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A B S T R A C T

The present work proposes an experimental investigation and optimization of various process param-
eters during taper cutting of deep cryo-treated Inconel 718 in wire electrical discharge machining process.
Taguchi’s design of experiment is used to gather information regarding the process with less number of
experimental runs considering six input parameters such as part thickness, taper angle, pulse duration,
discharge current, wire speed and wire tension. Since traditional Taguchi method fails to optimize mul-
tiple performance characteristics, maximum deviation theory is applied to convert multiple performance
characteristics into an equivalent single performance characteristic. Due to the complexity and non-
linearity involved in this process, good functional relationship with reasonable accuracy between
performance characteristics and process parameters is difficult to obtain. To address this issue, the present
study proposes artificial neural network (ANN) model to determine the relationship between input pa-
rameters and performance characteristics. Finally, the process model is optimized to obtain a best parametric
combination by a new meta-heuristic approach known as bat algorithm. The results of the proposed al-
gorithm show that the proposed method is an effective tool for simultaneous optimization of performance
characteristics during taper cutting in WEDM process.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

In today’s manufacturing scenario, nickel based super alloy such
as Inconel 718 finds widespread application in aerospace, automo-
bile and other major industries due to its high strength to weight
ratio and wear resistance properties. However, these nickel based
alloys are difficult to machine due to their superior mechanical prop-
erties in addition to the lower thermal conductivity. Cryogenic
treatment brings some remarkable improvements in the thermal
and mechanical properties through refining the microstructure of
the materials. Deep cryogenic treatment refers to the treatment of
the materials at very low temperature around −196 °C, which affects
the entire cross section of the metal [1]. However, machining of such
alloys is hardly carried out in conventional machining processes.
Taper cutting operation using wire electrical discharge machining
(WEDM) provides an effective solution for producing complicated
and tapered profiles using any difficult-to-machine materials, super
alloys and composites, especially in the aerospace and defense in-
dustries. It is basically an electro-thermal process in which material

is eroded from the work piece by a series of discrete sparks between
the work piece and the wire electrode (tool) separated by a thin film
of dielectric fluid (de-ionized water) which is continuously fed to
the machining zone to flush away the eroded particles [2]. During
taper cutting operation in WEDM, the wire is subjected to defor-
mation resulting deviations in the inclination angle of machined
parts. As a result, the machined part loses its precision [3,4]. To
achieve better output characteristics during taper cutting opera-
tion in WEDM process, simultaneous improvement on properties
of wire electrodes and work piece materials seems to be vital.

To address this issue, Taguchi’s design of experiment is used to
study the effect of various process parameters on angular error,
surface roughness and cutting speed during taper cutting of deep
cryo-treated Inconel 718 with deep cryo-treated coated Bronco
cut-W wire. Analysis of variance (ANOVA) is employed to find out
the significance of the process parameters. However, the tradition-
al Taguchi method cannot optimize multiple performance
characteristics simultaneously. To overcome this limitation, a new
approach known as maximum deviation theory is applied to convert
multiple performance characteristics into an equivalent single per-
formance characteristic. Traditional approaches hardly develop good
functional relationship between process parameters and perfor-
mance characteristics when the process behaves in a non-linear
manner and involves large number of interacting parameters. To
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overcome this limitation, the relationship between process param-
eters and performance characteristics is developed through a back
propagation neural network (BPNN) model. In order to achieve faster
convergence, Levenberg–Marquardt algorithm (LMA) has been used.
Bayesian regularization is also adopted due to is generalization ca-
pability to minimize error using minimal weights and thus avoids
cross-validation. Finally, the process model is optimized by a new
meta-heuristic approach known as bat algorithm.

2. Literature review

Many studies have been attempted in the past to improve the
performance characteristics of wire electrical discharge machin-
ing (WEDM) process viz., surface roughness, cutting speed,
dimensional accuracy and material removal rate using various tra-
ditional, multi-criteria decision making and evolutionary algorithm
methods. However, the full potential of the process is not com-
pletely explored because of the complex and stochastic nature of
the process and involvement of large number of variables. Tosun
et al. [5] have presented an investigation on the effect of machin-
ing parameters on kerf and material removal rate in WEDM
operations and multi-objective optimization of parameters using
simulated annealing. Kuriakose and Shunmugam [6] have devel-
oped a multiple regression model to represent the relationship
between input and output variables and multi-objective optimiza-
tion method based on a Non-Dominated Sorting Genetic Algorithm
(NSGA). Mahapatra and Patnaik [7] have established the relation-
ship between control factors and responses like material removal
rate (MRR), surface finish (SF) and kerf by means of non-linear re-
gression analysis resulting in valid mathematical models. Finally,
genetic algorithm is employed to optimize the WEDM process with
multiple objectives. Sadeghi et al. [8] have applied Tabu search al-
gorithm for optimization of material removal rate and surface
roughness (SR) during wire electrical discharge machining process.
Khan et al. [9] have used grey relational analysis for simultaneous
optimization of surface roughness and micro hardness of the ma-
chined component of WEDM process. Jangra et al. [10] have also
applied grey relational analysis with Taguchi method for simulta-
neous optimization of material removal rate and surface roughness
in WEDM process for WC-Co composite. Mukherjee et al. [11] have
applied six different non-traditional optimization algorithms such
as genetic algorithm, particle swarm optimization, sheep flock al-
gorithm, ant colony optimization, artificial bee colony and
biogeography based optimization for single and multi-objective op-
timization of WEDM process.

Cryogenic processing of tool and work piece is also one of the
major research issues for the significant improvement of machin-
ing performance of the electrical discharge machining (EDM) and
WEDM process. In this direction, Kumar et al. [12] have investi-
gated the machinability of Inconel 718 work material with ceramic
powder mixed in dielectric fluid using cryogenically treated copper
electrode in electrical discharge machining. Kapoor et al. [1] have
investigated the effect of deep cryogenic treated brass wire elec-
trode using Taguchi experimental design. From the analysis of
variance, it is observed that wire type, pulse width, time between
two pulses and wire tension are important parameters for improv-
ing material removal rate. Gill and Singh [13] have investigated
the effect of deep cryogenic treatment of copper electrode on ma-
chinability of Ti 6246 alloy in electric discharge drilling. The study
confirms that improved material removal rate, wear ratio (WR),
tool wear rate (TWR) and precise drilled holes can be achieved
with cryogenic treatment. However, most of the research works
have focused on vertical cutting by WEDM. In today’s manufactur-
ing scenario, precision and die manufacturing not only requires
productivity, tolerances and dimensional accuracy but also demands
complicated profiles with inclined or curved surfaces. Hence, tapering

process is one of the most important applications of WEDM process.
The taper cutting using WEDM is first proposed by Kinoshita et al.
in 1987 [14]. They have developed a linear model for wire defor-
mation neglecting the forces produced during the process. Plaza
et al. [3] have developed two models for the prediction of angular
error in WEDM taper cutting and found that part thickness and
taper angle are the most influencing variables. Sanchez et al. [4]
have presented a numerical and empirical approach for the pre-
diction of angular error in WEDM taper cutting. A simulation
approach is adopted by Sanchez et al. [15] for analysis of angular
error in wire-EDM taper cutting and verified by experimentation.
Chiu et al. [16] have carried out an on-line adjustment of the axial
force imposed by the machine on the wire in taper cutting. Huse
and Su [17] have developed a theoretical model and concept of
inclined discharge angle for material removal analysis of WEDM’s
tapering process and proposed a strategy including control of dis-
charge power and wire tension for improving efficiency of the
process. Kinoshita [18] has also proposed different methods to com-
pensate the angular error in the taper cutting. However, limited
studies deal with the taper cutting operation in WEDM, with least
attention paid to optimize the process parameters of WEDM. The
application of both cryogenic treated wire electrode and work piece
is not adequately addressed in the literature. Therefore, the present
study attempts to study the effect of input parameters on various
performance measures using deep cryo-treated wire electrode and
work piece Inconel 718 during taper cutting operation in WEDM
process. Then, the process model is developed using artificial neural
network model which is optimized by a recent meta-heuristic ap-
proach called bat algorithm.

3. Proposed methodology

The present work proposes an integrated approach for predic-
tion and optimization of process parameters of WEDM process for
cryo-treated wire electrode and work piece materials during taper
cutting operation.

3.1. Maximum deviation theory

In the past, several multi-attribute decision making method ap-
proaches such as simple additive weight (SAW), weighted product
method (WPM), technique for order of preference by similarity to
ideal solution (TOPSIS), analytic hierarchy process (AHP), prefer-
ence ranking organization method for enrichment of evaluations
(PROMETHEE), desirability function have been adopted in convert-
ing multiple performance characteristics into a single equivalent
characteristic [19–22]. However, weight assignment to various per-
formance characteristics is quite subjective and arbitrary in
nature. It severely affects the ranking of the alternatives. To avoid
the embedded uncertainty and subjective assignment of weights
by the experts, it is prudent to extract the accurate information
from the available data. Maximum deviation theory, proposed by
Wang [23], can address the issue quite effectively. The computa-
tional steps of maximum deviation theory are outlined below to
compute the weight of each performance characteristic and finally
composite score, which is maximized, is calculated for each alter-
native [24].

3.1.1. Step 1: Normalization of the evaluation matrix
The normalization process is needed to transform different scales

and units among various attributes into common measurable units
to allow the comparisons of different attributes. The decision matrix
xij[ ] is obtained from experimental data by treating the number

of experiments as alternatives and performance characteristics as
the attributes. Each element of the decision matrix xij[ ] represents
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the value of jth attribute of ith alternative, where i n= 1 2, . .…… and
j m= 1 2, …… . To normalize the evaluation matrix, the following equa-
tions are used.
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3.1.2. Step 2: Weights determination through maximum deviation
method

In the present work, maximum deviation method is consid-
ered to compute the differences of performance values of each
alternative. For the attribute A j mj ={ }1 2, , ,…… , the deviation value
of the alternative S i ni ={ }1 2, ,…… from all the other alternatives
can be computed as follows
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Then, the total deviation values of all alternatives with respect
to other alternatives for the attribute A j mj ={ }1 2, , ,…… , can be
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The deviation of all the attributes along all the alternatives can
be represented as
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Based on the above analysis, we have to choose the weight vector
w to maximize all deviation values for all the attributes, for
which we can construct a linear model as follows
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To solve the above model, we construct the Lagrange function:
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where λ is the Lagrange multiplier. The partial derivative of L w j, λ( )
with respect to w j and λ are:
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Thus from Eq. (8) and (9) wj and λ can be determined as
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Further, the normalized attribute weights from the above can
be determined as follows:

w
d r r

d r r
j

ij ijl

N

i

N

ij ljl

N

i

N

j

M

,

,
=

( )
( )

==

===

∑∑
∑∑∑

� �

��
11

111

(10)

3.1.3. Step-3: Calculation of composite score
The weighted normalized objective values are calculated by

multiplying the normalized objective values and the objective
weights. The composite score is then obtained by summing all the
weighted objective function values for each alternative which is
treated as the equivalent single performance characteristic for
optimization.

3.2. A hybrid optimization approach using neural network and bat
algorithm

In the present work, for multiple performance characteristics op-
timization, a hybrid approach using artificial neural network
associated with bat algorithm is implemented for obtaining the
optimum machining parameter setting during taper cutting in
WEDM process. The methodology details are explained in the flow
chart as shown in Fig. 1. An artificial neural network (ANN) is a highly
flexible modeling tool with the ability to learn the mapping between
inputs and outputs. Hence, in the present work the fitness func-
tion for the proposed algorithm is developed using the weights and
biases obtained from the ANN model. A back propagation neural
network (BPNN) architecture consisting of three layers such as input
layer, hidden layer and output layer is commonly considered for de-
veloping functional relationship between input–output processes.
Functioning of neural network proceeds in two stages viz., learn-
ing or training and testing or inferences. The network architecture
is represented as l-m-n where l neurons are present at input layer
(equal to the number of inputs in the models), m neurons at the
hidden layer (optimized through experimentation) and n neurons
at the output layer depending on number of outputs desired from
the model. The input layer receives information from the external
sources and passes this information to the network for process-
ing. The hidden layer receives information from the input layer, does
all the information processing, the output layer receives pro-
cessed information from the network and sends the results out to
an external receptor. In order to achieve faster convergence,
Levenberg–Marquardt Algorithm (LMA) is applied in the present
work. LMA is a suitable approach for non-linear optimization and
significantly performs better than gradient decent, conjugate gra-
dient methods and quasi-Newton algorithms for medium sized
problems [25]. Bayesian regularization is used to provide better gen-
eralization performance and avoid over fitting.

The proposed Levenberg–Marquardt algorithm (LMA) with Bayes-
ian regularization [26] is given as:

1. Compute the Jacobian (by finite differences or using the chain
rule)

2. Compute the error gradient, g = Jte
3. Approximate the Hessian using the cross product Jacobian,

H = JtJ
where H is the Hessian matrix, J is the Jacobian matrix that
contains first derivatives of the network errors with respect
to the weights and biases. e is a vector of network errors

4. Calculate the fitness function, F = β*Ed + α*Ew, where Ed is the
sum of squared errors and Ew is the sum of squared weights.
α and β are the objective function parameters.

5. Solve (H + λI) δ = g to find δ
6. Update the network weights w using δ
7. Recalculate the fitness function using the updated weights
8. If the fitness function has not decreased, discard the new

weights, increase λ using v and go to step 5
9. Else decrease λ using v

10. Update the Bayesian hyper parameters using Mackay’s or
Poland’s formulae

Y W tr H= − ∗ ( )( )−α 1
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Fig. 1. Flow chart for proposed hybrid optimization bat algorithm with neural network.
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β = − ∗( )N y Ed2 0.

α = ∗ + ( )( )−W E tr HW2 0 1.

where W is the number of network parameters (number of weights
and biases)

N is the number of entries in the training set
Y is the number of effective parameters
tr(H−1) is the trace of the inverse Hessian matrix

Most real world design optimization problems are highly non-
linear and involve various design variables under complex
constraints. Modern meta-heuristic algorithms have been devel-
oped to carry out global search with the purpose of solving large
complex problems faster and obtain robust solutions. Intensifica-
tion and diversification are two major characteristics of meta-
heuristic algorithms. Intensification, also called exploitation, searches
around the current best solutions and selects the best candidates.
Diversification, also called exploration, allows the optimizer to
explore the search space more efficiently, mostly by means of
randomization [27]. To cope with the above issues, several meta-
heuristic algorithms have been proposed by several researchers
for global optimization such as genetic algorithm (GA), particle
swarm optimization (PSO), simulated annealing (SA), harmony
search (HS) and firefly algorithm (FA) [28–32]. In this paper, a
new efficient meta-heuristic method like bat algorithm (BA) is
used. BA is a bio-inspired algorithm based on the echolocation or
bio-sonar characteristics of microbats, developed by X. S. Yang in
2010 [27]. Bats have a mechanism called echolocation which guides
them to detect prey and avoid obstacles. In echolocation, each
pulse only lasts a few thousandths of a second (up to about 8–10 ms).
However, it has a constant frequency which is usually in the
region of 25–150 kHz corresponding to the wavelengths of 2–14 mm.
These bats emit very loud sound and listen for the echo that
bounces back from the surrounding objects [33]. Thus, a bat can
compute how far they are from an object and easily distinguish
the difference between an obstacle and a prey even in complete
darkness. Yang [27] has developed three generalized rules for bat
algorithms to transform the behaviour of bats into algorithms as
follows:

1) All bats use echolocation to sense distance and they also guess
the difference between food/prey and background barriers in
some magical way.

2) Bats fly randomly with velocity vi at position xi with a fixed
frequency fmin, varying wavelength λ and loudness A0 to
search for prey. They can automatically adjust the wave-
length (or frequency) of their emitted pulses and adjust the
rate of pulse emission r ∈[ ]0 1, depending on the proximity
of their target.

3) Although the loudness can vary in many ways, we assume
that the loudness varies from a large (positive) A0 to a
minimum constant value Amin .

The basic steps of BA can be explained as the algorithm shown
in Fig. 1. For each bat i( ) , its position xi and velocity vi in a
d-dimensional search space should be defined. xi and vi should be
subsequently updated during the iterations. The new solutions xi

t

and velocities vi
t at time step t can be calculated by

f f f fi = + −( )min max min β (11)

v v x x fi
t

i
t

i
t

i= + −( )− −1 1 * (12)

x x vi
t

i
t

i
t= +−1 (13)

where β in the range of [0, 1] is a random vector drawn from a
uniform distribution. Here, x* is the current global best location
(solution), which is located after comparing all the solutions among
all the n bats. As the product λi if is the velocity increment, either
fi (or λi) can be used to adjust the velocity change while fixing
the other factor λi (or fi), depends on the domain of the problem
of interest. fmin = 0 and fmax = 1 are used in the experimentation, de-
pending on the domain size of the problem of interest. Initially, each
bat is randomly assigned a frequency, which is taken uniformly from

f fmin max,[ ] . In the local search, once a solution is selected among
the current best solutions, a new solution for each bat is gener-
ated locally by using a local random walk which is defined as

x x Anew old t= + ε (14)

where ε is a random number drawn between [−1, 1] and A At t=
is the average loudness of all the bats at this time step. After that
the loudness Ai and the rate of pulse emission ri is also updated
accordingly as the iterations proceed. Once a bat found its prey, the
loudness usually decreases, while the rate of pulse emission in-
creases and the loudness can be chosen as any value of convenience.
A0 1= and Amin = 0 can be used for simplicity. Assuming Amin = 0
means that a bat has just found the prey and temporarily stops
emitting any sound we have,

A A r exp ti
t

i
t

i
t+ += = − −( )[ ]1 1 1α γ, (15)

where α and γ are constants. The parameter α has a similar effect
as the cooling factor in simulated annealing algorithm that con-
trols the convergence rate of this algorithm. For any 0 1< <α , 0 < γ ,
we have Ai

t → 0, r ri
t

i→ 0 as t → ∞ . Hence, fine tuning of the param-
eters α and γ can affect the convergence rate of the bat algorithm.

4. Experimentation

The experiments were performed on AC Progress V2 high pre-
cision CNC WEDM, which is manufactured by Agie-Charmilles
Technologies Corporation. The material selected for carrying out the
experiments is cryo-treated Inconel 718 of diameter 25 mm and
thickness of 20 mm, 30 mm and 40 mm respectively and cryo-
treated coated Bronco cut-W (by Bedra), diameter 0.2 mm, has been
used as the wire electrode. The cryogenic treatment was executed
under dry condition where the work piece being treated was not
exposed to the liquid nitrogen to eliminate the risk and damage of
thermal shock. Initially the coated Bronco cut-W wire electrode of
diameter 0.2 mm and Inconel 718 work piece of diameter 25 mm
with three different thicknesses of 20 mm, 30 mm and 40 mm re-
spectively was placed in the cryogenic chamber Kryo560-16. The
cryogenic chamber is coupled with a liquid nitrogen tank through
an insulated tubular pipe. Liquid nitrogen passes through the tubular
pipe and enters into the cryogenic chamber in gaseous state. The
flow of liquid nitrogen is controlled by a solenoid valve. First, both
wire electrode and work piece material are placed inside the cryo-
genic chamber and the temperature was slowly reduced to −196 °C
by computerized programmable controller at the rate of 1 °C/min.
The temperature was held constant for twenty four hours at a tem-
perature of −196 °C. Then, it was slowly brought to room temperature
and then two tempering cycles were performed to both coated
Bronco cut-W wire and Inconel 718 work piece to relieve the stresses
induced by cryogenic treatment. The temperature was increased to
+196 °C/min at the rate of 1 °C/min.

The input parameters and their levels were chosen based on the
review of literature, experience, significance and their relevance as
per some preliminary investigations [2,3]. Plaza et al. [3] sug-
gested that part thickness and taper angle are the most influencing
variables in WEDM taper cutting. Hence, in the present work part
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thickness, taper angle, pulse duration, discharge current, wire speed
and wire tension are considered as the input parameters. Their limits
as shown in Table 1 are set on the basis of capacity and limiting
conditions of the WEDM ensuring continuous cutting by avoiding
the breakage of the wire.

As discussed on the previous sections, angular error (AE), surface
roughness (SR) and cutting speed (CS) are considered the three im-
portant output performance measures for optimizing machining
parameters of WEDM taper cutting process. The surface rough-
ness value (in μm) has been obtained by measuring the mean
absolute deviation, Ra (surface roughness) from the average surface
level using SURFCOM 130A. The angular error can be expressed in
minute and calculated by the following formula:

Angular error = −θ φ

where θ is the programmed angle or the angle expected in the ma-
chined part.

Φ is the actual angle obtained in the machined part due to the
wire deformation.

After machining, the angle of the inclined surface ( φ) is mea-
sured with respect to the top surfaces using a Zeiss 850 CNC
coordinate measuring machine. The geometry of the test part is
shown in Fig. 2.

For WEDM cutting rate is also a desirable characteristic and it
should be as high as possible to give least machine cycle time leading
to increased productivity. In the present study, cutting rate is a
measure of job cutting which is digitally displayed on the screen
of the machine and is given in mm/min.

To evaluate the effects of machining parameters on perfor-
mance characteristics and identify the performance characteristics
under the optimal machining parameters, a special designed ex-
perimental procedure is required. In this study, the Taguchi method,
a powerful tool for experimental design was used to determine

optimal machining parameters during taper cutting operation in
WEDM process. It is planned to study the behaviour of six control
factors viz., A, B, C, D, E, and F and three interactions viz., A × B, A × C
and B × C based on past experience. The standard linear graph as
shown in Fig. 3 is used to assign the factors and interactions to
various columns of the orthogonal array [34,35]. The experimen-
tal architecture and the values of each performance characteristics
are shown in Table 2.

5. Results and discussions

The experiments are conducted as per Taguchi’s L27 orthogonal
array as described above considering cryo-treated Inconel 718 as
the work piece material with cryo-treated coated Bronco cut-W wire
electrode. Experimental results as shown in Table 2 are analysed
to determine the influence of various process parameters on angular
error, surface roughness and cutting speed by using the popular sta-
tistical software package MINITAB 16. Analysis of the results
presented in Fig. 4 leads to the conclusion that the third level of
part thickness (A3), first level of taper angle (B1), third level of pulse
duration (C3), first level of discharge current (D1), second level of
wire speed (E2) and first level of wire tension (F1) provide the
minimum value of angular error. From Fig. 4, it is evident that in-
crease of part thickness causes decrease in angular error because
a longer length of the wire electrode in a thicker work piece pro-
vides more opportunities for the spark to occur and enough space
for movement in U–V axes using upper guide and lower guide. Anal-
ysis of variance (ANOVA) is carried out to investigate the significance
of each parameter and their interaction in relation to angular error.
From Table 3, it is evident that part thickness, taper angle, pulse du-
ration, discharge current and wire tension are the significant
parameters for angular error during tapering process in WEDM at
significance level of 0.05.

Table 1
Input parameters with their levels.

Input variables Unit Symbol Levels

Level I Level II Level III

Part thickness mm A 20 30 40
Taper angle Degree B 5 6 7
Pulse duration μs C 24 28 32
Discharge current Amp D 14 16 18
Wire speed mm/s E 90 120 150
Wire tension N F 12 14 16

Fig. 2. Geometry of the test part for measuring angular error in WEDM experiments.

Fig. 3. Linear graph.
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Fig. 4. Effect of control parameters on angular error.
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Similarly, the optimum parameter setting for minimum surface
roughness is presented through the mean effect plot as shown in
Fig. 5. It leads to the conclusion that the third level of part thick-
ness (A3), first level of taper angle (B1), first level of pulse duration

(C1), first level of discharge current (D1), first level of wire speed (E1)
and third level of wire tension (F3) provide the minimum value of
surface roughness. ANOVA as shown in Table 4 shows that part thick-
ness, taper angle and pulse duration are the significant characteristics
for surface roughness during tapering process of WEDM. Analysis
of the result shown in Fig. 5 reveals that surface roughness initial-
ly increases with increase of thickness of work piece then decreases.
However, increase of pulse duration and discharge current causes
an increase in surface roughness because more discharge energy
is inputted per pulse.

Similarly, the optimum parameter setting for maximum cutting
speed is presented through the mean effect plot as shown in Fig. 6.
It leads to the conclusion that the third level of part thickness (A3),
first level of taper angle (B1), third level of pulse duration (C1), third
level of discharge current (D1), third level of wire speed (E1) and
third level of wire tension (F3) provide the maximum value of cutting
speed. ANOVA as shown in Table 5 shows that part thickness, taper
angle and pulse duration are the significant characteristics for cutting
speed during tapering process of WEDM.

Traditional Taguchi method can optimize a single objective func-
tion, it cannot solve multi-objective optimization problem. In the
present work, all the three responses angular error (AE), surface
roughness (SR) and cutting speed (CS) can be optimized individu-
ally using Taguchi technique. It may so happen that the optimal

Table 2
Experimental result of performance characteristics using L27 Orthogonal array.

Exp. No. A B C D E F Angular error
(minute)

Surface roughness
(μm)

Cutting speed
(mm/min)

Composite
score

1 1 1 1 1 1 1 30.221 2.245 0.926 0.5963
2 1 1 2 2 2 2 37.447 2.198 1.003 0.5579
3 1 1 3 3 3 3 39.119 2.742 1.745 0.7046
4 1 2 1 2 2 3 41.546 2.884 0.928 0.3393
5 1 2 2 3 3 1 42.485 2.893 1.015 0.3602
6 1 2 3 1 1 2 45.824 2.998 1.129 0.3451
7 1 3 1 3 3 2 46.616 3.112 0.975 0.2541
8 1 3 2 1 1 3 48.847 2.661 0.996 0.3342
9 1 3 3 2 2 1 52.145 2.995 1.345 0.3596

10 2 1 1 2 3 2 50.255 2.715 0.968 0.297
11 2 1 2 3 1 3 58.654 2.871 0.971 0.1748
12 2 1 3 1 2 1 33.526 2.994 0.997 0.428
13 2 2 1 3 1 1 50.398 3.115 0.932 0.1966
14 2 2 2 1 2 2 53.254 2.996 0.981 0.2099
15 2 2 3 2 3 3 44.658 3.112 1.422 0.4441
16 2 3 1 1 2 3 25.257 2.783 0.943 0.5412
17 2 3 2 2 3 1 32.542 2.845 1.135 0.5225
18 2 3 3 3 1 2 27.568 3.556 1.129 0.4155
19 3 1 1 3 2 3 28.356 2.553 1.018 0.5854
20 3 1 2 1 3 1 24.736 2.114 1.185 0.781
21 3 1 3 2 1 2 26.845 2.221 1.213 0.7461
22 3 2 1 1 3 2 34.628 2.229 0.992 0.5774
23 3 2 2 2 1 3 45.265 2.415 1.125 0.4739
24 3 2 3 3 2 1 35.548 2.648 1.553 0.6903
25 3 3 1 2 1 1 33.667 2.754 0.895 0.439
26 3 3 2 3 2 2 41.529 2.889 1.258 0.4632
27 3 3 3 1 3 3 34.289 2.665 1.764 0.78

Table 3
ANOVA for angular error.

Factor DF Seq SS Adj SS Adj MS F P

Part thickness (A) 2 423.89 423.89 211.943 45.23 0.000
Taper angle (B) 2 257.27 257.27 128.634 27.45 0.001
Pulse duration (C) 2 146.97 146.97 73.484 15.68 0.004
Discharge current (D) 2 101.92 101.92 50.960 10.88 0.010
Wire speed (E) 2 24.89 24.89 12.446 2.66 0.149
Wire tension (F) 2 65.61 65.61 32.807 7.00 0.027
A × B 4 1068.94 1068.94 267.234 57.03 0.000
A × C 4 210.41 210.41 52.604 11.23 0.006
Error 6 28.11 28.11 4.686
Total 26 2328.02
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Fig. 5. Effect of control parameters on surface roughness.

Table 4
ANOVA for surface roughness.

Factor DF Seq SS Adj SS Adj MS F P

Part thickness (A) 2 1.12451 1.12451 0.56226 53.67 0.000
Taper angle (B) 2 0.77426 0.77426 0.38714 36.95 0.000
Pulse duration (C) 2 0.25301 0.25301 0.12651 12.07 0.008
Discharge current (D) 2 0.46227 0.46227 0.23117 22.06 0.002
Wire speed (E) 2 0.01634 0.01634 0.00817 0.78 0.500
Wire tension (F) 2 0.00576 0.00576 0.00288 0.28 0.769
A × B 4 0.22859 0.22859 0.05714 5.45 0.034
A × C 4 0.13472 0.13472 0.03368 3.21 0.098
Error 6 0.06286 0.06286 0.01047
Total 26 3.06233
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setting for a performance characteristic cannot ensure other per-
formance characteristics within acceptable limits. To overcome this
problem in the present work, maximum deviation theory method
is applied for converting multiple performance characteristics into
a single equivalent performance characteristic. As discussed in section
3, the normalized objective values are calculated by using Eq. (1)
for angular error and surface roughness since both the objectives
are non-beneficial attributes whereas the normalized objective value
for cutting speed can be calculated by using Eq. (2) since it is a ben-
eficial attribute. The objective weights are determined for the
normalized values of objectives by applying maximum deviation
method using Eqs. (3–10). The weights obtained through the
maximum deviation method are 0.363864, 0.307471 and 0.328664
for angular error, surface roughness and cutting speed respective-
ly. The weighted normalized objective values are calculated by
multiplying the normalized objective values and the objective
weights. The composite score is obtained by summing all the
weighted objective function values for each alternative which is
treated as the equivalent single performance characteristic for op-
timization. The values of composite score are listed in Table 2. The
effect of various process parameters is studied using Taguchi analysis
through MINITAB 16 software package. Analysis of result as shown
in Fig. 7 leads to the conclusion that the third level of part thick-
ness (A3), first level of taper angle (B1), third level of pulse duration
(C3), first level of discharge current (D1), third level of wire speed
(E3) and third level of wire tension (F1) provide the maximum value
of composite score.

Analysis of variance (ANOVA) is also carried out to investigate
the significant effect of each parameter and their interaction in re-
lation to composite score. From Table 6, it is evident that part
thickness, taper angle, pulse duration, discharge current, wire speed,
wire tension and the interaction of part thickness and taper angle

and also interaction of part thickness and pulse duration are the
significant parameters for composite score during tapering process
of WEDM.

Taguchi method is quite capable of suggesting optimum para-
metric condition through factorial plots and developing functional
relationship between the input parameters with the performance
characteristics. However, the functional model in Taguchi method
is mostly linear in nature. Therefore, complexity involved in the ta-
pering operation of WEDM may not be fully captured in a linear
model. Since ANN is quite capable of mapping inputs and outputs
in complex situations efficiently, the optimum parametric condi-
tion defined through factorial plot is predicted through neural
networks. The back propagation neural network (BPNN) has been
developed using the experimental data set as shown in Table 2. Out
of 27 data, 75% of data (1–20) are selected as training data and 25%
of the data (21–27) have been used to test the performance of the
selected neural network. To determine the number of neurons in
the hidden layer, various back propagation neural network (BPNN)
models have been chosen to achieve performance error equal to 0.001.
Five BPNN models 6-4-1, 6-5-1, 6-6-1, 6-7-1 and 6-8-1 have been
selected. Finally, BPNN architecture 6-5-1 showed minimum root
mean square error (RMSE). Learning and momentum parameters
are set at 0.08 and 0.50. The number of epochs run was 1000. In
spite of higher number of iterations to converge at a final value, low
learning rate is used to ensure the neural network to escape from
local optima. Using back propagation, initially assigned weights are
repeatedly adjusted to minimize the error until the error achieves
the target of 0.001. It can be observed that data are well fitted because
a high degree of coefficient of determination (R2) as 0.99875 for train-
ing data as shown in Fig. 8 is obtained. Hence, using the trained neural
network model the predicted value of composite score for optimum
set of input parameters (A3B1C3D1E3F1) is obtained as 0.7810.
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Fig. 6. Effect of control parameters on cutting speed.

Table 5
ANOVA for cutting speed.

Factor DF Seq SS Adj SS Adj MS F P

Part thickness (A) 2 0.13156 0.13156 0.06578 16.23 0.004
Taper angle (B) 2 0.01132 0.01132 0.00566 1.40 0.318
Pulse duration (C) 2 0.81249 0.81249 0.40624 100.24 0.000
Discharge current (D) 2 0.02952 0.02952 0.01475 3.64 0.092
Wire speed (E) 2 0.20141 0.20141 0.10070 24.85 0.001
Wire tension (F) 2 0.09529 0.09529 0.04764 11.76 0.008
A × B 4 0.11930 0.11930 0.02982 7.36 0.017
A × C 4 0.09785 0.09785 0.02446 6.04 0.027
Error 6 0.02432 0.02432 0.00405
Total 26 1.52306
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Fig. 7. Effect of control parameters on composite score.

Table 6
ANOVA for composite score.

Factor DF Seq SS Adj SS Adj MS F P

Part thickness (A) 2 0.3165 0.3165 0.1582 196.62 0.000
Taper angle (B) 2 0.0861 0.0861 0.0430 53.53 0.000
Pulse duration (C) 2 0.8361 0.8361 0.0418 51.93 0.000
Discharge current (D) 2 0.0312 0.0312 0.0156 19.39 0.002
Wire speed (E) 2 0.0556 0.0556 0.0278 34.55 0.001
Wire tension (F) 2 0.0192 0.0192 0.0096 11.94 0.008
A × B 4 0.1984 0.1984 0.0496 61.62 0.000
A × C 4 0.0021 0.0210 0.0052 6.52 0.022
Error 6 0.0048 0.0048 0.0008
Total 26 0.8166
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In order to explore the optimization landscape to obtain best
parametric setting, a new meta-heuristic approach like bat algo-
rithm is used to obtain the best parametric combination of machining
parameters. The well-trained neural network model is used as the
fitness function for the process model. Finally, the developed model

is optimized using bat algorithm. Bat algorithm is coded using
MATLAB 13.0. The algorithm considers a bat size of 25, loudness
constant 0.7, pulse rate 0.5 and maximum number of iterations 100.
The other parameters are selected suitably to achieve the conver-
gence. Finally, the maximum composite score and the statistical
values of the best solution are obtained by bat algorithm as shown
in Table 7. Fig. 9 illustrates that bat algorithm converges towards
global optimum. Finally the result obtained from bat algorithm is
compared as shown in Table 7 with the results of Taguchi’s optimum
setting for machining parameters to maximize composite score. Com-
parison of results reveals that composite score (0.9857) obtained
from bat algorithm is superior than the predictive composite score
value (0.7810) obtained from Taguchi analysis.

6. Conclusions

In this work, a hybrid approach is proposed for optimization of
various machining parameters during taper cutting in WEDM
process using deep cryo-treated coated Bronco cut-W wire elec-
trode and Inconel 718 as the work piece material. The effect of
input parameters on various performance characteristics such as
angular error, surface roughness and cutting speed is also analysed
individually after taper cutting operation in deep cryo-treated
Inconel 718. In order to optimize, multiple performance character-
istics simultaneously, maximum deviation theory is used to convert
multiple performance characteristics into a single equivalent per-
formance characteristic. As the process is a complex one, the
functional relationship between the process parameters and per-
formance characteristic during taper cutting process in WEDM
process has been developed using BPNN. For faster training of
ANN, Levenberg–Marquardt algorithm is used. The suggested process
model can be used in any taper cutting operation for prediction of
various performance characteristics before experimentation because
a high degree of correlation is obtained. A latest evolutionary
algorithm known as bat algorithm has been successfully used to
predict the optimal parameter setting so as to produce the optimal
result in the process. Although the approach is applied in taper
cutting using WEDM, the approach is quite generic and can be
applied in any complex machining situation for developing the
process model.
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