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Abstract

Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing
each polygon into convex subpolygons. We examine different methods for decomposing polygons by their
suitability for efficient construction of Minkowski sums. We study and experiment with various well-known
decompositions as well as with several new decomposition schemes. We report on our experiments with various
decompositions and different input polygons. Among our findings are that in general: (i) triangulations are too
costly, (ii) what constitutes a good decomposition for one of the input polygons depends on the other input
polygon – consequently, we develop a procedure for simultaneously decomposing the two polygons such that
a “mixed” objective function is minimized, (iii) there are optimal decomposition algorithms that significantly
expedite the Minkowski-sum computation, but the decomposition itself is expensive to compute – in such cases
simple heuristics that approximate the optimal decomposition perform very well. 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Given two setsP andQ in R
2, their Minkowski sum(or vector sum), denoted byP ⊕Q, is the set

{p+q | p ∈ P,q ∈Q}. Minkowski sums are used in a wide range of applications, including robot motion
planning [25], assembly planning [15], computer-aided design and manufacturing (CAD/CAM) [8], and
marker making (cutting parts from stock material) [6,30].

Consider, for example, an obstacleP and a robotQ that moves by translation. We can choose a
reference pointr rigidly attached toQ and suppose thatQ is placed such that the reference point
coincides with the origin. If we letQ′ denote a copy ofQ rotated by 180◦, thenP ⊕Q′ is the locus
of placements of the pointr whereP ∩Q �= ∅. In the study of motion planning this sum is called a
configuration space obstaclebecauseQ collides withP when translated along a pathπ exactly when
the pointr , moved alongπ , intersectsP ⊕Q′. See Fig. 1.

Motivated by these applications, there has been much work on obtaining sharp bounds on the size
of the Minkowski sum of two sets in two and three dimensions, and on developing fast algorithms for
computing Minkowski sums. It is well known that ifP is a polygonal set withm vertices andQ is
another polygonal set withn vertices, thenP ⊕Q is a portion of thearrangementof O(mn) segments,
where each segment is the Minkowski sum of a vertex ofP and an edge ofQ, or vice-versa. Therefore
the size ofP ⊕Q is O(m2n2) and it can be computed within that time; this bound is tight in the worst
case [19] (see Fig. 2). If bothP andQ are convex, thenP ⊕Q is a convex polygon with at mostm+ n

vertices, and it can be computed in O(m+ n) time [25]. If only P is convex, then a result of Kedem et

(a) (b)

Fig. 1. Robot and obstacles. (a) A reference point is rigidly attached to the robot. (b) The configuration space
obstacles and a free translational path for the robot.

Fig. 2.P andQ are polygons withm andn vertices, respectively, each having horizontal and vertical teeth. The
complexity ofP ⊕Q is�(m2n2).
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Fig. 3. Comb input:P is a convex polygon withm vertices andQ is a comb-like polygon withn vertices. The
complexity ofP ⊕Q is�(mn).

(a) (b)

Fig. 4. Tight passage: the desired target placement for the small polygon is inside the inner room defined by the
larger polygon (a). In the configuration space (b) the only possible path to achieve this target passes through the
line segment emanating into the hole in the sum.

al. [20] implies thatP ⊕Q has�(mn) vertices (see Fig. 3). Such a Minkowski sum can be computed in
O(mn log(mn)) time [27].

Minkowski sums of curved regions have also been studied (e.g. [3,18,26]), as well as Minkowski sums
in three-dimensions (e.g., see a survey paper [1]). Here, however, we focus on sums of planar polygonal
regions.

We devised and implemented three algorithms for computing the Minkowski sum of two polygonal
sets based on the CGAL software library [10,34]. Our main goal was to produce arobust and exact
implementation. This goal was achieved by employing theplanar maps[13] and arrangements[16]
packages of CGAL while using exact number types. We use rational numbers and filtered geometric
predicates from LEDA – the Library of Efficient Data-structures and Algorithms [28,29].

We are currently using our software to solve translational motion planning problems in the plane. We
are able to compute collision-free paths even in environments cluttered with obstacles, where the robot
could only reach a destination placement by moving through tight passages, practically moving in contact
with the obstacle boundaries. See Fig. 4 for an example. This is in contrast with most existing motion
planning software for which tight or narrow passages constitute a significant hurdle. More applications
of our package are described in [11].

The robustness and exactness of our implementation come at a cost: they slow down the running time
of the algorithms in comparison with a more standard implementation that uses floating point arithmetic.
This makes it especially necessary to expedite the algorithms in other ways. All our algorithms begin
with decomposing the input polygons into convex subpolygons. We discovered that not only the number
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(a) (b) (c) (d)

P ’s decomposition

naïve triang. min
∑
d2
i triang. min convex∑

d2
i 754 530 192

# of convex subpolygons inP 33 33 6

time (mSec) to computeP ⊕Q 2133 1603 120

(e)

Fig. 5. Different decomposition methods applied to the polygonP presented in (a): (b) naïve triangulation,
(c) minimum

∑
d2
i triangulation, and (d) minimum convex decomposition (the details are given in Section 3).

Table (e) illustrates, for each decomposition, the sum of squares of degrees, the number of convex subpolygons,
and the time in milliseconds to compute the Minkowski sum ofP and a convex polygon,Q, with 4 vertices.

of subpolygons in the decomposition of the input polygons but also their shapes had dramatic effect on
the running time of the Minkowski-sum algorithms; see Fig. 5 for an example.

In the theoretical study of Minkowski-sum computation (e.g. [20]), the choice of decomposition is
often irrelevant (as long as we decompose the polygons into convex subpolygons) because it does
not affect the worst-caseasymptoticrunning time of the algorithms. In practice, however, different
decompositions can induce a large difference in running time of the Minkowski-sum algorithms. The
decomposition can affect the running time of algorithms for computing Minkowski sums in several ways:
some of them are global to all algorithms that decompose the input polygons into convex polygons, while
some others are specific to certain algorithms or even to specific implementations. The heart of this paper
is an examination of these various factors and a report on our findings.

Polygon decomposition has been extensively studied in computational geometry; it is beyond the scope
of this paper to give a survey of results in this area, and we refer the reader to the survey papers by
Keil [24] and Bern [4], and the references therein. As we proceed, we will provide details on specific
decomposition methods that we will be using.

We apply several optimization criteria to the decompositions that we employ. In the context of
Minkowski sums, it is natural to look for decompositions that minimize the number of convex
subpolygons. As we show in the sequel, we are also interested in decompositions with minimal maximum
vertex degree of the decomposition graph, as well as several other criteria.

We report on our experiments with various decompositions and different input polygons. Among our
findings are that in general: (i) triangulations are too costly, (ii) what constitutes a good decomposition
for one of the input polygons depends on the other input polygon – consequently, we develop a
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procedure for simultaneously decomposing the two polygons such that a “mixed” objective function is
minimized, (iii) there are optimal decomposition algorithms that significantly expedite the Minkowski-
sum computation, but the decomposition itself is expensive to compute – in such cases simple heuristics
that approximate the optimal decomposition perform very well.

In the next section we survey the Minkowski sum algorithms that we have implemented. In Section 3
we describe the different decomposition algorithms that we have implemented. We present a first set of
experimental results in Section 4 and filter out the methods that turn out to be inefficient. In Section 5
we focus on the decomposition schemes that are not only fast to compute but also help compute the
Minkowski sum efficiently. We give concluding remarks and propose directions for further work in
Section 6.

2. Minkowski sum algorithms

Given a collectionC of curves in the plane, thearrangementA(C) is the subdivision of the plane into
vertices, edges and faces induced by the curves inC. Planar mapsare arrangements where the curves
are pairwise interior disjoint. Our algorithms for computing Minkowski sums rely on arrangements, and
in the discussion below we assume some familiarity with these structures, and with a refinement thereof
called thevertical decomposition; we refer the reader to [1,14,33] for information on arrangements and
vertical decomposition, and to [13,16] for a detailed description of the planar maps and arrangements
packages in CGAL on which our algorithms are based.

The input to our algorithms are two polygonal setsP andQ, with m andn vertices, respectively. Our
algorithms consist of the following three steps.
Step 1. DecomposeP into the convex subpolygonsP1,P2, . . . , Ps andQ into the convex subpolygons

Q1,Q2, . . . ,Qt .
Step 2. For eachi ∈ [1..s] and for eachj ∈ [1..t], compute the MinkowskisubsumPi ⊕Qj which we

denote byRij . We denote byR the set{Ri,j | i ∈ [1..s], j ∈ [1..t]}.
Step 3. Construct the union of all the polygons inR, computed in Step 2; the output is represented as a

planar map.
The Minkowski sum ofP andQ is the union of the polygons inR. EachRij is a convex polygon, and

it can easily be computed in time that is linear in the sizes ofPi andQj [25]. Let k denote the overall
number of edges of the polygons inR, and letI denote the overall number of intersections between
(edges of ) polygons inR.

We briefly present two different algorithms for performing Step 3, computing the union of the polygons
in R, which we refer to as thearrangementalgorithm and theincremental unionalgorithm. A detailed
description of these algorithms is given in [11].

Arrangement algorithm.The algorithm constructs the arrangementA(R) induced by the polygons
in R (we refer to this arrangement as theunderlying arrangementof the Minkowski sum) by adding
the polygons ofR one by one in a random order and by maintaining the vertical decomposition the
arrangement of the polygons added so far; each polygon is chosen with equal probability at each step.
Once we have constructed the arrangement, we efficiently traverse all its cells (vertices, edges or faces)
and we mark a cell as belonging to the Minkowski sum if it is contained inside at least one polygon ofR.
The construction of the arrangement takes randomized expected time O(I + k logk) [31]. The traversal
stage takes O(I + k) time.
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Incremental union algorithm.In this algorithm we incrementally construct the union of the polygons in
R by adding the polygons one after the other in random order. We maintain the planar map representing
the union of the polygons added so far. For eachr ∈ R we insert the edges ofr into the map and then
remove redundant edges from the map. All these operations can be carried out efficiently using the CGAL
planar map package. We can only give a naïve bound O(k2 log2 k) on the running time of this algorithm,
which in the worst case is higher than the worst-case running time of the arrangement algorithm.
Practically however the incremental union algorithm works much better on most problem instances.

Remarks. 1. We also implemented a union algorithm using a divide-and-conquer approach but since
it mostly behaves worse than the incremental algorithm we do not describe it here. The full details are
given in [11].

2. Our planar map package provides full support for maintaining the vertical decomposition, and for
efficient point location in a map. However, using simple point-location strategies (naïve, walk-along-a-
line) is often faster in practice [13]. Therefore we ran the tests reported below without maintaining the
vertical decomposition.

3. The decomposition algorithms

We describe here the algorithms that we have implemented for decomposing the input polygons
into convex subpolygons. We use decompositions both with or without Steiner points. Some of the
techniques are optimal and some use heuristics to optimize certain objective functions. The running time
of the decomposition stage is significant only when we search for the optimal solution and use dynamic
programming; in all other cases the running time of this stage is negligible even when we implemented a
naïve solution. Therefore we only mention the running time for the “heavy” decomposition algorithms.

We use the notation from Section 2. For simplicity of the exposition we assume here that the input
data for the Minkowski algorithm are twosimple polygonsP andQ. In practice we use the same
decomposition schemes that are presented here for general polygonal sets, mostly without changing them
at all. However this is not always possible. For example, Keil’s optimal minimum convex decomposition
algorithm does not work on polygons with holes4. Furthermore, the problem of decomposing a polygon
with holes into convex subpolygons is proven to be NP-hard irrespective of whether Steiner points are
allowed; see [22]. Other algorithms that we use (e.g., AB algorithm) can be applied to general polygons
without changes. We discuss these decomposition algorithms in the following sections.

In what followsP is a polygon withn verticesp1, . . . , pn, r of which are reflex.

3.1. Triangulation

Naïve triangulation.This procedure searches for a pair of verticespi,pj such that the segmentpipj
is a diagonal, namely it lies inside the polygon. It adds such a diagonal, splits the polygon into two
subpolygons by this diagonal, and triangulates each subpolygon recursively. The procedure stops when
the polygon becomes a triangle. See Fig. 5 for an illustration.

4 In such cases we can apply a first decomposition step that connects the holes to the outer boundary and then use the
algorithm on the simple subpolygons. This is a practical heuristic that does not guarantee an optimal solution.
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In some of the following decompositions we are concerned with the degrees of vertices in the
decomposition (namely the number of diagonals incident to a vertex). Our motivation for considering the
degree comes from an observation on the way our planar map structures perform in practice: we noted that
the existence of high degree vertices makes maintaining the maps slower. The DCEL structure that is used
for maintaining the planar map has a pointer from each vertex of the map to one of its incident halfedges.
We can traverse the halfedges around a vertex by using the adjacency pointers of the halfedges. If a vertex
vi hasd incident halfedges, then finding the location of a new edge aroundvi will take O(d) traversal
steps. To avoid the overhead of a search structure for each vertex, the planar-maps implementation does
not include such a structure. Therefore, since we build the planar map incrementally, if the degree of
vi in the final map isdi then we performed

∑di
1 O(i) = O(d2

i ) traversal steps on this vertex. Trying to
minimize this time over all the vertices we can either try to minimize the maximum degree or the sum of
squares of degrees,

∑
d2
i . Now, high degree vertices in the decomposition result in high degree vertices

in the underlying arrangement, and therefore we try to avoid them. We can apply the same minimization
criteria to the vertices of the decomposition.

Optimal triangulation – minimizing the maximum degree.Using dynamic programming we compute a
triangulation of the polygon where the maximum degree of a vertex MAX(di) is minimal. The algorithm
is described in [17], and runs in O(n3) time.

Optimal triangulation – minimizing
∑
d2
i . We adapted the minimal-maximum-degree algorithm to find

the triangulation with minimum
∑
d2
i wheredi is the degree of vertexvi of the polygon. (See Fig. 5 for

an illustration.) The adaptation is straightforward. Since both
∑
d2
i and MAX(di) are global properties

of the decomposition that can be updated in constant time at each step of the dynamic programming
algorithm – most of the algorithm and the entire analysis remain the same.

3.2. Convex decomposition without Steiner points

Greedy convex decomposition.The same as the naïve triangulation algorithm except that it stops as soon
as the polygon does not have a reflex vertex.

Minimum number of convex subpolygons (min-convex).We apply the algorithm of Keil [21], which
computes a decomposition of a polygon into the minimum number of convex subpolygons without
introducing new vertices (Steiner points). The running time of the algorithm is O(r2n logn). This
algorithm uses dynamic programming. See Fig. 5. This result was recently improved to O(n +
r2 min{r2, n}) [23].

Minimum
∑
d2
i convex decomposition.We modified Keil’s algorithm so that it will compute decompo-

sitions that minimize
∑
d2
i , the sum of squares of vertex degree. Like the modification of the min-max

degree triangulation, in this case we also modify the dynamic programming scheme by simply replacing
the cost function of the decomposition. Instead of computing the number of polygons (as the original
min-convex decomposition algorithm does) we compute a different global property, namely the sum of
squares of degrees. We can compute

∑
d2
i in constant time given the values

∑
d2
i of the decompositions

of two subpolygons.



46 P.K. Agarwal et al. / Computational Geometry 21 (2002) 39–61

(a) (b) (c)

Fig. 6. (a) Slab decomposition, (b) angle “bisector” (AB) decomposition and (c) KD decomposition.

3.3. Convex decomposition with Steiner points

Slab decomposition.Given a direction�e, we extend a segment in directions�e and−�e from each reflex
vertex of the polygon until it hits the polygon boundary. The result is a decomposition of the polygon
into convex slabs. If�e is vertical then this is the well-known vertical decomposition of the polygon. See
Fig. 6. This decomposition gives a 4-approximation to the optimal convex decomposition as it partitions
the polygon into at most 2r subpolygons and one needs at least�r/2� + 1 subpolygons. The obvious
advantage of this decomposition is its simplicity.

Angle “bisector” decomposition (AB).In this algorithm we extend the internal angle “bisector” from
each reflex vertex until we first hit the polygon’s boundary or a diagonal that we have already
extended from another vertex5. See Fig. 6. This decomposition (suggested by Chazelle and Dobkin [5])
gives a 2-approximation to the optimal convex decomposition: IfP has r reflex vertices then every
decomposition ofP must include at least�r/2� + 1 subpolygons, since every reflex vertex should be
eliminated by at least one diagonal incident to it and each diagonal can eliminate at most 2 reflex vertices.
The AB decomposition method extends one diagonal from each reflex vertex untilP is decomposed into
at mostr + 1 convex subpolygons.

KD decomposition.This algorithm is inspired by the KD-tree method to partition a set of points in
the plane [7]. First we divide the polygon by extending vertical rays inside the polygon from a reflex
vertex horizontally in the middle (the number of vertices to the left of a vertexv, namely having smaller
x-coordinate thanv’s, is denotedvl and the number of vertices to the right ofv is denotedvr . We look for
a reflex vertexv for which max{vl, vr} is minimal). Then we divide each of the subpolygons by extending
an horizontal line from a vertex vertically in the middle. We continue dividing the subpolygons that way
(alternating between horizontal and vertical division) until no reflex vertices remain. See Fig. 6. By
this method we try to lower thestabbing numberof the subdivision (namely, the maximum number

5 It is not necessary to compute exactly the direction of the angle bisector, it suffice to find a segment that will eliminate the
reflex vertex from which it is extended. Letv be a reflex vertex and letu (w) be the previous (respectively next) vertex on the
boundary of the polygon, then a segment at the direction−→uv + −→wv divides the angle� uvw into two angles with less than 180◦
each.
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of subpolygons in the subdivision intersected by any line) – see the discussion in Section 5.2. The
decomposition is similar to the quad-tree based approximation algorithms for computing the minimum-
length Steiner triangulations [9].

4. A first round of experiments

We present experimental results of applying the decompositions described in the previous section to
a collection of input pairs of polygons. We summarize the results and draw conclusions that lead us to
focus on a smaller set of decomposition methods (which we study further in the next section).

4.1. Test platform and frame program

Our implementation of the Minkowski sum package is based on the CGAL (version 2.0) and LEDA
(version 4.0) libraries. Our package works with Linux (g++ compiler) as well as with WinNT (Visual
C++ 6.0 compiler). The tests were performed under WinNT workstation on a 500 MHz Pentium III
machine with 128 Mb of RAM.

We implemented an interactive program that constructs Minkowski sums, computes configuration
space obstacles, and solves polygon containment and polygon separation problems. The software lets the
user choose the decomposition method and the union algorithm. It then presents the resulting Minkowski
sum and underlying arrangement. The software is available from http://www.cs.tau.ac.il/~flato/.

4.2. Results

We ran the union algorithms (arrangement and incremental-union) with all nine decomposition
methods on various input sets. The running times for the computation of the Minkowski sum for four
input examples are summarized in Figs. 7–10.

(a) (b)

Fig. 7. Star input. The input (a) consists of two star-shaped polygons. The underlying arrangement of the
Minkowski sum is shown in the middle. Running times in seconds for different decomposition methods (for two
star polygons with 20 vertices each) are presented in (b).
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(a) (b) (c)

Fig. 8. Border input. The input (an example in (a)) consists of a border of a country and a star shaped polygon. The
Minkowski sum is shown in (b), and running times in seconds for different decomposition methods (for the border
of Israel with 50 vertices and a star shaped polygon with 15 vertices) are shown in (c).

(a) (b) (c)

Fig. 9. Random polygons input. The input (an example in (a)) consists of two random looking polygons. The
Minkowski sum is shown in (b), and running times in seconds for different decomposition methods (for two random
looking polygons with 30 vertices each) are shown in (c).

It is obvious from the experimental results that using triangulations causes the union algorithms to
run much slower (the left three pairs of columns in the histograms of Figs. 7–10). By triangulating the
polygons, we create(n − 1)(m − 1) hexagons inR with potentially�(m2n2) intersections between
the edges of these polygons. We get those poor results since the performance of the union algorithms
strongly depends on the number of vertices in the arrangement of the hexagon edges. Minimizing the
maximum degree or the sum of squares of degrees in a triangulation is a slow computation that results in
better union performance (compared to the naïve triangulation) but is still much worse than other simple
convex-decomposition techniques.

In most cases the arrangement algorithm runs much slower than the incremental union algorithm. By
removing redundant edges from the partial sum during the insertion of polygons, we reduce the number
of intersections of new polygons and the current planar map features. The fork input is an exception since
the complexity of the union is roughly the same as the complexity of the underlying arrangement and
the edges that we remove in the incremental algorithm do not significantly reduce the complexity of the
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(a) (b) (c)

Fig. 10. Fork input. The input consists of two orthogonal fork polygons (a). The Minkowski sum is shown in (b),
and running times in seconds for different decomposition methods (for two fork polygons with 8 teeth each) are
shown in (c).

(a) (b)

Fig. 11. An example of a case where when using the min-convex decomposition the union computation time is the
smallest but it becomes inefficient when considering the decomposition time as well. Graph (b) shows the running
times in seconds for computing the Minkowski sum of two polygons (a) representing the borders of India and Israel
with 478 and 50 vertices, respectively. Note that while constructing the Minkowski sum of these two polygons the
incremental union algorithm handles more than 40000 possibly intersecting segments.

planar map; see Fig. 10. More details on the comparison between the arrangement union algorithm and
the incremental union algorithm are given in [12].

Although the min-convex algorithm is almost always the fastest in computing the union, constructing
this optimal decomposition may be expensive. For some inputs running with the min-convex decomposi-
tion becomes inefficient – see, for example, Fig. 11. Minimizing the sum of squares of degrees in a convex
decomposition rarely results in a decomposition that is different from the min-convex decomposition.

This first round of experiments helped us to filter out inefficient methods. In the next section we focus
on the better decomposition algorithms, i.e., minimum convex, slab, angle “bisector”, KD. We further
study them and attempt to improve their performance.
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5. Revisiting the more efficient algorithms

In this section we focus our attention on the algorithms that were found to be efficient in the first
round of experiments. As already mentioned, we measure efficiency by combining the running times
of the decomposition step together with that of the union step. We present an experiment showing that
minimizing the number of convex subpolygons in the decomposition does not always lead to better
Minkowski-sum computation time; this is in contrast with the impression that the first round of results
may give.

We also show in this section that in certain instances the decision how to decompose the input polygon
P may change depending on the other polygonQ, namely for the sameP and differentQ’s we should
decomposeP differently based on properties of the other polygon. This leads us to propose a “mixed”
objective function for the simultaneous optimal decomposition of the two input polygons. We present an
optimization procedure for this mixed function. Finally, we take the two most effective decomposition
algorithms (AB and KD) – not only are they efficient, they are also very simple and therefore easy to
modify – and we try to improve them by adding various heuristics.

5.1. Nonoptimality of min-convex decompositions

Minimizing the number of convex parts ofP andQ can be not only expensive to compute, but it does
not always yield the best running time of the Minkowski-sum construction. In some cases other factors
are important as well. Consider, for example, the knife input data.P is a long triangle withj teeth along
its base andQ is composed of horizontal and vertical teeth. See Fig. 12.P can be decomposed intoj + 1
convex parts by extending diagonals from the teeth in the base to the apex of the polygon. Alternatively,
we can decompose it intoj+2 convex subpolygons with short diagonals (this is the “minimal length AB”
decomposition described in Section 5.3). If we fix the decomposition ofQ, the latter decomposition ofP
results in considerably faster Minkowski-sum running time, despite having more subpolygons, because
the Minkowski sum of the long subpolygons in the first decomposition with the subpolygons ofQ results
in many intersections between the edges of polygons inR. In the first decomposition we havej + 1 long
subpolygons while in the latter we havej+2 subpolygons when only one of them is a “long” subpolygon
and the rest arej + 1 small subpolygons.

We can also see a similar behavior in real-life data. Computing the Minkowski sum of the (polygonal
representation of ) countries with star polygons mostly worked faster while using the KD-decomposition
than with the AB technique; with the exception of degenerate polygons (i.e., with some reflex vertices that
share the samex or y coordinates), the KD decomposition always generates at least as many subpolygons
as the AB decomposition.

5.2. Mixed objective functions

Good decomposition techniques that handleP andQ separately might not be sufficient because what
constitutes a good decomposition ofP depends onQ. We measured the running time for computing the
Minkowski sum of a knife polygonP (Fig. 12 – the knife polygon is in (b)) and a random polygonQ
(Fig. 9). We scaledQ differently in each test. We fixed the decomposition ofQ and decomposed the
knife polygonP once with the shortj + 2 “minimal length AB” decomposition and then with the long
j + 1 minimum convex decomposition. The results are presented in Fig. 13. We can see that for small
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(a) (b) (c) (d)

j + 1 long decomposition j + 2 short decomposition

number of vertices 23448 9379

running time (sec) 71.7 25.6

(e)

Fig. 12. Knife input. (a) The input polygons. (b) Two types of decompositions ofP (enlarged): on top,j + 2
subpolygons with short diagonals length, and below minimum convex decomposition withj + 1 subpolygons
with long diagonals. (c) The Minkowski sum ofP andQ. (d) The underlying arrangement (using the short
decomposition ofP ). (e) The table presents the number of vertices in the underlying arrangement and the running
time for both decompositions (P has 20 teeth and 42 vertices andQ has 34 vertices).

(a) (b) (c)

Fig. 13. Minkowski sum of a knife,P , with 22 vertices and a random polygon,Q, with 40 vertices using the
arrangement union algorithm. (a) The underlying arrangement of the sum with the smallest random polygon.
(c) The underlying arrangement of the sum with the largest random polygon. AsQ grows, the number of vertices
I in the underlying arrangement is dropping from (about) 15000 to 5000 for the “long” decomposition ofP , and
from 10000 to 8000 for the “short” decomposition.

Q’s the short decomposition of the knifeP with more subpolygons performs better, but asQ grows the
long decomposition ofP with fewer subpolygons wins.

These experiments imply that a more careful strategy would be to simultaneously decompose the two
input polygons, or at least take into consideration properties of one polygon when decomposing the other.

The running time of the arrangement union algorithm is O(I +k logk), wherek is the number of edges
of the polygons inR and I is the overall number of intersections between (edges of ) polygons inR
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Fig. 14. Average number of intersections per segment as a function of the average segment length. Each point in
the graph represents a configuration containing 125 randomly chosen points in a square[0,1000] × [0,1000] in
R

2 and 500 randomly chosen segments connecting pairs of these points.

(see Section 2). The value ofk depends on the complexity of the convex decompositions ofP andQ.
Hence, we want to keep this complexity small. It is harder to optimize the value ofI . Intuitively, we want
each edge ofR to intersect as few polygons ofR as possible. If we consider the standard rigid-motion
invariant measureµ on lines in the plane [32] and useL(C) to denote the set of lines intersecting a setC,
then for any polygonRij , µ(L(Rij )) is the perimeter ofRij . This suggests that we want to minimize the
total lengths of the diagonals in the convex decompositions ofP andQ (Aronov and Fortune [2] use
this approach to show that minimizing the length of a triangulation can decrease the complexity of the
average-case ray-shooting query). But we want to minimize the two criteria simultaneously, and let the
decomposition of one polygon govern the decomposition of the other.

We can see supporting experimental results for segments in Fig. 14. In these experiments we randomly
chose a setT of points inside a square inR2 and connected pairs of them by a setS of random segments
(for each segment we randomly chose its two endpoints fromT ). Then we measured the average number
of intersections per segment as a function of the average length of a segment. To get different average
length of the segments, at each round we chose each segment by taking the longest (or shortest) segment
out of l randomly chosen segments, wherel is a small integer varying between 1 and 15. The average
number of intersections isI/|S| whereI is the total number of intersections in the arrangementA(S).
We performed 5 experiments for each value ofl between 1 and 15. Each plotted point in the graph in
Fig. 14 represents such an experiment. The values ofl are not shown in the graph – they were used to
generate sets of segments with different average lengths. For the presented results, we took|S| = 4|T |
(this is a typical ratio between points and segments in the setR for which we compute the arrangement
A(R)). As the results show, the intersection count per segment grows linearly (or close to linearly) with
the average length of a segment.

Therefore, we assume that the expected number of intersection of a segment in the arrangementA(R)
of the polygons ofR is proportional to the total length of edges ofA(R), which we denote byπA(R). The
intuition behind the mixed objective function, which we propose next, is that minimizingπA(R) will lead
to minimizingI .
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Let P1,P2, . . . , PkP be the convex subpolygons into whichP is decomposed. LetπPi be the perimeter
of Pi . Similarly defineQ1,Q2, . . . ,QkQ andπQj

. If πRij is the perimeter ofRij (the Minkowski sum of
Pi andQj ), then

πRij = πPi + πQj
.

Summing over all(i, j) we get

πA(R) =
∑
ij

πRij = ∑
ij

(πPi + πQj
)= kQ

(∑
i

πPi

)
+ kP

(∑
j

πQj

)
.

Let πP denote the perimeter ofP and$P the sum of the lengths of the diagonals inP . Similarly define
πQ and$Q. P haskP subpolygons andQ haskQ subpolygons. LetDP,Q be the decomposition ofP and
Q. Then

c(DP,Q)= πA(R) = kQ(2$P + πP )+ kP (2$Q + πQ).

The functionc(DP,Q) is a cost function of a simultaneous convex decomposition ofP andQ. Our
empirical results showed that this cost function approximates the running time. We want to find a
decomposition that minimizes this cost function. Letc∗ = minDP,Q c(DP,Q).

If we do not allow Steiner points, we can modify the dynamic-programming algorithm by Keil [21]
to computec∗ in O(n2r4

P +m2r4
Q) as follows. We define an auxiliary cost functionĉ(P, i), which is the

minimum total length of diagonals in a convex decomposition ofP into at mosti convex polygons. Then

c∗ = min
i,j

[
j
(
2ĉ(P, i)+ πP

) + i
(
2ĉ(Q, j)+ πQ

)]
.

Since the number of convex subpolygons in any minimal convex decomposition of a simple polygon
is at most twice the number of the reflex vertices in it, the valuesi and j are at most 2rP and 2rQ,
respectively, whererP (respectivelyrQ) is the number of reflex vertices inP (respectivelyQ). One can
computeĉ(P, i) by modifying Keil’s algorithm [21] – the modified algorithm as well as the algorithm
for computingc∗ are described in detail in Appendix A.

Since the running time of this procedure is too high to be practical, we neither implemented it, nor
did we make any serious attempt to improve the running time. We regard this algorithm as a first step
towards developing efficient algorithms for approximating mixed objective functions.

If we allow Steiner points, then it is an open question whether an optimal decomposition can be
computed in polynomial time. Currently, we do not even have a constant-factor approximation algorithm.
The difficulty arises because no constant-factor approximation is known for minimum-length convex
decomposition of a simple polygon if Steiner points are allowed [22].

5.3. Improving the AB and KD methods

It seems from most of the tests that in general the AB and KD decomposition algorithms work better
than the other heuristics. We next describe our attempts to improve these algorithms.

Minimal length angle “bisector” decomposition.In each step we handle one reflex vertex. A reflex
vertex can always be eliminated by at most two diagonals. For any three diagonals that eliminate a reflex
vertex, at least one of them can be removed while the vertex is still eliminated. In this algorithm, for each
reflex vertex we look for the shortest one or two diagonals that eliminate it. As we can see in Fig. 16,
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theminimal length ABdecomposition performs better than the naïve AB even though it generally creates
more subpolygons.

While the AB decomposition performs very well, in some cases (concave chains, countries borders)
the KD algorithm performs better. We developed the KD-decomposition technique aiming to minimize
the stabbing number of the decomposition of the input polygons (which in turn, as discussed above,
we expect to reduce the overall numberI of intersections in the underlying arrangementA(R) of the
polygons ofR). This method however often generates too many convex parts. We tried to combine these
two algorithms as follows.

Angle “bisector” and KD decomposition (AB+ KD). In this algorithm we check the two neighbors
verticesv1, v2 of each reflex vertexv; if v1 andv2 are convex, we extend a “bisector” fromv. We apply
the KD decomposition algorithm for the remaining non-convex polygons. By this method we aim to
lower the stabbing number without creating redundant convex polygons in the sections of the polygons
that are not bounded by concave chains). We tested these algorithms on polygons with different number
of convex vertices, vertices in concave chains and “tooth vertices”. The results in Fig. 15 suggest that
AB +KD performs best when the numbers of vertices in concave chains and of tooth vertices are roughly
the same. If there are more tooth vertices than the vertices in concave chains, then the AB decomposition
performs better.

Next, we tried to further decrease the number of convex subpolygons generated by the decomposition
algorithm. Instead of emanating a diagonal from any reflex vertex, we first tested whether we can
eliminate two reflex vertices with one diagonal (let us call such a diagonal a2-reflex eliminator). All the
methods listed below generate at most the same number of subpolygons generated by the AB algorithm
but practically the number is likely to be smaller.

Improved angle “bisector” decomposition.For a reflex vertex, we look for 2-reflex eliminators. If we
cannot find such a diagonal, we continue as in the standard AB algorithm.

Reflex angle “bisector” decomposition.In this method we work harder trying to find 2-reflex eliminator
diagonals. In each step we go over all reflex vertices trying to find an eliminator. If there are no more
2-reflex eliminators, we continue with the standard AB algorithm on the rest of the reflex vertices.

Fig. 15. Running times for computing the chain input using AB, KD and AB+ KD decompositions.
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(a) (b)

Fig. 16. Union running times for countries borders input ((a) Minkowski sum of Chile with 368 vertices and a star
polygon with 23 vertices, and (b) Minkowski sum of Norway with 360 vertices and a star polygon with 15 vertices)
with the improved decomposition algorithms.

Small side angle “bisector” decomposition.As in the reflex ABdecomposition, we are looking for
2-reflex eliminators. Such an eliminator decomposes the polygon into two parts, one on each of its sides.
Among the candidate eliminators we choose the one that has the minimal number of reflex vertices on one
of its sides. Vertices on different sides of the added diagonal cannot be connected by another diagonal
because it will intersect the added diagonal. By choosing this diagonal we are trying to “block” the
minimal number of reflex vertices from being connected (and eliminated) by another 2-reflex eliminator
diagonal.

Experimental results are shown in Fig. 16. These latter improvements to the AB decomposition seem to
have the largest effect on the union running time, while keeping the decomposition method very simple to
understand and implement. Note that thesmall side ABheuristic results in 20% faster union time than the
improved ABandreflex ABdecompositions, and 50% faster than the standardangle “bisector” method.
When we use thesmall side ABwith the input set used in Fig. 11 the overall running time is about
376 seconds which is at least three times faster than the results achieved by using other decomposition
methods.

6. Conclusions

We presented a general scheme for computing the Minkowski sum of polygons. We implemented union
algorithms which overcome all possible degeneracies. Using exact number types and special handling
for geometric degeneracies we obtained a robust and exact implementation that could handle all kinds
of polygonal inputs. The emphasis of this paper is on the effect of the decomposition method on the
efficiency of the overall process.

We implemented over a dozen of decomposition algorithms, among them triangulations, optimal
decompositions for different criteria, approximations and heuristics. We examined several criteria that
affect the running time of the Minkowski-sum algorithm. The most effective optimization is minimizing
the number of convex subpolygons. Thus, triangulations which are widely used in the theoretical
literature are not practical for the Minkowski-sum algorithms. We further found that minimizing the
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number of subpolygons is not always sufficient. Since we deal with two polygonal sets that are
participating in the algorithm we found that it is smarter to decompose the polygons simultaneously
minimizing a cost function which takes into account the decomposition of both input set. Optimal
decompositions for this function and also simpler cost functions like the overall number of convex
subpolygons were practically too slow. In some cases the decomposition step of the Minkowski-
sum algorithm took more time than the union step. Therefore, we developed some heuristics that
approximate very well a cost function and run much faster than their exact counterparts. Allowing Steiner
points, the angle “bisector” decomposition gives a 2-approximation for the minimal number of convex
subpolygons. The AB decomposition with simple practical modifications (small-side AB decomposition)
is a decomposition that is easy to implement, very fast to execute and gives excellent results in the
Minkowski-sum algorithm.

We propose several direction for further research:
1. Use the presented scheme and the practical improvement that we proposed with real-life applications

such as motion planning and GIS and examine the effect of different decompositions for those special
types of input data.

2. Further improve the AB decomposition algorithms to give better theoretical approximation and better
running times.

3. We tested the efficiency of the Minkowski-sum algorithm with different convex decomposition
methods, but the algorithm will still give a correct answer if we will have a covering of the input
polygons by convex polygons. Can one further improve the efficiency of the Minkowski sum program
using coverings instead of decompositions.

Appendix A. Polygons decomposition minimizing the mixed objective function

In Section 5.2 we developed a mixed objective function for the decomposition of the two input
polygons to the Minkowski sum computation. In this appendix we describe an algorithm based on
the optimal convex decomposition of Keil [21] for decomposing the input polygons simultaneously
minimizing the mixed objective function. Here we do not allow Steiner points.

Following the notation of Section 5.2, we define an auxiliary cost functionĉ(P, a), which is the
minimum total length of diagonals in a convex decomposition ofP into at mosta convex polygons.
Then the cost of the decomposition is

c∗ = min
a,b

[
b
(
2ĉ(P, a)+ πP

) + a
(
2ĉ(Q,b)+ πQ

)]
.

Assuming that we know the decompositions ofP andQ that achievêc(P, a) andĉ(Q,b), respectively,
for everya andb, we can computec∗ and find the decomposition in O(rP rQ) time (see Section 5.2). The
single issue that we need to resolve is how to computeĉ(P, a). In the following section we describe a
dynamic-programing algorithm to compute the minimum length decomposition of a polygon (based on
[21]) and in Section A.2 we describe how to modify this algorithm for computingĉ(P, a).

A.1. Minimum-length decomposition

Let v1, v2, . . . , vm be the vertices ofP given in clockwise order. We call a pair(i, j) valid if vi is
visible from vj and at least one of the two vertices is a reflex vertex. If two vertices are visible from
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Fig. 17. The base subpolygonCij of Pij with (i, k) as its first edge and(l, j) as its last edge.

each other and they are not a valid pair, then they must both be convex. A diagonal that connects two
convex vertices is redundant in any optimal convex decomposition because it can be removed and the two
convex subpolygons on its sides can be merged into a convex polygon. Therefore, for the construction of
an optimal decomposition, we can consider only the diagonals that connect two vertices that are a valid
pair. For a valid pair(i, j), let Pij be the polygonal chain from vertexvi to vj . P1n = P is also a valid
chain. Letd(i, j) be the length of the diagonal(i, j).

Letf (i, j) denote the cost of the minimum-length decomposition ofPij ; f (i, j) only counts the length
of diagonals added, and does not include the perimeter ofPij . For a convex decomposition ofPij , letCij
be thebaseconvex polygon that contains the edge(i, j). Let (i, k) and(l, j) be the first and the last edges
of Cij ; see Fig. 17. The pair(i, k) should be a valid pair unlessk = i+ 1. Similarly, the pair(l, j) should
be a valid pair unlessl = j − 1.

We define a functionF(i, j ;k, l) as follows:F(i, j ;k, l) is the cost of a minimum-length decomposi-
tion under the constraints that(i, k) is the first edge ofCij and(l, j) is the last edge ofCij . If k �= i + 1,
then(i, k) has to be a valid pair, and a similar condition holds for the pair(l, j).

If the angle(j, i, k) or (l, j, i) is greater than 180◦, we setF(i, j ;k, l) to infinity, as it is not a valid
convex decomposition. Then

f (i, j)= min
k,l
F (i, j ;k, l).

We need to computeF(i, j ;k, l) for at mostm2r2
P pairs because ifi is reflex (convex), thenk is any

(respectively reflex) vertex. The same condition holds forl andj .
We can compute the values ofF using the following recursive formula:

F(i, j ;k, l)= d(l, j)+ f (l, j)+ min
g
F (i, l;k, g), (A.1)

where the minimum is taken over all verticesg such that(g, l) is a valid pair (org = l − 1) and the
angle(g, l, j) � 180◦. The recurrence uses a minimum decomposition ofPlj along with a minimum
decomposition ofPil for which the first edge ofCil is (i, k) and the last edge is(g, l). A vertex g is
chosen only if the polygonCil can merge with the triangleTilj . Since bothTilj andCil are convex it is
sufficient to verify that the angles(g, l, j), (j, i, k)� 180◦. See Fig. 18 for an illustration.
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Fig. 18. The recurrence: we computeF(i, j ; k, l) using a minimum decomposition ofPlj along with a minimum
decomposition ofPil (shaded) for which the first edge ofCil is (i, k) and the last edge is(g, l). The triangleTilj
can merge with the base subpolygonCil .

To complete the algorithm we first need to find all valid pairs and then computeF(i, j ;k, l) for them.
The result of the algorithm will bef (1,m). We will computeF(i, j ;k, l) in ascending order of the
differencej − i using Eq. (A.1).

Theorem A.1. The minimum-length convex decomposition ofP can be computed inO(m2r2
P ) time.

Proof. For each pair(i, j) we can compute whethervi is visible fromvj in O(m) time. A potentially
valid pair is a pair(i, j) for which at least one ofvi or vj is reflex. Computing visibility for all potentially
valid pairs will therefore take O(m2rP ). Sorting all valid pairs in ascending order of the difference
between the indices will take an additional O(mrP logm) time.

For a fixed quadruplei, j , k and l, let g(i, j, k, l) denote the index ofg that minimizes the
recurrence (A.1). For a fixed triplei, k and l, g(i, j, k, l) increases monotonically withj because as
we increasej , the angle(j, l, i) can only decrease and more pairs(g, l) become relevant; see Fig. 19.
While using the recurrence (A.1) we should only compute the minimum over all relevantg’s that are
greater thang(i, j ′, k, l), wherej ′ is the largest index for which(i, j ′) and (l, j ′) are valid pairs and
j ′ < j . Thus, the amortized time spent in computing eachF(i, j ;k, l) is O(1). The overall running time
of the algorithm is therefore O(m2r2

P ). ✷

A.2. Constrained minimum-length decomposition

We slightly change the above algorithm to computeĉ(P, a). We defineF(s, i, j ;k, l) to be the
minimum-length convex decomposition ofPij into at mosts convex subpolygons, under the constraint
that(i, k) is the first edge of the base polygonCij and that(l, j) is the last edge ofCij . If the angle(j, i, k)
or (l, j, i) is greater than 180◦ or if Pij cannot be decomposed into at mosts convex subpolygons, we set
the cost to infinity. We definef (s, i, j) to be the cost of any convex decomposition ofPij with at mosts
subpolygons.
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Fig. 19. Whenj increases, the angle(j, l, i) decreases and more valid pairs(g, l) become relevant.

The recurrence is now given by

F(s, i, j ;k, l)= d(l, j)+ min
u�s

{
f (u, l, j)+ min

g
F (s − u, i, l;k, g)}, (A.2)

where the minimum is taken over all verticesg such that(g, l) is a valid pair (org = l− 1) and the angle
(g, l, j)� 180◦.

Theorem A.2. The minimum-length convex decomposition ofP into at mosts subpolygons(for every
1� s � 2rp) can be computed inO(m2r4

P ) time.

Proof. We use the arguments from the proof of Theorem A.1. We now compute O(m2r3
P ) entries. The

monotonicity condition described above still holds, i.e., for a fixed quadruples, i, k, l, the value ofg
increases monotonically withj . So each entry can be computed in O(rP ) amortized time sinces � 2rP ,
giving a total of O(m2r4

P ) time. ✷
Theorem A.3. A decompositionDPQ of the polygonsP and Q that minimizes the mixed function
c(DPQ) can be computed in timeO(m2r4

P + n2r4
Q).

Proof. Using the above algorithm we can computeĉ(P, a) = f (a,1,m) for P for every a � 2rP in
O(m2r4

P ) time andĉ(Q,b) = f (b,1, n) for Q for every b � 2rQ in O(n2r4
Q). We need an additional

O(rP rQ) time to computec∗, which is subsumed by the other factors of the running time.✷
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