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a b s t r a c t

Reaction systems are a formal model of interactions between biochemical reactions. The
main observation underlying the formulation of this model is that such interactions are
based on two basic mechanisms: facilitation and inhibition. This paper continues the
investigation of reaction systems, and in particular, it proposes a formal framework for
introducing time into reaction systems.Within this framework one can formally define and
investigate notions such as reaction times, creation times of compounds, their life spans,
etc.
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0. Introduction

This paper continues research on reaction systems (see [1–3]) which are a formal model of interactions between
biochemical reactions. The main idea behind reaction systems is that two main mechanisms underlying the regulation
of biochemical reactions are facilitation and inhibition. These two mechanisms underlie the functioning of individual
biochemical reactions as well as the interactions between individual biochemical reactions.
This reasoning leads to the formalization of a reaction as a triplet a = (Ra, Ia, Pa), where Ra is the set of reactants, Ia is the

set of inhibitors, and Pa is the set of products. Such a reaction a can take place (is enabled) in a state (set) T if all the reactants
are present in T (hence Ra ⊆ T ), and none of the inhibitors are present in T (hence Ia ∩ T = ∅). If a is enabled in T , then Pa
is produced, and so Pa is the result of applying a to T ; otherwise the result of applying a to T is the empty set.
These notions (of enabling and of the result) for single reactions are extended to sets of reactions as follows. A set A of

reactions is enabled in state T if each reaction of A is enabled in T . Thus, unlike in standard theories of concurrent systems
(see, e.g., [4] for Petri nets) there is no notion of conflict (between reactions in a state) involved in the definition of enabling
of a set of reactions. This reflects our assumption about the ‘‘threshold supply’’ of elements (molecules): either an element
is present and then there is ‘‘enough’’ of it, or an element is not present. Therefore there is no counting in reaction systems
— in this sense reaction systems present qualitative rather than quantitative analysis of interactions between reactions.
If a set of reactions A is (enabled in and) applied to a state T , then the result of applying A to T is the cumulative result

of applying all reactions in A to T : resA(T ) =
⋃
a∈A Pa. In particular this means that if an element x ∈ T is not in

⋃
a∈A Pa,

then it ‘‘disappears’’ — it is not sustained even if it was not at all ‘‘involved’’ in the reactions from A (i.e., even if x is not
a reactant for any of the reactions from A). This reflects another important assumption we make: there is no permanency
of elements — if nothing happens to an element, then it ceases to exist (the only way to keep an element present is to
sustain it by suitable reactions). This assumption, motivated by organic chemistry, is again very different from traditional
theories of concurrent systems (such as, e.g., Petri nets). Altogether, assumptions behind our model are often orthogonal to
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the assumptions underlying traditional formal models in computer science — see [1,2] for a more detailed discussion of this
issue.
A reaction system is then just an ordered pairA = (S, A), where A is a finite set of reactions, and S is a finite (background)

set such that Ra ∪ Ia ∪ Pa ⊆ S for each a ∈ A. The dynamics of a reaction system is given through the notion of an interactive
process. This is a sequence of stateswhere each state is a subset of S given as the union of two sets: the result of transforming
the previous state by A and a context set (which, e.g., may represent an interaction with the ‘‘environment’’).
Our reasoning in constructing a framework for an abstract study of biochemical reactions based on reaction systems is

that the basic notion of a reaction systemcan be extended/modifiedwhenever needed in studies of specific issues concerning
biochemical reactions. Thus in the study of the formation of modules (compounds) in an environment determined by
biochemical reactions (such as a ‘‘molecular soup’’) presented in [3], a reaction system was equipped with a binary relation
R on the set of potential states. Then, in a state sequence one can move from a state T to a state Q if the underlying reaction
system prescribes such a move and the pair (T ,Q ) is admissible inR (belongs toR).
Clearly, there are situations where one needs to assign quantitative parameters to the states of a reaction system — one

of such situations, viz., assigning time values/moments to states, is the topic of this paper. Our assumption is that such
a numerical value can be assigned to a state T if there is a measurement of T yielding this value. This leads us to define
measurement functions which are functions assigning reals to potential states ofA (hence to subsets of the background set
S). Naturally, as, e.g., in measure theory, such measurement functions are required to be additive, i.e., for a measurement
function f and two disjoint subsets Z1, Z2 of S we have f (Z1 ∪ Z2) = f (Z1)+ f (Z2).
Then, a reaction system with measurements is a triplet A = (S, A, F), where (S, A) is a reaction system, and F is a finite

set of measurement functions on (the subsets of) S.
In this paper, we are concerned with introducing time in reaction systems. In particular, we propose to define a time

function (assigning time to consecutive states of state sequences) as a measurement function which has nonnegative values
and is such that f (T ) < f (Q ) if T ,Q are two consecutive states of a state sequence with Q following T — this is ‘‘time flows
forward’’ condition. The goal of this paper is to establish a formal framework for considering time in reaction systems. In
particular, this will allow us to talk about issues such as reaction times, the time moments of states in a state sequence, the
elapsed time between the holdings of states, and all kinds of (time) ratios.
The paper is organized as follows.

After establishing in Section 1 some basic notation and terminology, in Section 2 we recall the basic notions concerning
reaction systems, and we introduce the notion of a reaction system with measurements. In Section 3 we introduce time
functions as measurement functions, and then we define clocks as subsets of the background set that can measure time.
Here time functions are first defined for single state sequences, and then extended to universal time functions that can
measure time on all state sequences of a reaction system (more precisely on all the so-called active state sequences). In
Section 4, we discuss the more obvious way of providing universal time-functions, viz., through external counters. They can
be compared to dropping a watch to a Petri dish — one can see time while taking a snapshot of a Petri dish, but this time has
no relationship to what is going on in the dish. A more interesting way of providing universal time for reaction systems is
to use the so-called timers. In this way one gets the counting of time which is dependent on reactions going on in a reaction
system (Petri dish). The formal notion of a timer is introduced in Section 5, examples of timers are given in Section 6, and
in Section 7 we discuss the use of timers to provide universal time for reaction systems. Then in Section 8 we demonstrate
how to use our framework for introducing time in reaction systems to determine reaction times. Most importantly, we
demonstrate that using timers we can indeed have times of reactions dependent on the state of a system (which is a basic
feature of reactions in organic chemistry). Then, based on our methodology of establishing reaction times, in Section 9 we
demonstrate how to follow the dynamics of creating products/compounds in reaction systems. In particular, we discuss how
to establish the timemoment (between two consecutive states) when a compound is created as well as how to establish the
life span of a compound. The discussion in Section 10 concludes this paper.

1. Preliminaries

Throughout the paper we use standard set-theoretical notation and terminology. We use ∅ to denote the empty set. For
a set Awe use |A| to denote its cardinality, and 2A to denote the family of all subsets of A. For sets A and B, we use A ∪ B and
A ∩ B to denote their union and intersection, respectively. We write A ⊆ B if A is included in B. For a family F of sets, we
use

⋃
F and

⋂
F to denote the union and the intersection of all sets in F , respectively.

For a sequence % = V0, V1, . . . , Vn, its length is denoted by |%|; hence |%| = n+ 1.
We use R to denote the set of reals, and R+ to denote the set of positive reals. For a finite set Z ⊆ R, maxZ is the biggest

real in Z , and 6Z is the sum of all the reals in Z . A function f : F → R, where F is a family of sets closed under union, is
additive if, for all disjoint Z1, Z2 ∈ F , f (Z1 ∪ Z2) = f (Z1)+ f (Z2). Note that if ∅ ∈ F , then f (∅) = 0. If f is nonnegative (i.e.,
f (Z) ≥ 0 for each Z ∈ F ), then we consider f to be a function with the range R+ ∪ {0} (i.e., f : F → R+ ∪ {0}).

2. Reaction systems

In this section we recall (from [2]) some basic notions concerning reaction systems, and then we introduce the notion of
a reaction system with measurements.



312 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 410 (2009) 310–322

Definition 1. A reaction is a 3-tuple a = (R, I, P) of finite sets.
For a reaction a as above: the set R, also denoted by Ra, is the reactant set of a; the set I , also denoted by Ia, is the inhibitor

set of a, and the set P , also denoted by Pa, is the product set of a. For a set A of reactions, RA =
⋃
a∈A Ra, IA =

⋃
a∈A Ia, and

PA =
⋃
a∈A Pa.

If S is a set such that R, I, P ⊆ S, then we say that a is a reaction in S.
In this paper we assume that Ra, Ia, and Pa are nonempty, and Ra ∩ Ia = ∅ for each reaction a.

Definition 2. (1) For a reaction a and a finite set T , the result of a on T , denoted resa(T ), is defined by: resa(T ) = Pa if Ra ⊆ T
and Ia ∩ T = ∅, and resa(T ) = ∅ otherwise.

(2) For a set of reactions A and a set T , the result of A on T , denoted resA(T ), is defined by: resA(T ) =
⋃
a∈A resa(T ).

If Ra ⊆ T and Ia ∩ T = ∅, then we say that a is enabled on T ; otherwise we say that a is not enabled on T . For a set of
reactions Awe say that A is enabled on T if each a ∈ A is enabled on T .
Thus a reaction a is enabled on a set T if T separates Ra from Ia, i.e., Ra ⊆ T and Ia ∩ T = ∅. Similarly, a set of reactions A

is enabled on T if T separates RA from IA.
Note that unlike in traditional theories of concurrency (such as Petri nets, see, e.g., [4]) there is no notion of conflict here

when applying a set of reactions in a given state. This reflects our assumption about the ‘‘threshold supply’’ of elements
in the basic setup of reaction systems: either an element is present and then there is ‘‘enough’’ of it, or an element is not
present. Hence in the basic theory of reaction systems we do not have counting: it is a qualitative rather than a quantitative
theory. On the other hand, there exists a natural notion of inconsistency of a set of reactions that is independent of a state
to which the set is applied. Such inconsistency arises if reactants of some reactions are inhibitors for some other reactions.
A set A of reactions is consistent if RA ∩ IA = ∅; otherwise A is inconsistent.

Definition 3. A reaction system, abbreviated rs, is an ordered pair A = (S, A) such that S is a finite set, and A is a finite set
of reactions in S.
The set S is called the background (set) ofA.

Definition 4. LetA = (S, A) be a rs, and let T ⊆ S.
(1) The result ofA on T , denoted resA(T ), is defined by resA(T ) = resA(T ).
(2) The T-activity ofA, denoted by enA(T ), is the set {a ∈ A : a is enabled on T }. If enA(T ) 6= ∅, then T is active (inA).
Note that since we assume that Pa 6= ∅ for every nonempty reaction a, the condition enA(T ) 6= ∅ above is equivalent to

the condition resA(T ) 6= ∅.
The dynamic behaviour of reaction systems is expressed (formalized) through interactive processes which are defined

as follows.
Definition 5. LetA = (S, A) be a rs. An interactive process inA is a pair π = (γ , δ) of finite sequences such that, for some
n ≥ 1, γ = C0, C1, . . . , Cn, δ = D1, . . . ,Dn, where C0, . . . , Cn,D1, . . . ,Dn ⊆ S, D1 = resA(C0), and Di = resA(Ci−1 ∪ Di−1)
for each 2 ≤ i ≤ n.
The sequence C0, . . . , Cn is the context sequence ofπ , and the sequenceD1, . . . ,Dn is the result sequence ofπ . LetW0 = C0,

andWi = Di ∪ Ci for each 1 ≤ i ≤ n. Then the sequenceW0,W1, . . . ,Wn is the state sequence of π , denoted by sts(π), and
W0 is the initial state of π . For each 0 ≤ j ≤ n, Cj is the context of Wj. If for each 1 ≤ j ≤ n, Cj ⊆ Dj, then we say that sts(π) is
a state sequence with no intervention by contexts. The sequence E0, E1, . . . , En−1 of subsets of A such that Ei = enA(Wi) for all
0 ≤ i ≤ n − 1 is called the activity sequence of π , denoted by act(π). If act(π) consists of nonempty sets only, then sts(π)
is active, i.e., with a possible exception of the last state, all states in an active state sequence are active. The set of all state
sequences ofA (i.e., all state sequences of all interactive processes inA) is denoted by STS(A), and the set of all active state
sequences ofA is denoted by ASTS(A).
Note that in general, in a state sequence a state Wi which is not active can be followed by an active state Wi+1 — this

happens when Ci+1 is active (sinceWi is not active,Wi+1 = Ci+1).
Although the core theory of reaction systems is qualitative, as, e.g., it does not include counting, it can be extended so that

quantitative parameters/values can be assigned to the states of a reaction system. Our assumption here is that a numerical
value can be assigned to a state T if there is a measurement of T yielding this value, where a measurement of T is a real
number assigned to T . Since in reaction systems states are sets, we are led to assigning real numbers to sets, and hence we
deal with functions from all subsets of a given set (the background set of a reaction system) into reals. As usual (e.g., as in
measure theory) we assume that such measurement functions are additive. Then the basic notion of a reaction system is
extended to the notion of a reaction system with measurements defined as follows.
Definition 6. (1) Ameasurement function for a rs(S, A) is an additive function f : 2S → R.
(2) A reaction system with measurements, abbreviated rsm, is a tripletA = (S, A, F) such that (S, A) is a rs, and F is a finite
set of measurements functions.
The ordered pair (S, A) is called the underlying reaction system of A, denoted by und(A). Also, for f ∈ F , and T ⊆ S,

[T ]f = {t ∈ T : f (t) 6= 0}.
As usual, wemay notationally identify a singleton set {x}with its element x— thereforewe havewritten above f (t) rather

than f ({t}). All the notions and notations concerning reaction systems carry over to reaction systems with measurement
(through their underlying reaction systems).
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3. Time functions and clocks

In this section we will introduce time (functions) for reaction systems. This will be useful in the analysis of behaviour of
reaction systems. For example, we will be able to determine that ‘‘something’’ (a reaction) occurs earlier than something
else (another reaction), or we will be able to determine how much time elapsed between two states in a state sequence.
We begin by defining a time function for a single state sequence.

Definition 7. Let A be a rs, and let τ = W0, . . . ,Wn ∈ STS(A). A time function for τ (in A) is a nonnegative measurement
function f for A such that f (Wi) < f (Wi+1) for each i ∈ {0, . . . , n − 1}. We say that τ is timed (by f ) if there exists a time
function (f ) for τ .
We require that a time function is a nonnegative measurement function (f : 2S → R+ ∪ {0}) as we do not want to

have elements of the background that can set time back. The condition of strict monotonicity: f (Wi) < f (Wi+1), expresses
the natural requirement that ‘‘time flows forward’’. This allows one to express time ratios of measured quantities: e.g., if
g is a measurement function, then, since f (Wi+1) − f (Wi) 6= 0,

g(Wi+1)−g(Wi)
f (Wi+1)−f (Wi)

expresses time-relativised change of g in the
transition fromWi toWi+1. Note that if τ = W0, . . . ,Wn ∈ STS(A) is timed (by f ), then, for all i, j ∈ {0, . . . , n},Wi 6= Wj
whenever i 6= j (as otherwise the strict monotonicity condition would be violated).
A clock is a device to measure time. Accordingly, within the framework of reaction systems, a clock is a subset of the

background set that measures time correctly. Formally, this is expressed as follows.
Definition 8. Let A be a rs, let τ = W0, . . . ,Wn ∈ STS(A), and let f be a time function for τ . A (τ , f )-clock is a subset K
of S such that f (Wi) = f (Wi ∩ K) for each i ∈ {0, . . . , n}. We say that K is a tight (τ , f )-clock if no strict subset of K is a
(τ , f )-clock.
Note that if τ ∈ STS(A) is timed by f , then there is a (τ , f )-clock. For example, S is a (τ , f )-clock. Also, [S]f is a (τ , f )-

clock, which in general may be smaller than S. However [S]f does not have to be tight. As a matter of fact a tight (τ , f )-clock
is unique, and it is defined by Kτ ,f =

⋃
{[Wi]f : 0 ≤ i ≤ n}. It is the minimal (τ , f )-clock in the sense that if K is a (τ , f )-

clock, then Kτ ,f ⊆ K . This follows from the observation that since f (T ) ≥ 0 for each T ⊆ S, and f (K ∩Wi) = f (Wi) for each
i ∈ {0, . . . , n}, it must be that [Wi]f ⊆ K . The strict monotonicity property of time functions implies that the length of a
timed state sequence is bounded, with the bound dependent on the cardinality of its minimal clock.
Lemma 9. LetA be a rs, let τ = W0, . . . ,Wn ∈ STS(A) be timed, let f be a time function for τ , and let K be a (τ , f )-clock with
q = |K |. Then n ≤ 2q − 1.
Proof. Since K is a (τ , f )-clock, f (Wi) = f (Wi ∩ K) for each i ∈ {0, . . . , n}. Since f is a time function for τ , f (Wi) 6= f (Wj)
whenever i 6= j, for all i, j ∈ {0, . . . , n}. Therefore |τ | is bounded by the number of subsets of K , which implies that
n+ 1 ≤ 2q. �

Example 10. LetA = (S, A, {f }) be a rsm defined as follows.
(1) S = D ∪ {b, e}, where D = {d0, d1, . . . , dk} for some k ≥ 1 and e, b /∈ D.
(2) f is a nonnegative function such that f (di) = 2i for each i ∈ {0, . . . , k}, f (b) = 0, and f (e) = 2k+2.
(3) A is the union of the sets of reactions B0, B1, B2, B3, B4 defined as follows:
B0 = {({b},D ∪ {e}, {d0})},
B1 = {({dj}, {d0, e}, {d0}) : j ∈ {1, . . . , k}},
B2 = {({d0, . . . , dj−1}, {dj, e}, {dj}) : j ∈ {1, . . . , k}},
B3 = {({dj}, {di, e}, {dj}) : i, j ∈ {0, . . . , k} and i < j}, and
B4 = {(D, {e}, {e})}.

A defines a binary counter, where subsets of D represent binary numbers: if di ∈ Z ⊆ D for i ∈ {0, . . . , k}, then the
binary number represented by Z has 1 on position 2i. For example, {d3, d0} represents 1001 (hence 9 in binary notation).
The reaction from B0 will begin counting when started from 0 (represented by {b}).

Reactions from B1 perform adding 1 to an even number.
Reactions from B2 perform adding 1 to an odd number.
Reactions from B3 sustain bits dj which are not affected by carryover resulting by adding 1.
The reaction from B4 introduces e, when the range of the representation by D (viz., 2k+1 − 1) is reached.
This example illustrates a functioning of an rsm as a counter. It will be used (somewhat modified) in the sequel of this

paper. However now we can use it to demonstrate that the bound from Lemma 9 cannot be improved (i.e, we may have
n = 2q − 1) — one can indeed time very long state sequences with small clocks.
To this aim consider the state sequence τ of A, where τ = W0,W1, ...,Wn, where W0 = {b}, and Wi+1 = resA(Wi)

for each i ∈ {0, . . . , n}, and n = 2k+1 − 1. From the definition of A it follows thatW0,W1, . . . ,Wn are representations of
consecutive binary numbers (beginning with 0), i.e., the values of f on τ are 0, 1, 2, 3, . . . , 2k+1− 1. ThusW1 = {d0},W2 =
{d1},W3 = {d0, d1}, . . . , and Wn = D. Since f (b) = 0, D is a (τ , f )-clock for τ ; as a matter of fact D = Kτ ,f . Moreover,
|τ | = n+ 1 = 2k+1, while |D| = k+ 1. Thus |τ | = 2|D|.
Until now the time functionwas state sequence dependent: it was defined just for a single state sequence.Wemove now

to define time function for reaction systems, i.e., one universal time function for all (active) state sequences of a reaction
system.
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Definition 11. Let A be a rs. A universal time function for A is a measurement function f for A such that, for each τ ∈
ASTS(A), f is a time function for τ . If there is a universal time function (f ) forA, then we say thatA is timed (by f ).

In this paper the time will be measured from within a rsm in the sense that a part of a system will be just measuring
time. Thus the time moments of consecutive states of the whole system will correspond to the values of the time function
on the states of this subsystem. Consequently, the passage of time is determined by the transformation of the states of this
subsystem. This implies that the passage of time would have to stop when the system arrives at a state which is not active.
For this reason in the definition of a universal time function we restrict ourselves to active state sequences only.
Recall that, for each rs A = (S, A), [S]f is a (τ , f )-clock for each τ ∈ STS(A) and each time function f for τ . Hence,

Lemma 9 implies that in a timed rsA, there is a common bound on the length of all active state sequences. However thismay
be really not restrictive, since, as shown in Example 10, small clocks can time very long state sequences: e.g., for [S]f = 100
we can time state sequences of length 2100.
The following lemma expresses an important property of universal time functions.

Lemma 12. LetA = (S, A) be a rs. A nonnegative measurement function f forA is a universal time function forA if and only if
f (T ) < f (resA(T )) for each active T ⊆ S.

Proof. LetA = (S, A) be a rs and let f be a nonnegative measurement function forA.

(i) Assume that f is a universal time function forA, and let T ⊆ S be active. Since T , resA(T ) is an active state sequence of
A, it follows from the definition of a universal time function that f (T ) < f (resA(T )).

(ii) Assume that f (T ) < f (resA(T )) for each active T ⊆ S. Since f is nonnegative, this implies that if T ,Q is an active state
sequence of A, then f (T ) < f (Q ). Consequently, f is a time function for each τ ∈ ASTS(A), and hence f is a universal
time function forA. �

4. Providing universal time functions by external counters

Clearly not every rs (rsm) is timed. For example, if a rs (rsm) contains an active state sequence with two states W ,W ′
such thatW preceedsW ′ andW ′ ⊆ W , then it is not timed, as f (W ′) ≤ f (W ) for each measurement function f . However,
we will demonstrate in this section that each rsm can be extended by equipping it with a counter so that the resulting rsm
is timed. Moreover, this counter does not really ‘‘interfere’’ with the functioning of the original system (except for making
sure that the composed rsm does not run if the counter doesn’t). We begin by constructing a counter.
Let k ∈ N+, and letA(k) = (Sk, Ak, Fk) be the rsm defined as follows.

Sk = {c0, . . . , ck, d0, . . . dk, e}.
Fk = {fk}, where the measurement function fk is defined by:
fk(ci) = 0 for all i ∈ {0, . . . , k},
fk(di) = 2i for all i ∈ {0, . . . , k}, and
fk(e) = 2k+1.
The intuition behindA(k) is that it is a binary counter that, without an intervention by context, is counting orderly up to

2k+1−1, but, if ‘‘something goeswrong’’ (e.g., something ‘‘wrong’’ is added by a context), then it jumps to the ‘‘time stopper’’
e. Elements c0, . . . , ck represent zeros, and elements d0, . . . , dk represent ones in the binary representation of a number;
this is formally set by the values of f on c0, . . . , ck and d0, . . . , dk. Then the time stopper e represents a number that is bigger
than any number that can be represented using c0, . . . , ck, d0, . . . , dk; we have chosen to set f (e) = 2k+1.
The set of reactions Ak is defined as the union of the sets of reactions B1, . . . , B7 defined below.
(1) B1 consists of all reactions ({ci, di}, {e}, {e}), for all i ∈ {0, . . . , k}.
The intuition behind B1 is that if both ci and di for some i ∈ {0, . . . , k} belong to a current state, then the current state

does not represent a binary number — thus something went wrong, and so A(k) introduces time stopper e (which is an
inhibitor for every reaction in Ak).
(2) B2 consists of all reactions ({u}, {ci, di, e}, {e}), for all i ∈ {0, . . . , k} and all u /∈ {ci, di, e}.

The intuition behind B2 is that, for each i ∈ {0, . . . , k}, each good state must contain either ci or di (as otherwise it does not
represent a binary number) — thus if this is not the case, thenA(k) introduces e.
(3) B3 consists of all reactions ({ci, dj}, {e}, {dj}), for all i, j ∈ {0, . . . , k} such that i < j.

The intuition behind B3 is that if a binary number contains a zero on position i, then a possible carry over from incrementing
the number by one will not get to position j if j > i; thus dj is sustained.
(4) B4 consists of one reaction: ({c0}, {e}, {d0}).

This reaction is producing the successor of an even number.
(5) B5 consists of all reactions ({d0, . . . , di, ci+1}, {e}, {c0, . . . , ci, di+1}) for all i ∈ {0, . . . , k− 1}.

The reactions from B5 produce the successor of an odd number.
(6) B7 consists of all reactions ({ci}, {dj, e}, {ci}) for all i ∈ {1, . . . , k} and j ∈ {0, . . . , k− 1} such that j < i.

The intuition behind B6 is that all the zeros in a binary number that are not changed into ones as the result of the successor
function should be sustained.
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(7) B7 consists of one reaction, viz. ({d0, . . . , dk}, {e}, {e}).
The intuition behind B7 is that this reaction represents the ‘‘end of time’’: the successor of 2k+1 − 1 cannot be represented
in Sk.
Note that it follows from the construction of A(k) that a nonempty subset T of Sk is an active state of A(k) if and only

if it does not contain e. If an active state T of A(k) represents a number x, then resA(k)(T ) represents x + 1 providing that
x+ 1 < 2k+1 − 1, otherwise resA(k)(T ) contains e. Hence fk(T ) < fk(resA(k)(T )).
We will use nowA(k) to extend an arbitrary rsm to a timed rsm. The extension is done as follows.
Let A = (S, A, F) be a rsm, let k ≥ 1, and let A(k) = (Sk, Ak, {fk}) be a k-counter such that Sk ∩ S = ∅. We define then

the rsmA′ = (S ′, A′, F ′) as follows.

(i) S ′ = S ∪ Sk.
(ii) A′ = Ae ∪ Ak ∪ G, where
Ae = {(Ra, Ia ∪ {e}, Pa) : a ∈ A}, and
G = {({u}, Sk, {e}) : u ∈ S}.

(iii) For each g ∈ F , we define the measurement function g ′ : 2S
′

→ R as follows: for each x ∈ Sk, g ′({x}) = 0, and for each
x ∈ S, g ′({x}) = g({x}). The measurement function fk is extended to the measurement function f ′ : 2S

′

→ R as follows:
for each x ∈ S, f ′({x}) = 0, and for each x ∈ Sk, f ′({x}) = fk({x}). Then we set F ′ = {g ′ : g ∈ F} ∪ {f ′}. (In defining g ′
and f ′ above we use the obvious fact that to specify a measurement function it suffices to give its values on all singleton
sets).

In fact, A′ is essentially a ‘‘modified union’’ of A and A(k), where A(k) influences the functioning of A within A′ as
follows (note thatA does not influence the functioning ofA(k)withinA′).

(1) The time stopper e ofA(k) inhibits each reaction.
(2) The runs of A without counting are inhibited by G (thus if the initial state of a state sequence of A′ is disjoint with
Sk − {e}, then e is introduced and so the run is blocked).

The fact thatA′ functions asAwith the counting of time performed byA(k) is more formally expressed by the following
two properties (the straightforward proof of these properties is left to the reader).

(I) For every n ≥ 1, ifW0,W1, . . . ,Wn ∈ STS(A) and Z0, Z1, . . . , Zn ∈ ASTS(A(k)), thenW0 ∪ Z0,W1 ∪ Z1, . . . ,Wn ∪ Zn ∈
ASTS(A′) and f ′(Wi ∪ Zi) = fk(Zi) for all i ∈ {0, . . . , n}.

(II) For each U0,U1, . . . ,Un ∈ ASTS(A′), it holds that S ∩ U0, S ∩ U1, . . . , S ∩ Un ∈ STS(A), Sk ∩ U0, Sk ∩ U1, . . . , Sk ∩ Un ∈
ASTS(A(k)), and f ′(Ui) = fk(Sk ∩ Ui) for all i ∈ {0, . . . , n}.

We will prove now thatA′ is timed by f ′.

Lemma 13. If τ = T ,Q is an active state sequence ofA′, then f ′(T ) < f ′(Q ).

Proof. Since τ is active, T 6= ∅ and e /∈ T .
By definition, f ′(T ) = f ′([T ]f ′).
We consider separately two cases.

(i) [T ]f ′ = ∅.
Then, by the definition of G, e ∈ resA′(T ), and so, by the value of f ′(e), f ′(T ) < f ′(resA′(T )).

(ii) [T ]f ′ 6= ∅.

Since e /∈ T , [T ]f ′ is an active state of A(k). Therefore (see the comment after the definition of A(k)), f ′([T ]f ′) <
f ′(resA(k)([T ]f ′)). Since S ∩ Sk = ∅, we get f ′(resA(k)([T ]f ′)) = f ′(resA′([T ]f ′)) = f ′(resA′(T )). Hence, again, f ′(T ) <
f ′(resA′(T )).
Since in both cases f ′(T ) < f ′(resA′(T )) and f ′ is nonnegative, we get f ′(T ) < f ′(Q ). �

Theorem 14. A′ is a timed rsm.

Proof. By Lemma 13, f ′ is a time function for each τ ∈ ASTS(A′). Therefore f ′ is a time function forA′, and soA′ is timed. �

Note that in our construction the counter A(k) got incorporated into A′ as an ‘‘external counter’’: its counting is not
influenced by the rest ofA′. It may be seen as a ‘‘clock dropped into a Petri dish’’ (representingA), so that the snapshots of
A representing states in a state sequence contain now also the state ofA(k). In other words, each snapshot (state) contains
now a time certificate. These time certificates show an ‘‘external time’’ which is in no way influenced by (related to) the
reactions ofA.
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5. Timers

We will extend now reaction systems with measurements to timed reaction systems with measurement by equipping
them with ‘‘devices’’ which provide time functions which are interacting with the ‘‘rest of the system’’. These devices will
be timers which are introduced in this section.

Definition 15. A timer is a rsmA = (S, A, F), where F = {f }, and there exists an element e ∈ S such that the following five
conditions hold (we set D = S − {e} and assume D 6= ∅):

(C1) f (u) > 0 for all u ∈ S,
(C2) f (e) > f (D),
(C3) e ∈ Ia for each a ∈ A, and
(C4) f (T ) < f (resA(T )) for each nonempty T ⊆ D.

Condition C1 requires that a timer does not have redundant elements, i.e., each element of (the background set of) a timer
contributes to time counting.
Note that ifA = (S, A, {f }) is a timer, then an element e ∈ S as in the definition above is unique, viz., it is the element of

S for which f has the biggest value. As a matter of fact, the value f (e) exceeds the sum of the values of f on all elements of
D (condition C2). Also, e is an inhibitor for all reactions inA (condition C3), which means that once introduced it stops the
functioning ofAf . For this reason, e is called the end of time forA, denoted by eA; also we set DA = S − {eA}.
Condition C4 is the main technical requirement. Note that it implies that a nonempty T ⊆ S is active if and only if T ⊆ D.

Most importantly, it implies that f is a universal time function forA. This is stated in the following lemma.

Lemma 16. LetA = (S, A, {f }) be a timer.

(1) For each T ⊆ S, f (T ) = 0 if and only if T = ∅.
(2) eA ∈ resA(DA).
(3) f is a universal time function forA.

Proof. ad(1) Since f is a measurement function, T = ∅ implies f (T ) = 0. The reverse implication follows from condition
C1.

ad(2) Condition C4 implies that f (DA) < f (resA(DA)), and so resA(DA) contains an element outside DA. Thus eA ∈
resA(DA).

ad(3) This follows directly from C4 and Lemma 12. �

6. Examples of timers

In this section we give three examples of timers.

Example 17. LetA = (S, A, {f }) be the rsm obtained from the rsm from Example 10 by the following modifications:

(i) b is removed from S, i.e., S = D ∪ {e},
(ii) f is now restricted to D ∪ {e}, and
(iii) the singleton set B0 is removed from A, i.e., A is the union of the sets of reactions B1, B2, B3, B4.

It is easily seen that A satisfies conditions C1, . . . , C4 from Definition 15 (with m = 2k+1 − 1), and so A is a timer. As
a matter of fact, any choice of the value of f (e) such that f (e) ≥ 2k+1 is good for satisfying condition C2 — we have chosen
2k+2.
To illustrate the functioning of this timer let’s choose k = 3, and the initial state W0 = {d2, d3}. Then τ =

W0,W1,W2,W3,W4 is an active state sequence (with no intervention by contexts), where
W1 = {d0, d2, d3},
W2 = {d1, d2, d3},
W3 = {d0, d1, d2, d3}, and
W4 = {e}; note thatW4 is not an active state.
The values of f on τ are: 12, 13, 14, 15, 32, and so τ represents the counting by successor from 12 to 15, then jumping to

32 (when e is introduced).
It is important to notice that in this timer, for any two consecutive states Wi,Wi+1 in an active state sequence, if

e /∈ resA(Wi), then f (resA(Wi))− f (Wi) = 1. Therefore we say that this timer counts by successor.

Example 18. LetA = (S, A, f ) be the rsm defined as follows.

(1) S = D ∪ {e}, where D = {d0, . . . , dk} for some k ≥ 1, and e /∈ D.
(2) f is defined by: f (di) = 1 for all i ∈ {0, . . . , k}, and f (e) = k+ 3.
(3) A is the union of three sets of reactions B1, B2, B3 defined as follows:
B1 = {({di, . . . , dk}, {e, d0, . . . , di−1}, {e}) : i ∈ {0, . . . , k}},
B2 = {({di}, {e}, {di}) : i ∈ {0, . . . , k}}, and
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B3 = {({di, . . . , dj}, {e, d0, . . . , di−1, dj+1}, {dj+1}) : i, j ∈ {0, . . . , k− 1} and i ≤ j}.

A defines a unary counter, where each Z ⊆ D defines the number in unary notation, viz., |Z |. Given a nonempty T ⊆ D, the
reactions from A transform T as follows.
By productions from B1, if there is i ∈ {0, . . . , k} such that dj ∈ T for all j ≥ i, and dj /∈ T for all j < i, then e ∈ resA(T ) is

signaling that unary counting was completed.
By productions from B2, each di in T is sustained, i.e., if di ∈ T , then di ∈ resA(T ) for all i ∈ {0, . . . , k}.
By productions from B3, dt is added (i.e., dt ∈ resA(T )) for the smallest t such that dt /∈ T , and du ∈ T for some u < t .

Thus with no intervention by contexts, given nonempty T ⊆ D with m = min{i ∈ {0, . . . , k} : di ∈ T }, A will function
(count) as follows:

(1) If T is not the suffix of D (i.e., D is not of the form {di, . . . , dk} for some i ≤ k), thenA will count from |T | to k − m + 1
by adding one in each step, and thenAwill add f (e) = k+ 3 (as a consequence of introducing e) and stop.

(2) If T is the suffix of D, thenAwill jump from the value |T | to the value |T | + f (e), and then stop.

It is easily seen thatA satisfies conditions C1, . . . , C4 from Definition 15 (withm = k+ 1), and soA is a timer.
To illustrate the functioning of this timer let’s choose k = 11, and the initial state W0 = {d3, d4, d8, d9}. Then

τ = W0,W1, . . . ,W6 is an active state sequence (with no intervention by contexts), where
W1 = {d3, d4, d5, d8, d9},
W2 = {d3, d4, d5, d6, d8, d9},
W3 = {d3, d4, d5, d6, d7, d8, d9},
W4 = {d3, d4, d5, d6, d7, d8, d9, d10},
W5 = {d3, d4, d5, d6, d7, d8, d9, d10, d11}, and
W6 = {e, d3, d4, d5, d6, d7, d8, d9, d10, d11}.
Clearly,W6 is not an active state as it contains ewhich inhibits every reaction.
Thus, in this state sequence, first the gap {d5, d6, d7} is filled in sequentially in the order d5, d6, d7, then the gap {d10, d11}

is filled in sequentially in the order d10, d11, and then, since the counting was completed, e is introduced, and the system
becomes inactive.
Note that the system could be activated again if context adds a nonempty subset of D: for example if this context

C7 = {d1, d3}, thenW7 = C7 and soW7 is active with resA(W7) = {d1, d2, d3}.
The values of f on τ are: 4, 5, 6, 7, 8, 9, 23, and so τ represents counting by successor from 4 to 9, then jumping to 23

(when e is introduced), and stopping afterwards. It is important to note that also this timer counts by successor.

Example 19. Let A = (S, A, {f }) be the rsm which is identical to the rsm from Example 18 except that A contains an
additional group of reactions B4 = {({di, dj}, {d`, e}, {d`}) : i, j, ` ∈ {0, . . . , k} and i < ` < j}.
Thus this rsm also counts in unary, except that if nonempty T ⊆ D has a ‘‘gap’’ (i.e., there are i, j ∈ {0, . . . , k} such that

j > i, dj, di ∈ T and d` /∈ T for all ` ∈ {i+ 1, . . . , j− 1}), then each such gap is filled in by 1’s (i.e., corresponding d′`s) in one
step. Hence in one counting step increments bigger than one may be added.
It is easily seen that adding B5 to the set of reactions from the rsm from Example 18 does not influence the satisfiability

of conditions C1, . . . , C4 from Definition 15, and so alsoA is a timer.
To illustrate the functioning of this timer let’s again (as in the previous example) choose k = 11 and the initial state

W0 = {d3, d4, d7, d9}. Then τ = W0,W1,W2,W3,W4 is an active state sequence (with no intervention by contexts), where
W1 = {di : 3 ≤ i ≤ 9},
W2 = {di : 3 ≤ i ≤ 10},
W3 = {di : 3 ≤ i ≤ 11}, and
W4 = {e} ∪ {di : 3 ≤ i ≤ 11}.
Clearly,W4 is not an active state as it contains ewhich inhibits every reaction.
Note that here, already in the first transition fromW0 toW1, all the gaps, viz. {d5, d6} and {d8}were filled in at once. From

then on, as in the previous example, d10 and then d11 were produced, followed by the production of e. The values of f on τ
are: 4, 7, 8, 9, 23. Note that filling in all gaps at once gave the jump of the value of f from 4 to 7. Then, as in the previous
example, the values increased by one until ewas introduced. Thus the essential difference with the two previous examples
is that this timer does not count by successor.

7. Using timers to provide universal time

In this section we will demonstrate how to equip rsms with universal time functions using timers. The difference with
Section 4, where we used external counters, is that now the timer part of the resulting rsm interacts bothways with the rest
of the system. As we will see in the sequel of the paper, this is a fundamental difference as it allows for defining reaction
times (rates) in such a way that they depend on the state of the system.
We will need the following useful notion.

For a rsm A = (S, A, F) and f ∈ F , the f-restriction of A, is the rsm system Af = ([S]f , [A]f , {f ′}), where [A]f = {a ∈ A :
Ra ∪ Ia ∪ Pa ⊆ [S]f }, and f ′ is f restricted to the subsets of [S]f .
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Definition 20. LetA = (S, A, F) be a rsm, and let f ∈ F be nonnegative.
(1) We say that f defines a timer forA if
(i) Af is a timer,
(ii) for each u ∈ S − [S]f there exists Z ⊆ S such that Z ∩ [S]f 6= ∅ and ({u}, [S]f , Z) ∈ A,
(iii) for each a ∈ A, eAf ∈ Ia.
(2) We say thatA contains a timer (based on f ) if there exists f ∈ F which defines a timer forA.

Thus f defines a timer forA if the f -restriction ofA is a timer, each set of elements U from outside the background set
ofAf (i.e., U ⊆ S − [S]f )will introduce some elements from the timerAf if no element of [S]f is present in a current state,
and moreover the end of time element ofAf inhibits all reactions fromA.
In the notation from the above definition, we say thatAf is a timer forA, and for T ⊆ S, [T ]f is the state ofAf in T .
We will demonstrate now that if f defines a timer forA, then f is a universal time function forA.

Lemma 21. Let A = (S, A, F) be a rsm, and let f ∈ F be such that it defines a timer for A. If T ⊆ S is active in A, then
f (T ) < f (resA(T )).

Proof. Note that since T is active, it must be that T 6= ∅ and e /∈ T .
There are two possible cases which we will consider separately.
(1) [S]f ∩ T = ∅.
Then f (T ) = 0, and by (ii) of Definition 20, f (resA(T )) > 0. Thus f (T ) < f (resA(T )).
(2) [S]f ∩ T 6= ∅.
Since f (T ) = f (T ∩ [S]f ) and Af is a timer and [S]f ∩ T 6= ∅, by C4 from Definition 15 we get f (T ) = f (T ∩ [S]f ) <
f (resAf (T ∩ [S]f )).
Since no production inAf can be inhibited by an element from S–[S]f , f (resAf (T ∩ [S]f )) ≤ f (resAf (T )).
Therefore f (T ) = f (T ∩ [S]f ) < f (resA(T )).
Since cases (1) and (2) are exhaustive, the lemma holds. �

Theorem 22. LetA = (S, A, F) be a rsm, and let f ∈ F . If f defines a timer forA, then f is a universal time function forA.

Proof. The theorem follows from Lemmas 21 and 12. �

Thus if f ∈ F defines a timer for A, then [S]f is a universal clock for A, and Af specifies the functioning of this clock.
However the time counting by f may be influenced by productions from A–[A]f (the ‘‘rest of the system’’). Intuitively, it
is the rest of the system that specifies the set of reactions that one is really interested in, while Af specifies the timing
mechanism for counting time. Note that F may contain several measurement functions that define timers forAwith some
of them better than others for specific considerations (applications).
When we write down an active state sequence W0,W1, . . . ,Wn for a reaction system, then the sequence of indices

0, 1, 2, . . . , n is external to the system itself — the same holds formostmodels of computation. This often leads to conclusion
that one unit of time elapses between eachWi andWi+1 which often is neither justified nor intended.
When we deal with reaction systems with measurements and f defines a timer for the system considered, then for a

given state sequenceW0,W1, . . . ,Wn its consecutive time indices are really f (W0), f (W1),..., f (Wn). These time indices are
internal to the system — they are determined (computed) by the system itself (viz., byAf ). Moreover, in general quite a lot
can be said about what happens between the state with the time index f (Wi) and the state with the time index f (Wi+1) in
a given state sequence. This is the subject of the remaining part of this paper.

8. Counting time: Reaction times

Wemove now to the important issue of determining the time duration of sets of reactions. The basic underlying unit of
time measurement is the tick of the timer Af determined by f . The value of this tick is state dependent, and it is formally
defined as follows.
LetA = (S, A, F) be a rsm, and let f ∈ F define a timer (Af ) forA.
For U ⊆ DAf , ticU(Af ) = f (resAf (U)) − f (U) is the tick of Af in U . Then, for an active state T of A, we define

ticT (Af ) = tic[T ]f (Af ) (note that since T is an active state ofA, eAf /∈ [T ]f and so tic[T ]f (A)f is well defined). Hence ticT (Af )
is the increase of the value of f contributed byAf in T ; thus ticT (Af ) = f (resAf ([T ]f )− f (T ).
We will establish now a couple of basic properties of the tick ofAf .
The first property says that the only case when timerAf produces a tick equal zero is when its state is the empty set.

Lemma 23. For each U ⊆ DAf , ticU(Af ) = 0 if and only if U = ∅.

Proof. If U = ∅, then resAf (U) = ∅ and so ticU(Af ) = f (∅)− f (∅) = 0.
If U 6= ∅, then, by C4 from Definition 15, f (resAf (U)) > f (U)which implies that ticU(Af ) 6= 0. �

The second property says that the ticks ofAf establish theminimal discernability formeasuring time in reaction systems.
The time interval between two consecutive states T ,Q in an active state sequence cannot be smaller than the tick of Af
in T .
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Fig. 1.

Lemma 24. For each active T ⊆ S, f (resA(T ))− f (T ) ≥ tic[T ]f (Af ).
Proof. Since no reaction inAf is inhibited by an element from S−[S]f , resAf ([T ]f ) ⊆ resA(T ). Since f (T ) = f ([T ]f ) and f is
nonnegative, this implies that f (resA(T ))− f (T ) ≥ f (resAf ([T ]f ))− f ([T ]f ) = tic[T ]f (Af ) (again note that since T is active,
tic[T ]f (Af ) is defined). �

In order to determine the time (duration) of a set of reactions in a given state, we need a number of auxiliary notions.
For a consistent B ⊆ A, [PB]f is the total contribution of B toAf . Then, for T ⊆ S such that B ⊆ enA(T ), [PB]f − resAf ([T ]f )

is the influence of B on Af in T , denoted by infT (B,Af ). Thus if infT (B,Af ) 6= ∅, then B changes the state of Af (after T is
transformed byA) by adding (by union) infT (B,Af ) to resAf ([T ]f ); otherwise B does not change the time keeping function
of Af in [T ]f . Clearly, the change of the value of time function f caused by B in T amounts to adding f (infT (B,Af )) to
f (resAf ([T ]f )). Accordingly, f (infT (B,Af )) is called the delay by B on T, and denoted by delT (B).
Thus, when f is a time function which defines a timer for A, the ticks of Af determine the basic time passage for state

transitions in state sequences of A. In an active state sequence τ = W0, . . . ,Wi,Wi+1, . . . ,Wn if we assume that in the
state transition fromWi toWi+1
(1) the influence of the set of reactions from outside Af onAf inWi is empty, and that
(2) the context Ci+1 does not influenceAf (i.e., [Ci+1]f ⊆ resAf (Wi)),
then ticT (Wi) is the transition time fromWi toWi+1. This basic transition rhythm is in general state dependent. Hence the
value of the tick of Af in the transition fromWi toWi+1 may be different than the value of the tick of Af in the transition
fromWj toWj+1 when j 6= i. Whether or not it is actually different depends on the properties ofAf , and on the properties
of statesWi andWj.
Our basic assumption is that for a (consistent) set of reactions B the reaction time for B is dependent on the current

stateWi (in which B is enabled). What B actually does (as far as the time properties of τ are concerned) is adding to the set
resAf ([Wi]f ) its own influence onAf inWi. The situation is illustrated in Fig. 1.
The counting of time by Af together with the influence by B, determines then the reaction time of B in Wi. This is

formalized as follows (recall that, by definition, infT (B,Af ) is disjoint with resAf ([T ]f )).

Definition 25. LetA = (S, A, F) be a rsm, and let f ∈ F be such that it defines a timer forA. For T ⊆ S and B ⊆ A such that
B ⊆ enA(T ), the reaction f -time for B in T , denoted by f -timeT (B), is defined by f -timeT (B) = f (infT (B,Af ) ∪ resAf ([T ]f ))−
f (T ).

Whenever f is understood from the context of considerations, we may use the term reaction time for B in T, and the
notation timeT (B).
Thus, intuitively, if delT (B) = 0, then the reaction time for B would be just a tick of Af in T . This is formally proved as

follows.

Lemma 26. ForA, f , T and B as in Definition 25, f -timeT (B) = delT (B)+ tic[T ]f (Af ).

Proof. By definition, f -timeT (B) = f (infT (B,Af )∪ resAf ([T ]f ))− f (T ). Since (infT (B,Af ))∩ (resAf ([T ]f )) = ∅, f -timeT (B) =
f (infT (B,Af ))+ f (resA([T ]f ))− f (T )= delT (B)+ (f (resAf ([T ]f ))− f ([T ]f )) = delT (B)+ tic[T ]f (Af ). �

Since the smallest time unit we have for counting time in the transformation ofWi toWi+1 (in an active state sequence
τ = W0, . . . ,Wi,Wi+1, . . . ,Wn) is the tick of Af in Wi, the reaction time of a set of reactions B in Wi is at least one tick.
On the other hand this reaction time cannot exceed the time interval betweenWi+1 andWi. This is formally stated in the
following lemma.
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Lemma 27. Let A, f , T and B be as in Definition 25, and let Q ⊆ S be such that T ,Q ∈ ASTS(A). Then tic[T ]f (Af ) ≤ f -
timeT (B) ≤ f (Q )− f (T ).

Proof. By Lemma 26, tic[T ]f (Af ) ≤ f -timeT (B). On the other hand, since (infT (B,Af ) ∪ resAf ([T ]f )) ⊆ Q , f (infT (B,Af ) ∪
resAf ([T ]f )) ≤ f (Q ). Therefore f -timeT (B) ≤ f (Q )− f (T ). �

We point out that our basic setup is to consider reaction times for sets of reactions rather than for single reactions. The
reason for this choice is that in general one cannot infer the delay by a set of reactions B (on a given state T ) by knowing the
delays by all single reactions in B. The dependence of the delay by B on the delay by individual reactions from Bmay vary a
lot. It satisfies the following formula:
max{delT ({b}) : b ∈ B} ≤ delT (B) ≤ 6{delT ({b}) : b ∈ B}.
The exact dependence relies on the intersection properties of the family of sets {infT ({b}, Af ) : b ∈ B}.
Knowing the influence of a set of reactions B onAf in an active state T we can determine the completion moment of B in

T, denoted by tT (B, f ), as follows: tT (B, f ) = f (infT (B,Af ))+ f (resAf ([T ]f )).

9. Sets in time: Life span of sets

Now that we have determined how to measure reaction times we move to the related issue of determining the time
moments of creating sets of objects (subsets of S) and their life span.
For an active state sequence T ,Q , whenwe consider a formation in timeof subsets ofQ , wewill restrict our considerations

to the subsets of resA(T ). The reason is that if a subset of Q contains elements which are not in resA(T ), then it contains
elements of true context (i.e., elements of context that are not in resA(T ) ). But, in general, we really have no indication
when (in the time interval between f (T ) and f (Q )) such elements are added to Q .
For a nonempty Z ⊆ resA(T ), the creation moment of Z in T , denoted cmT (Z, f ), is defined by cmT (Z, f ) = min{tT (B, f ) :

B ⊆ enA(T ) and Z ⊆ PB}. In general, Z may be included in the product of many different sets of reactions B enabled in T . The
creation moment of Z is chosen as the minimal completion moment among all these sets B.
It is important in this context to note that among all the subsets of Q we distinguish those that are ‘‘physical’’, i.e., are

the results of transforming a subset of T by a set of reactions enabled in T (this distinction is essential for considerations in
[3]). Thus the definition of cmT (Z, f ) implies that we are interested in the earliest moment when Z was created as a part of
forming of a physical subset.
Note that it follows directly from the definition of the creation moment that if Z = Z1 ∪ Z2, then cmT (Z1, f ) ≤

cmT (Z, f ) and cmT (Z2, f ) ≤ cmT (Z, f ). On the other hand it may be the case that both cmT (Z1, f ) < cmT (Z, f ) and
cmT (Z2, f ) < cm(Z, f ). This may happen when, e.g., a set of reactions B1 that introduces Z1 and takes minimal time, and
a set of reactions B2 that introduces Z2 and takes minimal time are such that both infT (B1, f ) and infT (B2, f ) are strict subsets
of infT (B1, f )∪ infT (B2, f ), and B1∪B2 is a subset of enA(T )with a minimal completion time among all the subsets of enA(T )
that produce Z .
Since the shortest reaction time for any set of reactions in an active state Q is ticQ (Af ), it is reasonable to assume that

if τ = T ,Q is an active state sequence with active Q , then for any set Z created by A in T (i.e., Z ⊆ resA(T )) its life
span (between T and Q ) is the time period from the moment of creation of Z in T until (and including) the time moment
f (Q )+ ticQ (Af ). Until this time moment no set of reactions enabled on Q will be completed, and so no change w.r.t. Q will
take place. If however Q is not active, thenAf will not tic in Q , and so the life span of Z is counted until (and including) f (Q ).
This is more formally expressed as follows.
Given an active state sequence τ = W0, . . . ,Wn and i ∈ {0, . . . , n − 1}, for each U ⊆ resA(Wi) we define the life

span of U between Wi and Wi+1, denoted by `sWi,Wi+1(U) as follows: `sWi,Wi+1(U) = (f (Wi+1) + ticWi+1(Af )) − cmWi(U) if
resA(Wi+1) 6= ∅, and `sWi,Wi+1(U)= f (Wi+1)− cmWi(U) if resA(Wi+1) = ∅ (which may happen only if i+ 1 = n).
The completion moment of B is well-determined (and signalized by the creation of its product PB). On the other hand it

is not so clear how to determine the beginning/initiation moment of B. Suppose that we consider an active state sequence
W , T ,Q and a set of reactions B such that B ⊆ enA(T ). The completion moment of B in T is tT (B), but if RB ⊆ resA(W )
and cmW (RB) < f (T ), then B could be initiated at cmW (RB) and hence before f (T ). This is illustrated in Fig. 2, where1B,T is
a possible activity interval of B. Clearly, if the activity interval for B would be defined in this way, then we would have to
modify our definition of reaction time for B by adding to it the time interval f (T )− cmW (RB).
Thus, in general, for sets of reactions B1, B2, . . . , Bm enabled in T we could have then the situation depicted in Fig. 3.

Hence B1, B2, . . . , Bm may be acting asynchronously in T , and this asynchronicity can be detected through our detailed time
analysis. If we would deal with ‘‘external time counting’’ where the reaction time for sets of reactions is not state dependent
then the activity intervals for sets of reactions enabled in Bwould stretch from f (T ) to f (Q ) implying that the sets of reactions
enabled in T act synchronously.

10. Discussion

The goal of this paper is to propose a formal framework for introducing time in reaction systems. To achieve this goal we
considered reaction systems with measurements, where a time function is a nonnegative measurement function satisfying
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Fig. 2.

Fig. 3.

the ‘‘time flows forward’’ condition: f (Wi) < f (Wi+1) for any two consecutive statesWi,Wi+1 in an active state sequence.
Then we demonstrated how to provide universal time functions by external counters and by timers. The former method
yields time measurement in a way ‘‘totally detached’’ from the functioning of the reaction system for which we want to
measure time. The latter method provides a way of time measurement that is ‘‘intrinsic’’ to the measured reaction system:
the time counting is influenced by reactions of the system. Thismethod is the preferredmethod as it naturally allows reaction
times to be dependent on the state of a system. Indeed, we have formally defined reaction times, and then we have also
defined time-related parameters of elements and their sets (compounds) such as the creation time and the life span (in the
time interval between two consecutive states of an active state sequence).
Note that ‘‘time flows forward’’ condition that we required to be satisfied by time functions allows one to define all kinds

of rates useful in the analysis of reaction systems. This is perhaps best explained through examples.
LetA = (S, A, F) be a rsm, and let T ,Q be two consecutive states from an active state sequence ofA (hence resA(T ) 6= ∅,

and resA(T ) ⊆ Q ). Let f ∈ F be a global time function forA, and let1 = f (Q )− f (T ); thus1 6= 0. Let B ⊆ enA(T ). We can
define the the following characteristics of this ‘‘situation’’ (T ,Q , B):

(1) surviving elements: sur(T ,Q , B) = RB ∩ PB,
(2) used elements: usd(T ,Q , B) = RB − sur(T ,Q , B),
(3) produced elements: prd(T ,Q , B) = PB − sur(T ,Q , B).
Now let g ∈ F be a (different) measuring function that measures some quantity α.
Since the transition from T to Q happens within1 time units, we get the following ratios:

(i) g(prd(T ,Q ,B))−g(T )
1

, the rate of total change of g (in the interval between T and Q ),
(ii) g(prd(T ,Q ,B))−g(usd(T ,Q ,B))

1
, the rate of efficiency of g (in the interval between T and Q ),

(iii) g(usd(T ,Q ,B))
1

, the rate of consumption of α (in the interval between T and Q ), and
(iv) g(prd(T ,Q ,B))

1
, the rate of production of α (in the interval between T and Q ).

Since1 6= 0, all of these rates are well-defined.
Finally we want to comment on extending time functions to all state sequences (currently they are defined for active

state sequences). To this aim we need the notion of a block of a state sequence defined as follows.
Let τ = W0, . . . ,Wn ∈ STS(A).
If τ ∈ ASTS(A), then τ is the block of τ .
If τ /∈ ASTS(A), then let Wi1 ,Wi2 , . . . ,Wir , with r ≥ 1 and i1 < i2 < · · · < ir , be all not active states of τ . These
states split τ into segments σ1 = W0, . . . ,Wi1 , σ2 = Wi1+1, . . . ,Wi2 , . . . , σr = Wir−1+1, . . .Wir , and if ir 6= n then also
σr+1 = Wir+1, . . . ,Wn. A segment σj is a block of τ if σj ∈ ASTS(A).
We can extend now the notion of a time function to an arbitrary τ ∈ STS(A) as follows. A nonnegative measurement

function f forA is a time function for τ if f satisfies the ‘‘time flows forward’’ condition for each block of τ .
Thus, if τ is not active, then the value of f is set by eachWij , 1 ≤ j ≤ r , to f (resA(Wij)) = 0, and then (if ij 6= n) reset by the
context ofWij+1 to f (Wij+1). If σj+1 is a block, then f (Wij+1)will be the initial value of clocks for σj+1.
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Now that the notion of a time function is defined for all state sequences, the notion of a universal time function extends to
all state sequences as well.
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