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A perturbed method for solving a new class of variational inclusions, is pre-
sented and a convergence result which includes, as a special case, some known
results in this field, is given. © 1994 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

In a recent paper [15], Siddiqi and Ansari have developed iterative
algorithms for finding approximate solution for new classes of quasivaria-
tional inequalities in Hilbert spaces. The aim of this work is to extend
their ideas (cf. Noor [11]) to more general problems. Specifically, let H be
a real Hilbert space endowed with a norm ||:|| and inner product (-, -) and
given continuous mapping T, g: H — H, with Img N dom 3¢ # ¢. We
consider the following problem:

Find 4 € H such that g(u) N dom d¢ # ¢ and

(T(w) — AW, v — gw) = ¢(gw)) — ¢(v), VYveH. (L]

In(1.1), A is a nonlinear continuous mapping on H, d¢ denotes the subdif-
ferential of a proper, convex and lower semi-continuous function ¢ : H —
R U {+x}.

The class of variational inclusions considered in (1.1) is more general
than the class of variational and quasivariational inequalities studied in
Noor [11], [12], Isac [7] and Seddiqi and Ansari [14], [15]. More precisely
with the choice ¢ = 8¢ the indicator function of closed convex set K, the
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class of strongly nonlinear variational inequality problem given by
{(T(w) — AW, v —gw)=0 forallv e K (1.2)

is recovered.

For the case when ¢(-) = 8x( - — m(u)) = Sxcmu(*), m a single valued
mapping on H, the problem (1.1) reduces to general strongly quasivaria-
tional inequality problem given by:

(T(w) — Aw), v — gw) =0 for all v € K(u), (1.3)

where the set K(u} is equal to K + m(u).

If the operator A is identically null then problem (1.3) is equivalent to
the following, called a general variational inequality problem:

Find ¥ € H such that g(u) € K and

(T, v—gu)) =0 for all v € K. (1.4)

The case when A(w) is independent of u, that is, A(x) = f, and g is
identity mapping, the problem (1.2) takes the form

(Tw) — fiv—uw=0 forallv e K (1.5)

then the inequality (1.5) is called variational inequality.

Next, let us consider the case when H = R”, K a closed convex set in
R” and g is the identity mapping then (1.2) becomes:

Find « € K such that

(Tu) — A(w), v —uwy =0 forallv € K (1.6)

which is the general complementarity problem. For further details we
refer, for example, to Noor [12], Cottle [3] and Karamardian [8].

A strong motivation for the study of this type of problem is its applica-
bility in mathematical physics, classical applied mathematics, and several
problems in mathematical programming. For more details we refer to
Duvaut-Lions [4], Mosco [10], Elliot and Javovsky [5], and Sakai [16].

The next section is more original. We first introduce a perturbed aigo-
rithm for solving (1.1), obtained by coupling an iterative method with a
data perturbation. We then prove a convergence result which is the exten-
sion of results of Noor [12] and Siddiqi and Ansari [15].
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2. PERTURBED ITERATIVE ALGORITHM

To begin with, let us transform (1.1) in a fixed point problem.

LEMMA 2.1. u is a solution of problem (1.1) if and only if u satisfies
the following relation

glu) = Ji(g(w) — o(T(u) — Au))) 2.1

where a > 0 is a constant and J% := (I + ade)™" is the so-called proximal
mapping, I stands for the identity on H.

Proof. From definition of J¢, one has
gu) — a(T(u) — AGw) € gu) + adp(gu)),
hence
A(u) — T(u) € dp(g(u)),
definition of d¢ yields
o) = p(gw) + (AW — Tw), v — gw)), VvEH

Thus u is solution of (1.1). |

To obtain an approximate solution of (1.1), we can apply a successive
approximation method to the problem of solving

u = F(u), 2.2)
where
Fu) =u — gu) + Ji(g(u) — a(T(u) — Au))).

The resulting procedure is

ALGORITHM 2.1. Given uy € H, compute u,., by the rule
Up+) = Uy — g(un) + Jg(g(un) - a(T(un) - A(“n))): (23)

where o > 0 is constant.

To perturb scheme (2.3), first, we add in the righthand side of (2.3) an
error ¢, to take into account a possible inexact computation of the proxi-
mal point and we consider an other perturbation by replacing in (2.3) ¢ by
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¢.,» where the sequence {¢,} approximates ¢. Finally, we obtain the per-
turbed algorithm which generates from any starting point uy in H a se-
quence {u,} by the rule

Upyy = Up — g(un) + Jﬁn(g(un) - a(T(un) - A(un))) + e,. (24)

This algorithm includes several previously known iterative methods in
this field. In particular, for ¢, = 8k and ¢, = 0 the procedure proposed by
Noor [12] for solving problem (1.6) and Siddiqi and Ansari [15] for the
problem (1.3).

Now, let us recall the following definition and lemma which are needed
in the proof of the next theorem.

DEerFINITION 2.1. A mapping T : H — H is said to be
(i) Strongly monotone, if there exists some a > 0 such that
(Tu — Tv, u — v) = alju — v|}, forallu,v € H.
(ii) Lipschitz continuous, if there exists a constant 8 > 0 such that

|Tu — To|| < Bllu — v, forall u, v € H.

LEMMA 2.2 [9). Let ¢ be a proper convex lower semi-continuous func-
tion. Then JS = (I + ade)™" is nonexpansive, that is

|J@u) — JEW)|| < |lu — v||  forall u, v € H.

THEOREM 2.1. Let the mapping T, g: H— H be strongly monotone
and Lipschitz continuous, respectively and A be Lipschitz continuous.
Assume lim,_, .. || J§"(v) — JEW)|| = 0, for all v € H, {u,} generated by (2.4)
with lim,_, .« |le,|| = 0, then u,., converges strongly to u solution of (1.1),

Jor

B+ uk— D] V(@ +uk— 1) - (= u)k@ - k)
a — NCR— < v — 12
B>pull — k) + Vy2— udkQ2 — k), u(l~k <y,
and k = 2V({1 — 286 + oY), k<1,

where B (resp. 8) are strongly monotonicity constant of T (resp. g) and vy,
W, o are Lipschitz constants of T, A, g, respectively.

409/185/3-15
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Proof. According to (2.2), u is characterized by
u=u— g+ Ji(glu) — a(T(u) — Au))).

By setting h(u) := g(u) — a(T(«) — A(u)) and using the triangular inequal-
ity, we obtain

ey — ul| = |lun — u — (glu,) — g))|| (2.5)
+ &) = JEh@))]| + lledl. '

On the other hand, by introducing the term J&(h(u)), we get
| J&(h(un)) — JERG| = |lhun) — h@|| + IVER) — TER)],

since J¢ is nonexpansive.
Hence,

I8 () — Jah@)|| = |, — 4 — (g(un) — g@))|
+ |lup — u — a(T(u,) — T(w))||
+ al|A(u,) — A)|]
+ & (h(w) — JEhw))),

which combined with (2.5), yields

fletwir — ull = 2llun — w0 — (g(un) — g@)|
+ Nun — u — a(T(u,) — T

+ allAu,) — AW)|| + ([JE(h(w) — TE(h(w)))|
+ lenll.

(2.6

ftn — 0 = (g(un) — gGI? = |lun — ul* — 2{u, — u, g(uy)
— g(w) + ||glu,) — g,

by Lipschitz continuity and strong monotonicity of g, we obtain
lun — u = (g(u) — g@)IP = (1 = 28 + o)) |lu, — ul. (2.7
By using similar arguments, we have

ln = u = 2(T(u,) ~ T@WH|? = (1 ~ 28a + a?u?) |lu, — ull?>. (2.8)
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Combining (2.6), (2.7), and (2.8) we finally obtain

lutner = ll = Ollun = ull + [|J&thw)) — JERG@)] + lled,

where ® = 2V1 = 28 + o2 + V1 — 2Ba + a¥y? + au.
By using the method of [12], we can check that ® < I.
By setting &, = ||JE(h(w)) — JE(h(w)|| + |ledl|, we can write

“un+l - ““ = ®”“n - uH + &n.

Hence
lltner ~ ull = @7 Mlug — ufl + 3, Oleyys .
j=1
The result follows from Ortega and Rheinboldt [13, p. 3381, since

lim e, =0. 1

n—s+x

Remark. The assumption Vv € H 5 — lim,, . J&(v) = J4(v) is satis-
fied when ¢, converges to ¢ in the sense of Mosco, that is,

VYu € H, ¥{u,} such that « = w — lim u,, then ¢(u) < lirp inf @,(u,)
Vu € H, 3{u,} such that u = s — lim «, and ¢(u) = lirp sup @,(u,),

where w, s stand for weak and strong topology, respectively (see, Attouch
and Wets (1], Thm. 3.26).
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