0$, then the list $A_{0}^{(n)}, A_{1}^{(n)}, \ldots, A_{n}^{(n)}$ is called the weight distribution of C. The weight distribution
of irreducible cyclic codes has been an interesting object of study for a long time and is known in some cases (see [1–7,9,10,12–14]). Ding [2] determined the weight distribution of \(q \)-ary irreducible cyclic codes of length \(n \) provided \(2 \leq \frac{\phi(q) - 1}{n} \leq 4 \), where \(\phi(n) \) denotes the multiplicative order of \(q \) modulo \(n \). He also pointed out that the weight formulas become quite messy if \(\frac{\phi(q) - 1}{n} \geq 5 \) and therefore finding the weight distribution of \(q \)-ary irreducible cyclic codes is a notoriously difficult problem.

In the previous paper [12], the authors, along with Raka, have determined the weight distribution of all the irreducible cyclic codes of length \(2^m \) over \(\mathbb{F}_q \). In this paper, we determine the weight distribution of all the irreducible cyclic codes of length \(p^m \) over \(\mathbb{F}_q \), where \(p \) is an odd prime co-prime to \(q \) and \(m \geq 1 \) is an integer, in three different cases, when (i) the multiplicative order of \(q \) modulo \(p^m \) is \(\phi(p^m) \); (ii) the multiplicative order of \(q \) modulo \(p^m \) is a power of \(p \); (iii) the multiplicative order of \(q \) modulo \(p^m \) is twice a power of \(p \). In Section 2, we list all the irreducible cyclic codes of length \(p^m \) over \(\mathbb{F}_q \) and show that in order to determine the weight distribution of any of these codes, it is sufficient to find the weight distribution of the \(q \)-ary irreducible cyclic code of length \(p^r \), \(1 \leq r \leq m \), which corresponds to the \(q \)-cyclotomic coset containing 1 (Theorem 1). In Section 3, we find the weight distribution of the irreducible cyclic code of length \(p^r \), \(1 \leq r \leq m \), which corresponds to the \(q \)-cyclotomic coset containing 1 in the three different cases listed above (Theorems 2–4). Finally, in Section 4, we also give some illustrative examples.

2. Irreducible cyclic codes and their weight distribution

Let \(\mathbb{F}_q \) be the finite field with \(q \) elements and let \(n \) be a positive integer co-prime to \(q \). Let \(\alpha \) denote a primitive \(n \)-th root of unity in some extension field of \(\mathbb{F}_q \). For any integer \(s \), \(0 \leq s \leq n - 1 \), the \(q \)-cyclotomic coset of \(s \) modulo \(n \) is the set

\[
C_s := \{ s, sq, sq^2, \ldots, sq^{n_s} - 1 \},
\]

where \(n_s \) is the least positive integer such that \(sq^{n_s} \equiv s \pmod{n} \). Corresponding to the \(q \)-cyclotomic coset \(C_s \), define

\[
M_s^{(n)}(x) := \prod_{j \in C_s} (x - \alpha^j)
\]

and

\[
\mathcal{M}_s^{(n)} := \text{the ideal in } \mathbb{R}_n \text{ generated by } \frac{x^n - 1}{M_s^{(n)}(x)}.
\]

It is known that \(M_s^{(n)}(x) \) is the minimal polynomial of \(\alpha^s \) over \(\mathbb{F}_q \) and \(\mathcal{M}_s^{(n)} \) is an irreducible cyclic code of length \(n \) over \(\mathbb{F}_q \), called the \(q \)-ary irreducible cyclic code of length \(n \) corresponding to the \(q \)-cyclotomic coset \(C_s \). Furthermore, if \(C_{s_1}, C_{s_2}, \ldots, C_{s_k} \) are all the distinct \(q \)-cyclotomic cosets modulo \(n \), then \(\mathcal{M}_{s_1}^{(n)}, \mathcal{M}_{s_2}^{(n)}, \ldots, \mathcal{M}_{s_k}^{(n)} \) are precisely all the distinct irreducible cyclic codes of length \(n \) over \(\mathbb{F}_q \).

For details, see [8, Chapters 7 and 8]. We have the following:

Theorem 1. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements, \(p \) be an odd prime co-prime to \(q \) and \(m \geq 1 \) be an integer. Let \(g \) be a primitive root modulo \(p^m \).

(i) The codes \(\mathcal{M}_0^{(p^m)}, \mathcal{M}_k^{(p^m)}, 0 \leq j \leq m - 1, 0 \leq k \leq \frac{\phi(p^m - j)}{\phi(p^m - j)} - 1 \), are precisely all the distinct irreducible cyclic codes of length \(p^m \) over \(\mathbb{F}_q \), where \(\phi \) denotes Euler’s Phi function.

(ii) All the non-zero codewords in \(\mathcal{M}_0^{(p^m)} \) have weight \(p^m \).
(iii) The code \(M_1^{(pr)} \) is equivalent to the code \(M_1^{(p^r)} \) and therefore they have the same weight distribution.

(iv) \(M_1^{(pr)} \) is the repetition code of the irreducible cyclic code \(M_1^{(p^m)} \) of length \(p^{m-j} \) corresponding to the \(q \)-cyclotomic coset containing \(1 \), in the following three different cases:

3.1. The multiplicative order of \(q \) modulo \(pm \) is

Proof. By [11, Lemma 1], all the distinct \(q \)-cyclotomic cosets modulo \(pm \) are given by \(C_0, C_{g^k p^j}, \) \(0 \leq j \leq m-1, 0 \leq k \leq \phi(p^{m-j})/\phi(p^{m-j})-1 \). Therefore, (i) follows. (ii) and (iii) are obvious. The proof of (iv) is similar to that of Lemma 2 of [12]. □

It thus follows from the above theorem that the weight distribution of all the \(q \)-ary irreducible cyclic codes of length \(pm \) can be determined from the weight distribution of \(q \)-ary irreducible cyclic code \(M_1^{(p^r)} \) of length \(p^r \) \((1 \leq r \leq m)\), which corresponds to the \(q \)-cyclotomic coset containing \(1 \).

3. The weight distribution of \(M_1^{(p^r)}, 1 \leq r \leq m \)

Throughout this section, \(\mathbb{F}_q \) denotes the finite field with \(q \) elements, \(p \) an odd prime co-prime to \(q \) and \(m \geq 1 \), an integer. Let \(1 \leq r \leq m \) be fixed throughout. In this section, we determine the weight distribution of \(q \)-ary irreducible cyclic code \(M_1^{(p^r)} \) of length \(p^r \) corresponding to the \(q \)-cyclotomic coset containing \(1 \), in the following three different cases:

(i) the multiplicative order of \(q \) modulo \(pm \) is \(\phi(pm) \);
(ii) the multiplicative order of \(q \) modulo \(pm \) is a power of \(p \);
(iii) the multiplicative order of \(q \) modulo \(pm \) is twice a power of \(p \).

3.1. The multiplicative order of \(q \) modulo \(pm \) is \(\phi(pm) \)

We first fix some notations. Let \(\mathbb{Z} \) denote the set of integers. For any \(t, v \in \mathbb{Z}, t \geq 1 \) and \(v \geq 2 \), let

\[
P_t(v) := \left\{ (v_1, v_2, \ldots, v_t) \in \mathbb{Z}^t \mid 2 \leq v_j \leq p \text{ for all } j, \sum_{j=1}^t v_j = v \right\}.
\]

Given \((v_1, v_2, \ldots, v_t) \in P_t(v)\), set

\[
L(v_1, v_2, \ldots, v_t) := \left\{ (\ell_1, \ell_2, \ldots, \ell_t) \in \mathbb{Z}^t \mid \ell_j \geq v_j - 2 \text{ for all } j, \sum_{j=1}^t \ell_j \leq p - 2t \right\}.
\]

Given \((\ell_1, \ell_2, \ldots, \ell_t) \in L(v_1, v_2, \ldots, v_t)\), put \(A(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t) \) to be equal to

\[
a(\ell_1, \ell_2, \ldots, \ell_t) \left(\begin{array}{c} \ell_1 \\ v_1 - 2 \end{array} \right) \left(\begin{array}{c} \ell_2 \\ v_2 - 2 \end{array} \right) \cdots \left(\begin{array}{c} \ell_t \\ v_t - 2 \end{array} \right) (q - 1)^t (q - 2)^{v-2t},
\]
where

\[
da_1 = \sum_{k_1=1}^{l_1} \sum_{k_2=1+\ell_1+2}^{l_2-k_1} \ldots \sum_{k_{t-1}=1}^{l_{t-1}} \sum_{k_t=1+\ell_{t-1}+2}^{l_t} 1. \quad (1)
\]

Definition 1. For any integer \(\nu \geq 0 \), define \(N(\nu) \) to be equal to

1, if \(\nu = 0 \);
0, if \(\nu = 1 \) or \(\nu \geq p + 1 \);
\(\sum_{\nu \geq 1} \sum_{(v_1,v_2,\ldots,v_t) \in P_t(\nu)} \sum_{(\ell_1,\ell_2,\ldots,\ell_t) \in L(v_1,v_2,\ldots,v_t)} A(v_1,v_2,\ldots,v_t;\ell_1,\ell_2,\ldots,\ell_t) \), otherwise.

We are now ready to state

Theorem 2. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements, \(p \) be an odd prime co-prime to \(q \) and \(m \geq 1 \) be an integer. If the multiplicative order of \(q \) modulo \(p^m \) is \(\phi(p^m) \), then the weight distribution \(A_\nu^{(p^r)} \), \(\nu \geq 0 \), of the \(q \)-ary irreducible cyclic code \(\mathcal{M}_1^{(p^r)} \) is given by

\[
A_\nu^{(p^r)} = \sum N(w_1)N(w_2)\cdots N(w_{p^r-1}),
\]

where the summation runs over all tuples \((w_1,w_2,\ldots,w_{p^r-1}) \) of non-negative integers \(w_i \)'s satisfying \(\sum_{i=1}^{p^r-1} w_i = \nu \).

We need some preparation to prove this theorem.

Let \(e_i, 1 \leq i \leq p^r \), be the canonical basis of \(\mathbb{F}_q^{p^r} \).

Lemma 1. If the multiplicative order of \(q \) modulo \(p^m \) is \(\phi(p^m) \), then the generating polynomial of \(\mathcal{M}_1^{(p^r)} \) is \(x^{p^r-1} - 1 \), and the vectors

\[
e_{i+p^r-1} - e_i, \quad 1 \leq i \leq (p-1)p^{r-1},
\]

constitute a basis of \(\mathcal{M}_1^{(p^r)} \) over \(\mathbb{F}_q \).

Proof. Let \(\alpha \) be a primitive \(p^r \)th root of unity in some extension of \(\mathbb{F}_q \). Then the generating polynomial \(g(x) \) of \(\mathcal{M}_1^{(p^r)} \) is \(x^{p^r-1} / M_\alpha(x) \) with \(M_\alpha(x) = \prod_{j \in C_1} (x - \alpha^j) \), where \(C_1 \) is the \(q \)-cyclotomic coset of \(1 \) modulo \(p^r \). Observe that the multiplicative order of \(q \) modulo \(p^r \) is \(\phi(p^m) \) and \(1 \leq r \leq m \) yields that the multiplicative order of \(q \) modulo \(p^r \) is \(\phi(p^r) = (p-1)p^{r-1} \). Therefore, the \(q \)-cyclotomic coset modulo \(p^r \) containing \(1 \) is \(\{1,q,q^2,\ldots,q^{(p-1)p^{r-1}-1}\} \), which is a reduced residue system modulo \(p^r \). As a result, the roots of \(M_\alpha(x) \) are precisely all the primitive \(p^r \)th roots of unity. Also note that the roots of the polynomial

\[
x^{p^r-1} / x^{p^r-1} - 1 = 1 + x^{p^r-1} + x^{2^{p^r-1}} + \cdots + x^{(p-1)p^{r-1}}
\]

are also precisely all the primitive \(p^r \)th roots of unity, which gives \(M_\alpha(x) = x^{p^r-1} - 1 \) and hence \(g(x) = x^{p^r-1} - 1 \). Now, by [8, Chapter 7, Theorem 1], \(\mathcal{M}_1^{(p^r)} \) is the subspace of \(R_{p^r} \) spanned by \(g(x), xg(x), \ldots, x^{(p-1)p^{r-1}-1}g(x) \). But under the standard isomorphism from \(R_{p^r} \) to \(\mathbb{F}_q^{p^r} \), \(x^{p^r-1}g(x) \) corresponds to \(e_{i+p^r-1} - e_i \) for each \(i \), which proves the result. \(\square \)
For \(1 \leq i \leq p^r - 1 \), let \(V_i \) be the vector subspace of \(\mathbb{F}_q^{p^r} \) spanned by
\[
e_{i+jp^r-1} - e_{i+(j-1)p^r-1}, \quad 1 \leq j \leq p - 1.
\]

Definition 2. We say that a vector \(v \in V_i \) is a nice vector if
\[
v = \sum_{j=k}^{k+\ell} \alpha_j (e_{i+jp^r-1} - e_{i+(j-1)p^r-1}),
\]
where \(0 \neq \alpha_j \in \mathbb{F}_q, k \geq 1, \ell \geq 0, k + \ell \leq p - 1 \). The integer \(\ell \) is called the length of \(v \) denoted \(\ell(v) \); \(k \) is called the initial point of \(v \), denoted by \(I(v) \); and \(k + \ell \) is called the end point of \(v \), denoted by \(E(v) \).

Definition 3. Let \(v_1, v_2, \ldots, v_t \in V_i \). We say that \(v_1, v_2, \ldots, v_t \) is a chain in \(V_i \) if each \(v_j, 1 \leq j \leq t \), is a nice vector and \(I(v_j) \geq E(v_{j-1}) + 2 \) for \(2 \leq j \leq t \).

Remark 1.
(i) If \(v_1, v_2, \ldots, v_t \) is a chain in \(V_i \), then \(\text{wt}(\sum_{j=1}^{t} v_j) = \sum_{j=1}^{t} \text{wt}(v_j) \).
(ii) Any \(v \in V_i \) can be written as \(v = \sum_{j=1}^{p} v_j \), where \(v_1, v_2, \ldots, v_t \) is a chain in \(V_i \).

Lemma 2.
(i) If \(0 \neq v \in V_i \), then \(2 \leq \text{wt}(v) \leq p \).
(ii) If \(v \in V_i \) is a nice vector of length \(\ell \), then \(2 \leq \text{wt}(v) \leq \ell + 2 \).
(iii) If \(\ell, k, v \) are integers satisfying \(0 \leq \ell \leq p - 1, 1 \leq k \leq p - \ell - 1 \) and \(2 \leq v \leq \ell + 2 \), then the number of nice vectors in \(V_i \) of length \(\ell \), weight \(v \) and initial point \(k \) is \((\ell + 1)^2(q - 1)(q - 2)^{v-2} \). (Note that this number is independent of the choice of the initial point and \(i \).)

Proof. (i) Let \(v \in V_i \). Then
\[
v = \sum_{j=1}^{p-1} \alpha_j (e_{i+jp^r-1} - e_{i+(j-1)p^r-1})
\]
\[
= -\alpha_1 e_i + \alpha_{p-1} e_{i+(p-1)p^r-1} + \sum_{j=1}^{p-2} (\alpha_j - \alpha_{j+1}) e_{i+jp^r-1}. \tag{2}
\]

\(\alpha_j \in \mathbb{F}_q \). If \(v \neq 0 \), then at least one \(\alpha_j \neq 0 \), which gives \(\text{wt}(v) \geq 2 \). Also it is clear from (2) that \(\text{wt}(v) \leq p \). This proves (i).
(ii) is similar to (i).
(iii) If \(v \in V_i \) is a nice vector of length \(\ell \), weight \(v \) and \(I(v) = k \), then
\[
v = \sum_{j=k}^{k+\ell} \alpha_j (e_{i+(j-1)p^r-1})
\]
\[
= -\alpha_1 e_{i+(k-1)p^r-1} + \alpha_{k+\ell} e_{i+(k+\ell)p^r-1} + \sum_{j=k}^{k+\ell-1} (\alpha_j - \alpha_{j+1}) e_{i+jp^r-1}.
\]
where $0 \neq \alpha_j \in \mathbb{F}_q$, $k \leq j \leq k + \ell$. Now observe that the weight of v is v if and only if out of a total of ℓ differences $\alpha_j - \alpha_{j+1}$ ($k \leq j \leq k + \ell - 1$), exactly $(v - 2)$ are non-zero, which happens if and only if there exist $i_1, i_2, \ldots, i_{v-2}, k \leq i_1 < i_2 < \cdots < i_{v-2} \leq k + \ell - 1$ such that $\alpha_{i_1} = \alpha_{i_1+1} = \cdots = \alpha_{i_2}, \alpha_{i_2} \neq \alpha_{i_2+1}, \alpha_{i_2+1} = \alpha_{i_2+2} = \cdots = \alpha_{i_3}, \alpha_{i_3} \neq \alpha_{i_3+1}, \alpha_{i_3+1} = \alpha_{i_3+2} = \cdots = \alpha_{i_4}, \alpha_{i_4} \neq \alpha_{i_4+1}, \alpha_{i_4+1} = \alpha_{i_4+2} = \cdots = \alpha_{i_{v-2}+1}, \alpha_{i_{v-2}+1} = \alpha_{i_{v-2}+2} = \cdots = \alpha_{k+\ell}$. It can be seen that the total number of choices of such a nice vector v is $(q-1)(q-2)^{v-2}$.

Lemma 3. Let $1 \leq i \leq p^{l-1}$. Given an integer v satisfying $2 \leq v \leq p$, there are precisely $N(v)$ elements in V_i having weight v.

Proof. Let $A(v)$ denote the set of all codewords in V_i having weight v. For any $t \geq 1$, $(v_1, v_2, \ldots, v_t) \in P_t(v)$, and $(\ell_1, \ell_2, \ldots, \ell_t) \in L(v_1, v_2, \ldots, v_t)$, let

$$V_i(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t) := \left\{ \sum_{j=1}^t v_j \mid v_1, v_2, \ldots, v_t \text{ is a chain in } V_i, \ wt(v_j) = v_j, \ \ell(v_j) = \ell_j, \ 1 \leq j \leq t \right\}.$$

We assert that

$$A(v) = \bigcup_{t \geq 1} \bigcup_{(v_1, v_2, \ldots, v_t) \in P_t(v)} \bigcup_{(\ell_1, \ell_2, \ldots, \ell_t) \in L(v_1, v_2, \ldots, v_t)} V_i(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t),$$

and moreover, this union is disjoint. It follows from Remark 1(i), that the right-hand side of (3) is contained in the left-hand side. Now, let $v \in A(v)$. By Remark 1, $v = \sum_{j=1}^t v_j$, where v_1, v_2, \ldots, v_t is a chain in V_i and $v = wt(v) = \sum_{j=1}^t wt(v_j)$. Let $v_j = wt(v_j)$ and $\ell_j = \ell(v_j)$. By Lemma 2, $2 \leq v_j \leq p$, $\ell_j \geq v_j - 2$ for all j. Also, $\sum_{j=1}^t \ell_j = \sum_{j=1}^t (E(v_j) - I(v_j)) = \sum_{j=2}^t (E(v_{j-1}) - I(v_{j-1})) + E(v_1) - I(v_1) \leq p - 2t$, as $I(v_1) \geq 1$, $E(v_t) \leq p - 1$ and $I(v_j) - E(v_{j-1}) \geq 2$. This gives $(\ell_1, \ell_2, \ldots, \ell_t) \in L(v_1, v_2, \ldots, v_t)$ and $v \in V_i(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t)$, which proves the assertion (3). It is clear that the union in the right-hand side of (3) is disjoint.

We next assert that $|V_i(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t)|$ equals

$$a_{(\ell_1, \ell_2, \ldots, \ell_t)} \left(\alpha_{v_1 - 2} \right) \left(\alpha_{v_2 - 2} \right) \cdots \left(\alpha_{v_t - 2} \right) (q-1)^t (q-2)^{v-2t},$$

where $a_{(\ell_1, \ell_2, \ldots, \ell_t)}$ is as given in Eq. (1). In order to find $|V_i(v_1, v_2, \ldots, v_t; \ell_1, \ell_2, \ldots, \ell_t)|$, we need to find the number of chains v_1, v_2, \ldots, v_t in V_i such that $wt(v_j) = v_j$ and $\ell(v_j) = \ell_j$ for all j. Let $k_j = I(v_j)$. Then, $k_1 \geq 1$, $k_1 + \ell_1 \leq p - 1$ and $k_1 + \ell_1 + 2 \leq k_j + 2 \leq k_j$ for $2 \leq j \leq t$. This gives

$$1 \leq k_1 \leq p - \sum_{i=1}^t \ell_i - 2t + 1,$$

$$k_1 + \ell_1 + 2 \leq k_2 \leq p - \sum_{i=2}^t \ell_i - 2(t - 1) + 1,$$

$$\ldots$$

$$k_{t-2} + \ell_{t-2} + 2 \leq k_{t-1} \leq p - \sum_{i=t-1}^t \ell_i - 3,$$

$$k_{t-1} + \ell_{t-1} + 2 \leq k_t \leq p - \ell_t - 1.$$
Therefore the total number of choices for the initial points \(k_1, k_2, \ldots, k_t\) is

\[
p - \sum_{i=1}^{t-2} \ell_i - 2t + 1 + p - \sum_{i=2}^{t-1} \ell_i - (t-1) + 1 + \cdots + p - \sum_{i=1}^{t-1} \ell_i - 3 + p - \ell_t - 1 - 1,
\]

which is equal to \(a(\ell_1, \ell_2, \ldots, \ell_t)\). By Lemma 2(iii), the number of nice vectors \(v_j\) of length \(\ell_j\), weight \(w_j\) and having a fixed initial point \(k_j\), is given by \((\ell_j - 1)(q - 1)(q - 2)^{v_j - 2}\) for each \(j, 1 \leq j \leq t\). Consequently, the total number of vectors in \(V_i(v_1, v_2, \ldots, \ell_1, \ell_2, \ldots, \ell_t)\) is given by

\[
a(\ell_1, \ell_2, \ldots, \ell_t) \left(\frac{\ell_1}{v_1 - 2} \right) \left(\frac{\ell_2}{v_2 - 2} \right) \cdots \left(\frac{\ell_t}{v_t - 2} \right) (q - 1)^{t} (q - 2)^{v - 2t},
\]

which proves the assertion (4). The lemma now immediately follows from (3) and (4).

\(\Box\)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let \(w \geq 0\) and let \(A(w)\) denote the codewords in \(M_1^{(p^r)}\) having weight \(w\). For any tuple \((w_1, w_2, \ldots, w_{p^r-1})\) of non-negative integers \(w_i\)'s satisfying \(\sum_{i=1}^{p^r-1} w_i = w\), define

\[
S_{(w_1, w_2, \ldots, w_{p^r-1})} = \left\{ \sum_{i=1}^{p^r-1} c_i \mid c_i \in V_i, \ wt(c_i) = w_i, 1 \leq i \leq p^r-1 \right\}.
\]

It follows from Lemma 1 and the definition of \(V_i\)'s that \(A(w) = \bigcup S_{(w_1, w_2, \ldots, w_{p^r-1})}\), where the union runs over all tuples \((w_1, w_2, \ldots, w_{p^r-1})\) of integers \(w_i\)'s satisfying \(w_i \geq 0\) and \(\sum_{i=1}^{p^r-1} w_i = w\), and also it is clear that the union is disjoint. Therefore,

\[
A^{(p^r)}_w = \left| \bigcup S_{(w_1, w_2, \ldots, w_{p^r-1})} \right| = \sum |S_{(w_1, w_2, \ldots, w_{p^r-1})}|.
\]

But \(|S_{(w_1, w_2, \ldots, w_{p^r-1})}| = N_1(w_1)N_2(w_2)\cdots N_{p^r-1}(w_{p^r-1})\), where \(N_i(w_i)\) is the number of codewords in \(V_i\) having weight \(w_i\). However, by Lemma 3, \(N_i(w_i)\) equals \(N(w_i)\) for any \(i\), which completes the proof. \(\Box\)

3.2. The multiplicative order of \(q\) modulo \(p^m\) is a power of \(p\)

Theorem 3. Let \(\mathbb{F}_q\) be the finite field with \(q\) elements, \(p\) be an odd prime co-prime to \(q\) and \(m \geq 1\) be an integer. Suppose that the multiplicative order of \(q\) modulo \(p^m\) is \(p^d\) for some integer \(d\) (note that \(0 \leq d < m\)). Then, if

(i) \(r \leq m - d\), the only possible non-zero weight in \(M_1^{(p^r)}\) is \(p^r\), which is attained by all its \(q - 1\) non-zero codewords.

(ii) \(r > m - d\), the weight distribution \(A^{(p^r)}_w\), \(w \geq 0\), of \(M_1^{(p^r)}\) is given by

\[
A^{(p^r)}_w = \begin{cases}
0 & \text{if } p^{m-d} \text{ does not divide } w; \\
(\frac{p^{r-(m-d)}}{w}) (q - 1)^w & \text{if } w = p^{m-d} w', \ 0 \leq w' \leq p^{r-(m-d)}.
\end{cases}
\]

In order to prove Theorem 3, we first prove the following:
Lemma 4. Let p, q, m, d be as defined in Theorem 3. Then $O_{pr}(q)$, the multiplicative order of q modulo p^r, is given by

\[O_{pr}(q) = \begin{cases}
1 & \text{if } r \leq m - d; \\
p^r - (m - d) & \text{if } r > m - d.
\end{cases} \]

Proof. First we assert that

\[O_{p^{m-d}}(q) = 1. \] \hfill (5)

To prove this, let $O_{p^{m-d}}(q) = t$. Working, as in [11, Lemma 1], we get $O_{p^r}(q) = tp^d$. As it is given that $O_{p^r}(q) = p^d$, we get $t = 1$, which proves (5).

If $r \leq m - d$, then by (5), we have $O_{pr}(q) = 1$. For the case $r > m - d$, working again as in [11, Lemma 1], we obtain that $O_{pr}(q) = p^{r-(m-d)}$. This proves the lemma. \(\square \)

Lemma 5. Let p, q, m, d be as in Theorem 3. If $r > m - d$, then there exists a primitive p^{m-d}th root of unity $\beta \in \mathbb{F}_q$, such that the vectors

\[\sum_{j=0}^{p^{m-d} - 1} \beta^{j+1} e_{i+jp^{r-(m-d)}} \quad 1 \leq i \leq p^{r-(m-d)}, \]

constitute a basis of $\mathcal{M}_1^{(p^r)}$ over \mathbb{F}_q.

Proof. By Lemma 4, the q-cyclotomic coset modulo p^r containing 1 is $\{1, q, q^2, \ldots, q^{p^{r-(m-d)}-1}\}$. Therefore $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{p^{r-(m-d)}-1}}$ are precisely all the roots of the minimal polynomial of α over \mathbb{F}_q. We also observe that $x^{p^{r-(m-d)}-1} - \alpha^{p^{r-(m-d)}} \in \mathbb{F}_q[x]$ and $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{p^{r-(m-d)}-1}}$ are precisely all its roots. Therefore, $x^{p^{r-(m-d)}} - \alpha^{p^{r-(m-d)}}$ is the minimal polynomial of α over \mathbb{F}_q and hence the generating polynomial $g(x)$ of $\mathcal{M}_1^{(p^r)}$ is $\frac{x^{p^{r-(m-d)}-1}}{x^{p^{r-(m-d)}-1} - \alpha^{p^{r-(m-d)}}} = \beta + \beta^2 x^{p^{r-(m-d)}} + \beta^3 x^{2p^{r-(m-d)}} + \cdots + \beta^{p^{m-d} - 1} x^{(p^{m-d} - 2)p^{r-(m-d)}} + \cdots x^{(p^{m-d} - 1)p^{r-(m-d)}}$, where $\beta = \alpha^{-p^{r-(m-d)}}$. Now, as a vector subspace of R_{p^r}, $\mathcal{M}_1^{(p^r)}$ is spanned by $g(x), xg(x), \ldots, x^{p^{r-(m-d)}-1}g(x)$. Since, under the standard isomorphism from R_{p^r} to \mathbb{F}_q, $x^{p^{r-(m-d)}-1}g(x)$ corresponds to $\sum_{j=0}^{p^{m-d} - 1} \beta^{j+1} e_{i+jp^{r-(m-d)}}$ for $1 \leq i \leq p^{r-(m-d)}$, the result follows. \(\square \)

Proof of Theorem 3. (i) Let α be a primitive p^rth root of unity in some extension of \mathbb{F}_q. If $r \leq m - d$, by Lemma 4, the multiplicative order of q modulo p^r is 1. Therefore $\alpha^{q-1} = 1$, i.e., $\alpha \in \mathbb{F}_q$ and the minimal polynomial of α over \mathbb{F}_q is $x - \alpha$. Hence $\mathcal{M}_1^{(p^r)}$ is a 1-dimensional subspace of \mathbb{F}_q^r generated by $\frac{x^{p^r-1}}{x-\alpha} = \alpha^{p^r-1} + \alpha^{p^r-2}x + \cdots + \alpha x^{p^r-2} + x^{p^r-1}$ and therefore every codeword of $\mathcal{M}_1^{(p^r)}$ is a scalar multiple of $\alpha^{p^r-1} + \alpha^{p^r-2}x + \cdots + \alpha x^{p^r-2} + x^{p^r-1}$. This implies that the only possible non-zero weight in $\mathcal{M}_1^{(p^r)}$ is p^r, which is attained by all its $(q - 1)$ non-zero codewords.

(ii) If $r > m - d$, by Lemma 5, any codeword $c \in \mathcal{M}_1^{(p^r)}$ can be written as $c = \sum_{j=0}^{p^{m-d} - 1} \alpha_i \beta^{j+1} e_{i+jp^{r-(m-d)}}, \alpha_i \in \mathbb{F}_q$. Clearly, $\text{wt}(c)$ is $p^{m-d}w'$, where w' is the number of non-zero α_i’s. Thus $A_w^{(p^r)} = 0$ if p^{m-d} does not divide w. Moreover a codeword in $\mathcal{M}_1^{(p^r)}$ has weight $w = p^{m-d}w'$ if and only if it is a linear combination of any w' basis vectors over \mathbb{F}_q out of a total $p^{r-(m-d)}$ basis vectors of $\mathcal{M}_1^{(p^r)}$. This implies that there are $(p^{r-(m-d)})(q - 1)^{w'}$ codewords in $\mathcal{M}_1^{(p^r)}$ having weight $p^{m-d}w'$, which proves the theorem. \(\square \)
3.3. The multiplicative order of q modulo p^m is twice a power of p

We now determine the weight distribution of $M_{1}^{(p^r)}$, when $O_{p^m}(q) = 2^{pd}$ for some $d \geq 0$. As $O_{p^m}(q)$ is a divisor of $\phi(p^m)$, we have $d \leq m - 1$. Let $u = \min(r, m - d)$. For any integer $v \geq 0$, define

$$n(v) := \begin{cases}
1 & \text{if } v = 0; \\
(q - 1)p^u & \text{if } v = p^u - 1; \\
(q - 1)(q - p^u + 1) & \text{if } v = p^u; \\
0 & \text{otherwise.}
\end{cases}$$

In this case, we have the following:

Theorem 4. The weight distribution $A_{w}^{(p^r)}$, $w \geq 0$, of $M_{1}^{(p^r)}$ is given by

$$A_{w}^{(p^r)} = \sum_{n(w_1)n(w_2)\cdots n(w_{p^r-u})} n(w_1)n(w_2) \cdots n(w_{p^r-u}),$$

where the summation runs over all tuples $(w_1, w_2, \ldots, w_{p^r-u})$ of non-negative integers w_i’s satisfying $w_1 + w_2 + \cdots + w_{p^r-u} = w$.

Lemma 6. Let p, q, m, d be as above. Then

$$O_{p^r}(q) = \begin{cases}
2 & \text{if } r \leq m - d; \\
2^{p^r-(m-d)} & \text{if } r > m - d.
\end{cases}$$

Proof. Proof is similar to that of Lemma 4. □

Lemma 7. Let p, q, m, d, u be as above. There exist non-zero $b_0, b_1, \ldots, b_{p^u-2} \in \mathbb{F}_q$ such that the following vectors

$$\mathfrak{R}_i := \sum_{j=0}^{p^u-2} b_j e_{i+jp^r-u}, \quad 1 \leq i \leq 2p^r-u,$$

constitute a basis of $M_{1}^{(p^r)}$ over \mathbb{F}_q.

Proof. By Lemma 6, the q-cyclotomic coset modulo p^r containing 1 is $\{1, q, q^2, \ldots, q^{2p^r-u-1}\}$. Therefore, if α is a primitive p^rth root of unity in some extension of \mathbb{F}_q, then $\alpha, \alpha^q, \ldots, \alpha^{q^{2p^r-u-1}}$ are precisely all the zeros of the minimal polynomial of α over \mathbb{F}_q. We observe that

(i) $x^{p^r-u} - \alpha^{p^r-u} \in \mathbb{F}_q[x]$ and $\alpha, \alpha^q, \ldots, \alpha^{q^{2p^r-u-2}}$ are precisely all its zeros; and
(ii) $x^{p^r-u} - \alpha^{p^r-u}q \in \mathbb{F}_q[x]$ and $\alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{2p^r-u-1}}$ are precisely all its zeros.

As a consequence,

$$(x^{p^r-u} - \alpha^{p^r-u})(x^{p^r-u} - \alpha^{p^r-u}q) = x^{2p^r-u} - (\alpha^{p^r-u} + \alpha^{p^r-u}q)x^{p^r-u} + 1$$

is the minimal polynomial of α over \mathbb{F}_q. Thus the generating polynomial $g(x)$ of the minimal ideal $M_{1}^{(p^r)}$ is $x^{2p^r-u} - (\alpha^{p^r-u} + \alpha^{p^r-u}q)x^{p^r-u} + 1$. By division algorithm, we have
\[g(x) = \frac{x^{2p^r} - 1}{x^{2p^r} - (\alpha^{p^r - q} + \alpha^{p^r - u})x^{p^r - u} + 1} \]
\[= b_0 + b_1 x^{p^r - u} + b_2 x^{2p^r - u} + \cdots + b_{p^u - 2} x^{(p^u - 2)p^r - u}, \]

where
\[b_0 = -1, \quad b_1 = -(\alpha^{p^r - u} + \alpha^{p^r - q}), \]
\[b_i - (\alpha^{p^r - u} + \alpha^{p^r - q})b_{i-1} + b_{i-2} = 0 \quad \text{for} \quad 2 \leq i \leq p^u - 2, \]

and
\[b_{p^u - 3} = \alpha^{p^r - u} + \alpha^{p^r - q}, \quad b_{p^u - 2} = 1. \]

On solving the above recurrence relation, we get that
\[b_i = \frac{-(\alpha^{p^r - u})^{(i+1)} + (\alpha^{p^r - u})^{q(i+1)}}{\alpha^{p^r - u} - \alpha^{p^r - q}}. \tag{6} \]

We claim that all the \(b_i \)'s are non-zero. Note that \(b_i = 0 \) if and only if \((\alpha^{p^r - u})(q-1)(i+1) = 1\), which holds if and only if \((q-1)(i+1) \equiv 0 \pmod{p^u}\), as \(\alpha^{p^r - u}\) is a primitive \(p^u\)th root of unity. By Lemma 6, \(q - 1\) is not divisible by \(p\). Therefore, we get \((i+1) \equiv 0 \pmod{p^u}\). But this is not possible, because \(1 \leq i + 1 \leq p^u - 1 < p^u\). This proves the claim.

Now, \(M(\rho)\) is spanned by \(g(x), xg(x), \ldots, x^{2p^r - u} g(x)\) and under the standard isomorphism from \(R_{p^r} \) to \(\mathbb{F}_q\), \(x^j \mapsto g(x)\) corresponds to \(\mathfrak{M}_j\) for \(1 \leq j \leq 2p^r - u\), the result follows. \(\square\)

For \(1 \leq i \leq p^r - u\), let
\[U_i := \text{the subspace of } \mathbb{F}_q^{2p^r} \text{ generated by } \mathfrak{M}_i \text{ and } \mathfrak{M}_{i+p^r - u}. \]

Lemma 8. For any \(v \geq 0\), the number of codewords in \(U_i\) of weight \(v\) is \(n(v)\).

Proof. It is enough to show that the only possible non-zero weights in \(U_i\) are \(p^v - 1\) and \(p^v\), and that there are precisely \((q - 1)p^u\) and \((q - 1)(q - p^u + 1)\) codewords in \(U_i\) having weight \(p^v - 1\) and \(p^v\) respectively. Let \(c \in U_i\) be a non-zero codeword. Then there exist \(\alpha_1, \alpha_2 \in \mathbb{F}_q\), not both zero, such that
\[c = \alpha_1 \mathfrak{M}_i + \alpha_2 \mathfrak{M}_{i+p^r - u} \]
\[= \alpha_1 b_0 e_i + \alpha_2 b_{p^u - 2} e_{i+(p^u - 1)p^r - u} + \sum_{j=1}^{p^u - 2} (\alpha_1 b_j + \alpha_2 b_{j-1}) e_{i+jp^r - u}. \]

Case I. One of the \(\alpha_1\) or \(\alpha_2\) is zero.

If \(\alpha_1 = 0\), then \(wt(c) = wt(\mathfrak{M}_{i+p^r - u}) = p^v - 1\). Similarly, if \(\alpha_2 = 0\), then \(wt(c) = wt(\mathfrak{M}_i) = p^v - 1\). Note that there are a total of \(2(q - 1)\) such codewords in \(U_i\).
Case II. Both α_1 and α_2 are non-zero.

We assert that among the possible non-zero entries α_1b_0, $\alpha_1b_j + \alpha_2b_{j-1}$ ($1 \leq j \leq p^u - 2$), $\alpha_2b_{p^u-2}$ of c, at most one of the entries can be zero.

Clearly, α_1b_0 and $\alpha_2b_{p^u-2}$ can’t be zero. If $\alpha_1b_j + \alpha_2b_{j-1} = 0$ and $\alpha_1b_k + \alpha_2b_{k-1} = 0$ for some j, k, $1 \leq j < k < p^u - 2$, then $\alpha_1(b_j - b_{j-1}) + \alpha_2(b_{k-1} - b_{j-1}) = 0$. But, using (6), we have $b_jb_{k-1} - b_kb_{j-1} = b_{k-j-1}$, which gives $\alpha_1b_{k-j-1} = 0$. This gives a contradiction, since both α_1 and b_{k-j-1} are non-zero. This proves our assertion.

As a consequence of the assertion, the weight of c is either p^u or $p^u - 1$. However $\text{wt}(c) = p^u - 1$ if and only if $\alpha_2 = -\alpha_1b_jb_{j-1}^{-1}$ for some $j, 1 \leq j \leq p^u - 2$. Since $-\alpha_1b_1b_0^{-1}$, $-\alpha_1b_2b_1^{-1}$, ..., $-\alpha_1b_{p^u-2}b_{p^u-3}$ are all distinct, we get that, for each choice of α_1, there are $p^u - 2$ choices of α_2. Hence there are $(q - 1)(p^u - 2)$ codewords c having weight $p^u - 1$ with α_1 and α_2 both non-zero. The remaining $(q - 1)^2 - (q - 1)(p^u - 2)$ codewords have weight p^u.

Combining the two cases, the result follows. \hfill \Box

Proof of Theorem 4. Let $w \geq 0$. For any tuple $(w_1, w_2, \ldots, w_{p^u-1})$ of non-negative integers w_i’s satisfying $\sum_{i=1}^{p^u-1} w_i = w$, define

$$S(w_1, w_2, \ldots, w_{p^u-1}) = \left\{ \sum_{i=1}^{p^u-1} c_i \mid c_i \in U_1, \text{ wt}(c_i) = w_i, 1 \leq i \leq p^u-1 \right\}.$$

It follows from Lemma 7 and the definition of U_i’s that $\bigcup_{i=1}^{p^u-1} S(w_1, w_2, \ldots, w_{p^u-1})$ is precisely the set of all the elements in $M_i(p^u)$ having weight w, where the union runs over all tuples $(w_1, w_2, \ldots, w_{p^u-1})$ of non-negative integers w_i’s satisfying $\sum_{i=1}^{p^u-1} w_i = w$. It is easily seen that the union is disjoint. Therefore,

$$A_{w}^{(p^u)} = \left| \bigcup_{i=1}^{p^u-1} S(w_1, w_2, \ldots, w_{p^u-1}) \right| = \sum_{i=1}^{p^u-1} |S(w_1, w_2, \ldots, w_{p^u-1})|.$$

But $|S(w_1, w_2, \ldots, w_{p^u-1})| = N_1(w_1)N_2(w_2)\cdots N_{p^u-1}(w_{p^u-1})$, where $N_i(w_i)$ is the number of codewords in U_i having weight w_i. However, by Lemma 8, $N_i(w_i)$ equals $n(w_i)$ for all i, which completes the proof. \hfill \Box

4. Some examples

In this section, we determine the weight distribution of the ternary irreducible cyclic codes $M_1^{(25)}$ and $M_1^{(49)}$, 7-ary irreducible cyclic code $M_1^{(2)}$ ($r \geq 1$), binary irreducible cyclic code $M_1^{(9)}$ and the quaternary code $M_1^{(25)}$.

4.1. Example 1

Let $p = 5$, $r = 2$ and $q = 3$. As the multiplicative order of 3 modulo 25 is $\phi(25)$, we apply Theorem 2 to compute the weight distribution $A_1^{(25)}, A_1^{(2)}, \ldots, A_1^{(25)}$ of the ternary code $M_1^{(25)}$. For this purpose, we first compute the numbers $N(v)$, $v \geq 0$. By Definition 1, $N(0) = 1$ and $N(v) = 0$ if $v = 1$ or $v \geq 6$. We now compute $N(2), N(3), N(4)$ and $N(5)$. In this case, by (1), we have

$$a(\ell_1) = 4 - \ell_1 \quad \text{and} \quad a(\ell_1, \ell_2) = \frac{(2 - \ell_1 - \ell_2)(3 - \ell_1 - \ell_2)}{2}.$$
Therefore,

\[
N(2) = \sum_{\ell_1=0}^{3} A(2; \ell_1) = \sum_{\ell_1=0}^{3} a(\ell_1) \left(\begin{array}{c} \ell_1 \\ 0 \end{array} \right) (q - 1) = 20,
\]

\[
N(3) = \sum_{\ell_1=1}^{3} A(3; \ell_1) = \sum_{\ell_1=1}^{3} a(\ell_1) \left(\begin{array}{c} \ell_1 \\ 1 \end{array} \right) (q - 1) = 20,
\]

\[
N(4) = \sum_{\ell_1=2}^{3} A(4; \ell_1) + \sum_{\ell_1 \geq 0, \ell_2 \geq 0} A(2, 2; \ell_1, \ell_2)
= \sum_{\ell_1=1}^{3} a(\ell_1) \left(\begin{array}{c} \ell_1 \\ 2 \end{array} \right) (q - 1) + \sum_{\ell_1 \geq 0, \ell_2 \geq 0} a(\ell_1, \ell_2) \left(\begin{array}{c} \ell_1 \\ 0 \end{array} \right) \left(\begin{array}{c} \ell_2 \\ 0 \end{array} \right) (q - 1)^2 = 30,
\]

\[
N(5) = \sum_{\ell_1} A(5; \ell_1) + \sum_{\ell_1 \geq 0, \ell_2 \geq 1} A(2, 3; \ell_1, \ell_2) + \sum_{\ell_1 \geq 1, \ell_2 \geq 0} A(3, 2; \ell_1, \ell_2)
= a_3(q - 1) + a_{0,1}(q - 1)^2 + a_{1,0}(q - 1)^2 = 10.
\]

Now Theorem 1 gives the weight distribution of the ternary irreducible cyclic code \(M^{(25)}_1 \):

\[
A_0^{(25)} = N(0) = 1,
\]

\[
A_1^{(25)} = 0,
\]

\[
A_2^{(25)} = \frac{5!}{4!} N(2) = 100,
\]

\[
A_3^{(25)} = \frac{5!}{4!} N(3) = 100,
\]

\[
A_4^{(25)} = \frac{5!}{4!} N(4) + \frac{5!}{2!3!} N(2)^2 = 4150,
\]

\[
A_5^{(25)} = \frac{5!}{4!} N(5) + \frac{5!}{3!} N(2)N(3) = 8050,
\]

\[
A_6^{(25)} = \frac{5!}{3!} N(2)N(4) + \frac{5!}{2!3!} N(3)^2 + \frac{5!}{2!3!} N(2)^3 = 96000,
\]

\[
A_7^{(25)} = \frac{5!}{3!} N(2)N(5) + \frac{5!}{3!} N(3)N(4) + \frac{5!}{2!2!} N(2)^2N(3) = 256000,
\]

\[
A_8^{(25)} = \frac{5!}{3!} N(3)N(5) + \frac{5!}{2!3!} N(4)^2 + \frac{5!}{2!2!} N(2)N(4) + \frac{5!}{2!2!} N(2)N(3)^2 + \frac{5!}{3!} N(2)^4
= 1413000,
\]

\[
A_9^{(25)} = \frac{5!}{3!} N(4)N(5) + \frac{5!}{2!2!} N(2)^2N(5) + \frac{5!}{2!} N(2)N(3)N(4) + \frac{5!}{2!3!} N(3)^3
+ \frac{5!}{3!} N(2)^3N(3) = 4126000,
\]
\[A_{10}^{(25)} = \frac{5!}{2!3!} N(5)^2 + \frac{5!}{2!} N(2) N(3) N(5) + \frac{5!}{2!2!} N(2) N(4)^2 + \frac{5!}{2!2!} N(3)^2 N(4) \\
+ \frac{5!}{3!} N(2) N(4) + \frac{5!}{2!2!} N(2) N(3)^2 + \frac{5!}{5!} N(2)^5 = 13941000, \]

\[A_{11}^{(25)} = \frac{5!}{2!} N(2) N(4) N(5) + \frac{5!}{2!2!} N(3) N(5)^2 + \frac{5!}{3!} N(2) N(5) + \frac{5!}{2!2!} \frac{N(3) N(4)^2}{N(2)} \\
+ \frac{5!}{2!2!} N(2)^2 N(3) N(4) + \frac{5!}{3!} N(2) + \frac{5!}{4!} N(2)^4 N(3) = 36220000, \]

\[A_{12}^{(25)} = \frac{5!}{2!2!} N(2) N(5)^2 + \frac{5!}{2!} N(3) N(4) N(5) + \frac{5!}{2!2!} N(2) N(3) N(5) + \frac{5!}{2!2!} N(4)^3 \\
+ \frac{5!}{2!2!} N(2) N(4) + \frac{5!}{2!} N(2) N(3) N(4) + \frac{5!}{4!} N(2)^4 N(4) + \frac{5!}{4!} N(3)^4 \\
+ \frac{5!}{2!3!} N(2) N(3) N(4) = 87490000, \]

\[A_{13}^{(25)} = \frac{5!}{3!2!} N(3) N(5)^2 + \frac{5!}{2!2!} N(2) N(4)^2 + \frac{5!}{2!2!} N(2) N(3) N(4) N(5) + \frac{5!}{3!} N(3) N(5)^2 \\
+ \frac{5!}{3!} N(2) N(3) N(5) + \frac{5!}{3!} N(2) N(4)^3 + \frac{5!}{2!2!} N(3) N(4)^2 + \frac{5!}{2!3!} N(2)^3 N(4) \\
+ \frac{5!}{2!2!} N(2) N(3)^2 N(4) + \frac{5!}{4!} N(2) N(3) N(4)^4 = 302890000, \]

\[A_{14}^{(25)} = \frac{5!}{2!3!} N(5)^3 + \frac{5!}{2!} N(2) N(3) N(5)^2 + \frac{5!}{2!} N(2) N(4)^2 N(5) + \frac{5!}{2!} N(3) N(4)^2 N(5) \\
+ \frac{5!}{3!} N(2) N(4) N(5) + \frac{5!}{2!2!} N(2)^2 N(3) N(4) + \frac{5!}{3!} N(3) N(4)^3 \\
+ \frac{5!}{2!2!} N(2) N(3) N(4)^2 + \frac{5!}{3!} N(2) + \frac{5!}{3!} N(3) N(3)^3 N(4) + N(3)^5 = 442410000, \]

\[A_{15}^{(25)} = \frac{5!}{2!} N(2) N(4) N(5)^2 + \frac{5!}{2!2!} N(3) N(5)^2 + \frac{5!}{2!2!} N(2) N(3) N(4)^2 N(5) \\
+ \frac{5!}{2!2!} N(2) N(3) N(4) N(5) + \frac{5!}{3!} N(2) N(3) N(5) + \frac{5!}{4!} N(4) + \frac{5!}{2!3!} N(2)^2 N(4)^3 \\
+ \frac{5!}{2!2!} N(2) N(3)^2 N(4)^2 + \frac{5!}{4!} N(3)^4 N(4) = 551650000, \]

\[A_{16}^{(25)} = \frac{5!}{3!} N(2) N(3) N(4) N(5)^2 + \frac{5!}{2!} N(3) N(5)^2 + \frac{5!}{2!2!} N(2) N(3) N(4)^2 N(5) \\
+ \frac{5!}{2!} N(2) N(3) N(4) N(5) + \frac{5!}{3!} N(2) N(3)^2 N(5) + \frac{5!}{4!} N(4) + \frac{5!}{2!3!} N(2)^2 N(4)^3 \\
+ \frac{5!}{2!2!} N(2) N(3)^2 N(4)^2 + \frac{5!}{4!} N(3)^4 N(4) = 581400000, \]
which is a power of 3, we apply Theorem 3 to compute the weight distribution of 7-ary irreducible
in order to compute the weight distribution of the binary irreducible cyclic code

4.4. Example 4

Let \(p = 3 \), \(r = 2 \) and \(q = 7 \). As the multiplicative order of 7 modulo \(3^m \) is \(3^{m-1} \),
which is a power of 3, we apply Theorem 3 to compute the weight distribution of 7-ary irreducible
cyclic code \(\mathcal{M}_1(7) \). Note that \(d = m - 1 \) in this case. By Theorem 3, we see that the only possible
non-zero weight in \(\mathcal{M}_1(7) \) is 3, which is attained by all its 6 non-zero codewords. If \(r \geq 2 \), the weight
distribution of \(\mathcal{M}_1(7) \) is given by

\[
A^{(25)}_{18} = \frac{5!}{3!} N(3)N(5)^3 + \frac{5!}{2!} N(4)^2 N(5)^2 + \frac{5!}{2!} N(2)^2 N(4)N(5)^3 + \frac{5!}{2!} N(2)^2 N(3)^2 N(5)^2
\]

\[
+ \frac{5!}{2!} N(2)N(3)N(4)^2 N(5) + \frac{5!}{3!} N(3)^3 N(4)N(5) + \frac{5!}{4!} N(2)N(4)^4
\]

\[
+ \frac{5!}{2!} N(3)^2 N(4)^3 = 516 000 000,
\]

\[
A^{(25)}_{19} = \frac{5!}{3!} N(4)(5)^3 + \frac{5!}{2!} N(2)^2 N(5)^3 + \frac{5!}{2!} N(2)N(3)N(4)N(5)^2 + \frac{5!}{2!} N(3)^3 N(5)^2
\]

\[
+ \frac{5!}{3!} N(2)N(4)^3 N(5) + \frac{5!}{2!} N(3)^2 N(4)^2 N(5) + \frac{5!}{4!} N(3)N(4)^4 = 381 600 000,
\]

\[
A^{(25)}_{20} = \frac{5!}{4!} N(5)^4 + \frac{5!}{3!} N(2)N(3)N(5)^3 + \frac{5!}{2!} N(2)N(4)^2 N(5)^2 + \frac{5!}{2!} N(3)^2 N(4)N(5)^2
\]

\[
+ \frac{5!}{3!} N(3)N(4)^3 N(5) + N(4)^5 = 230 350 000,
\]

\[
A^{(25)}_{21} = \frac{5!}{3!} N(2)N(4)(5)^3 + \frac{5!}{2!} N(3)^2 N(5)^3 + \frac{5!}{2!} N(2)N(4)^2 N(5)^2 + \frac{5!}{2!} N(3)^2 N(4)N(5)^2
\]

\[
= 110 500 000,
\]

\[
A^{(25)}_{22} = \frac{5!}{4!} N(2)N(5)^4 + \frac{5!}{3!} N(3)N(4)N(5)^3 + \frac{5!}{2!} N(4)^3 N(5)^2 = 40 000 000,
\]

\[
A^{(25)}_{23} = \frac{5!}{4!} N(3)N(5)^4 + \frac{5!}{2!} N(4)^2 N(5)^3 = 10 000 000,
\]

\[
A^{(25)}_{24} = \frac{5!}{4!} N(4)(5)^4 = 1 500 000,
\]

\[
A^{(25)}_{25} = N(5)^5 = 100 000.
\]

4.2. Example 2

Let \(p = 3 \), \(r = 2 \) be a positive integer and \(q = 7 \). As the multiplicative order of 7 modulo \(3^m \) is \(3^{m-1} \),
which is a power of 3, we apply Theorem 3 to compute the weight distribution of 7-ary irreducible
cyclic code \(\mathcal{M}_1(7) \). Note that \(d = m - 1 \) in this case. By Theorem 3, we see that the only possible
non-zero weight in \(\mathcal{M}_1(7) \) is 3, which is attained by all its 6 non-zero codewords. If \(r \geq 2 \), the weight
distribution of \(\mathcal{M}_1(7) \) is given by

\[
A^{(25)}_1 = \begin{cases}
0 & \text{if } 3 \text{ does not divide } i, \\
\left(\frac{3^{r-1}}{j}\right)(q-1)^j & \text{if } i = 3j, \ 0 \leq j \leq 3^{r-1}.
\end{cases}
\]

4.3. Example 3

Let \(p = 7 \), \(r = 2 \) and \(q = 3 \). The multiplicative order of 3 modulo 49 is \(\phi(49) \). Working as in
Example 1, we obtain the weight distribution of the ternary code \(\mathcal{M}_1(49) \), which is given by Table 1.

4.4. Example 4

Let \(p = 3 \), \(r = 2 \) and \(q = 2 \). Here the multiplicative order of 2 modulo \(3^m \) is \(2 \cdot 3^{m-1} \). Therefore
in order to compute the weight distribution of the binary irreducible cyclic code \(\mathcal{M}_1(3) \), we apply
Theorem 4. Note that \(u = 1 \) in this case. By Theorem 4, the weight distribution \(A_i^{(9)} \), \(0 \leq w \leq 9 \), of the binary code \(M_1^{(9)} \) is given by

\[
A_i^{(9)} = \sum \binom{w_1}{n} \binom{w_2}{n} \binom{w_3}{n},
\]

where the summation runs over all tuples \((w_1, w_2, w_3) \) of integers \(w_i \)'s satisfying \(w_1 + w_2 + w_3 = w \), \(w_i \geq 0 \) for each \(i \), and

\[
n(w_i) = \begin{cases}
1 & \text{if } w_i = 0, \\
3 & \text{if } w_i = 2, \\
0 & \text{otherwise}.
\end{cases}
\]

After a little calculation, we see that \(A_0^{(9)} = 1 \), \(A_2^{(9)} = \frac{3}{2} \binom{2}{2} \) \(= 9 \), \(A_4^{(9)} = \frac{3}{2} \binom{2}{2}^2 = 27 \), \(A_6^{(9)} = \binom{2}{2}^3 = 27 \) and \(A_1^{(9)} = A_3^{(9)} = A_5^{(9)} = A_7^{(9)} = A_8^{(9)} = A_9^{(9)} = 0 \). (Note that as the multiplicative order of 2 modulo \(3^m \) is \(\phi(3^m) \), we can also compute the weight distribution of \(M_1^{(9)} \) using Theorem 2.)

4.5. Example 5

Let \(p = 5 \), \(r = 2 \) and \(q = 4 \). The multiplicative order of 4 modulo \(5^m \) is \(2 \cdot 5^{m-1} \). To compute the weight distribution of the quaternary irreducible cyclic code \(M_1^{(25)} \), we apply Theorem 4. Note that \(u = 1 \) in this case. By Theorem 4, the weight distribution \(A_w^{(25)} \), \(0 \leq w \leq 25 \), of the quaternary code \(M_1^{(25)} \) is given by

\[
A_w^{(25)} = \sum n(w_1)n(w_2)n(w_3)n(w_4)n(w_5),
\]
where the summation runs over all tuples \((w_1, w_2, w_3, w_4, w_5)\) of integers \(w_i\)'s satisfying \(w_1 + w_2 + w_3 + w_4 + w_5 = w\), \(w_i \geq 0\) for each \(i\), and

\[
n(w_i) = \begin{cases}
1 & \text{if } w_i = 0, \\
15 & \text{if } w_i = 4, \\
0 & \text{otherwise}.
\end{cases}
\]

This gives \(A_{25}^{(0)} = 1\), \(A_{25}^{(4)} = \frac{5!}{4!} n(4) = 75\), \(A_{25}^{(8)} = \frac{5!}{2!3!} n(4)^2 = 2250\), \(A_{25}^{(12)} = \frac{5!}{2!3!} n(4)^3 = 33750\), \(A_{25}^{(16)} = \frac{5!}{4!} n(4)^4 = 253125\), \(A_{25}^{(20)} = n(4)^5 = 759375\), and the remaining \(A_{w_5}^{(25)}\)'s are equal to zero.

Acknowledgments

The authors are grateful to the anonymous referees for their comments and suggestions which helped to write the paper in the present form.

References