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Abstract

The in,nitesimal rigidity (or brie-y rigidity) of a bar-and-joint framework (in any dimension)
can be formulated as a rank condition of the so-called rigidity matrix. If there are n joints in the
framework then the size of this matrix is O(n), so the time complexity of determining its rank is
O(n3). But in special cases we can work with graph and matroid theoretical models from which
very fast and e7ective algorithms can be obtained. At ,rst the case of planar square grids will
be presented where they can be made rigid with diagonal rods and cables in the squares, and
with long rods and cables which may be placed between any two joints of the grid. Then we
will consider the one- and multi-story buildings, and ,nally some other results and algorithms.
? 2002 Elsevier Science B.V. All rights reserved.

1. Planar square grids with diagonal and long rods

Let us consider a k × l square grid which consists of rigid rods and rotatable joints
(in the grid points). The motions of such a planar square grid framework have a very
simple description. Since the opposite rods of a square will be parallel after any planar
motions, all the deformations can be described with the rotations of the rows and
columns of the grid. The extra diagonal rod in Fig. 1 ensures x2 = y1 (that is, the
rotations of row 2 and column 1 are identical, preserving the shape of the square in
their intersection).
We can de,ne a bipartite graph where the vertices of the graph correspond to the

rows and columns, respectively, and there is an edge between two vertices if and only
if there is a diagonal rod in the intersection of the corresponding row and column,
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Fig. 1.

ensuring that the deformations of the corresponding row and column must be equal.
This graph theoretical model of square grid frameworks was given by Bolker and Crapo
[3]. They proved that a planar square grid framework will be rigid if and only if the
corresponding bipartite graph is connected. In this case all the xi and yj quantities are
equal and hence any motion is necessarily a congruent motion (a rotation) of the whole
framework. As a corollary one can deduce that the minimal rigid systems of diagonal
rods in a k × l square grid consist of k + l − 1 diagonals (forming a spanning tree
in the graph) and the rigidity of the system can be recognized in O(k + l) time (we
only have to check the connectivity of the corresponding graph). Observe that using
the rigidity matrix (see Abstract) we should need O((k + l)6) time.
The reader can immediately observe the di7erence between a “real” deformation

(like at the right-hand side of Fig. 4) and an “in,nitesimal” one (like in Fig. 8c).
Throughout, rigidity will mean that even in,nitesimal deformations are excluded. Most
authors call this concept in,nitesimal rigidity.
The natural generalization of this problem is if we use long rods in the square

grid which can be placed between any two joints of the grid. The graph theoretical
model does not work in this case. Long rods, parallel to the rows or columns, have
no e7ect to the in,nitesimal motions of the grid so they are ignored. The e7ect of
a general long rod can be described with a linear equation [7]. These equations have
very simple structure: they have the rotations of the rows and columns as variables
and the coeMcients are 0 and ±1. In Fig. 2 we show an example, but we have to
emphasize that the possible motions to be prevented by the long rod are in,nitesimal
only. Of course “short” diagonal rods are special long rods, so if we have a k × l
square grid with s pieces of long rods we have to consider the system of equations
with k + l variables and s equations.
The planar frameworks are rigid if and only if they have only the trivial congruent

motions in the plane, where the rotations of rows and columns are the same. In the
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Fig. 3.

(k + l)-dimensional linear space all of the hyperplanes corresponding to the equations
contain this one-dimensional subspace of the trivial solutions. To obtain the line of
the trivial solutions as the intersection of the hyperplanes we need at least k + l − 1
hyperplanes.

Theorem 2.1 (G%asp%ar et al. [7]). The square grid framework with long rods is in-
4nitesimally rigid if and only if the corresponding system of equations has only
a one-dimensional set of solutions (the congruent motions). So it requires at least
k + l − 1 long rods to make the square grid rigid and so many rods are su5cient
(see Fig. 3).

2. Planar square grids with diagonal and long cables

Physically realizable rods, unfortunately, are less reliable against compression than
tension. If we want to model the physically constructible frameworks and wish to
permit only tension in the diagonals, we have to introduce the concept of tensegrity
frameworks. Here we can use three kind of elements between joints: rods (which
are rigid both under tension and compression), cables (which are reliable against
only tension) and struts (which are reliable against only compression). Since a di-
agonal cable and a diagonal strut in the opposite (that is, perpendicular) position
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Fig. 4.

Fig. 5.

in a square framework have the same e7ect, we may disregard struts in our model.
In what follows, rods and cables will be drawn by continuous and by broken lines,
respectively.
If we use diagonal cables in the squares the problem will be similarly very simple.

A diagonal cable can prevent the deformation of the square only in one direction which
means that an inequality will hold between the rotations of the corresponding row and
column. Since the e7ect of the cable depends on its position we have to use directed
edges in the graph to indicate the direction of the cable (and also the inequality).
Baglivo and Graver [1] showed that the square grid framework with diagonal cables
is rigid if and only if the corresponding digraph is strongly connected. (Undirected
edges, indicating diagonal rods, are considered as pairs of oppositely oriented directed
edges.) For example, there is no directed edge from {y3; y5; x4} to the other vertices,
hence the tensegrity framework of Fig. 4 is nonrigid. So we need at least 2max(k; l)
diagonal cables to make the k × l grid rigid.
To describe the e7ect of long cables we need linear inequalities because a cable can

prevent motions in one direction only.

Theorem 3.1 (G%asp%ar et al. [7]). The square grid framework with long cables is in-
4nitesimally rigid if and only if the corresponding system of inequalities has only a
one-dimensional set of solutions (the congruent motions). So it requires at least k+ l
long cables to make the k× l square grid rigid and so many cables are su5cient (see
Fig. 5).
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Fig. 6.

We can observe that using long rods instead of “short” diagonal rods the required
number k + l − 1 of rods did not change. But in the case of cables this number
decreased, sometimes signi,cantly: the required number of “short” diagonal cables (in
a k× l square grid) was 2max(k; l), while k+ l long cables are suMcient. For example
in Fig. 5 this number is 9 instead of 12.

3. Planar square grids with holes

So far the bases of the frameworks were complete rectangular parts of the in,nite
square grid. It is easy to see that using “convex” square grids, where each row and
column consist of one connected sequence of squares, the previous theorems remain
valid without any changes, only the number of possible rods and cables will decrease.
If the square grid is not “convex” but there is no hole in it then we have to increase
the number of variables introducing di7erent variables for the independent segments
of rows and columns. So the previous theorems will hold if we substitute the number
of row and column segments for k and l, respectively. But what is the situation if we
have hole(s) in the grid? It was shown in [8] that each hole forces two more equations,
one among the rotations of the row segments and one among the column segments,
respectively (see Fig. 6).
This observation implies that at least

(#{row and column segments})− 2(#{holes})− 1

pieces of rods, or at least one more of cables, are required to in,nitesimally rigidify the
square grid framework with holes. For example the framework of Fig. 7a is nonrigid
(an in,nitesimal deformation is indicated in Fig. 7c), but changing the direction of a
cable (Fig. 7b) it becomes rigid.

4. One-story buildings with diagonal and long rods

A one-story building is a square grid whose joints are connected to the ground via
joints by rods of uniform length. The ,rst observation about one-story buildings was
that a diagonal rod in a vertical wall prevents the motions of the wall along its plane,
so putting diagonal rods into two intersecting vertical walls the vertical rod in the
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Fig. 7.

intersection will be ,xed. If we put four diagonal rods into the four external vertical
walls then the problem can be reduced to the planar problem of a square grid with its
four corners ,xed to the plane. That is, the sum of the rotations of the rows and the
sum of the rotations of the columns must be equal to zero.

x1 + x2 + · · ·+ xk = 0; y1 + y2 + · · ·+ yl = 0: (1)

These equations result that in the case of k× l-sized one-story buildings the required
number of diagonal rods is k+ l−2 (in addition to the four rods in the vertical walls).

Theorem 5.1 (Crapo [5]). The framework of a one-story building which has rods in
the external vertical walls is made in4nitesimally rigid by certain diagonal rods of
the ceiling if and only if the corresponding bipartite graph is either connected or is
an asymmetric 2-component graph. Asymmetric means that

∣
∣
∣
∣

|V1 ∩ A| |V1 ∩ B|
|V2 ∩ A| |V2 ∩ B|

∣
∣
∣
∣
	=0;

where V1 and V2 are the vertex sets of the two connected components of G; while A
and B are the two subsets of the original bipartition of the bipartite graph.

For example Fig. 8 shows two square grids and the corresponding 2-component
forests. The ratios of rows and columns in the components of the ,rst graph are 3:3
and 3:6, respectively, the graph is asymmetric, so the ,rst framework is rigid. In the
second graph these ratios are 2:3 and 4:6 which are the same, the second graph is
symmetric and we can see a deformation of the framework in Fig. 8c. (It is easy
to see that these systems make the framework rigid if and only if, after a suitable



N. Radics, A. Recski / Discrete Applied Mathematics 123 (2002) 473–485 479

Fig. 8.

permutation among the rows and after another one among the columns to make the
grid “block-diagonal”, the three special points of the grid u; v and w, determined by the
two-components of the forest, are not collinear.) One can prove that the asymmetric
2-component forests of a graph form the base set of a matroid, this result can be
generalized to non-bipartite graphs as well [14].
In the general case of one-story buildings it is easy to see that at least three vertical

walls, not all parallel, must contain diagonal rods. In such a good situation we have
to consider only the horizontal motions of the joints because preventing the horizontal
motions the framework will be rigid (the joints cannot move vertically). In this case
the e7ect of a diagonal rod in a vertical wall can be described with an equation where
the variables are the rotations of rows and columns and two further auxiliary variables:

Theorem 5.2 (Radics [13]). Let us consider a (k × l)-sized one-story building with
some diagonal rods of certain (horizontal or vertical) squares. The building is in-
4nitesimally rigid if and only if the rank of the coe5cient matrix of the correspond-
ing system of equations is k + l+ 2. Hence this is the minimum number of diagonal
rods to make the building rigid.

The minimal rigid systems of diagonal rods form the base set of a matroid (the
coeMcient matrix of the equation system is a representation). In the simplest case,
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where k= l=1 this matroid is isomorphic to the cycle matroid of the graph C5 (cycle
of length 5). In general the matroids have the following property:

Theorem 5.3 (Radics [13]). The matroid of a (k×l)-sized one-story building is binary
if and only if k = l= 1.

Making the one-story building rigid with long rods is solved only in the special case
mentioned above, when we put diagonal rods into the external vertical walls. In this
case, besides the linear equations as the e7ect of long rods, we have to put the two
additional equations (1) into the system. The one-story building will be rigid if and
only if the intersection of the hyperplanes corresponding to the equations of the long
rods and the pinned points consists of the origin only.

Theorem 5.4 (G%asp%ar et al. [7]). The one-story building based on a k× l square grid
is made in4nitesimally rigid by (neither horizontal nor vertical) long rods if and only
if the solution of the corresponding system of linear equations is unique: the zero
vector.

So we need k + l− 2 long rods to make the building rigid (of course in addition to
the rods in the four vertical walls).

5. One-story buildings with diagonal and long cables

The general problem of the one-story buildings with diagonal cables seems to be
much more diMcult than the problem with diagonal rods (see the previous section).
Only the special case of the building with four external vertical walls braced with
diagonal rods was solved, but the minimal rigid systems of diagonal cables have various
structures.
The ,rst observation is that the di7erence between the required numbers of diagonal

cables or rods is not so big as it was in the planar case (2max(k; l) versus k + l− 1).

Theorem 6.1 (Chakravarty et al. [4]). Let k; l¿ 2 and k+l¿ 5. Then at least k+l−1
diagonal cables are required to make the one-story building (with braced vertical
walls) in4nitesimally rigid; and that number will always do.

Let us presume that the bipartite graph G(A; B) of the system of cables is connected
(where A and B are the vertex classes corresponding to the rows and columns, respec-
tively). Then there is a necessary and suMcient condition for the graph to make the
one-story building rigid:

Theorem 6.2 (Recski and SchwTarzler [16]). Let the graph G(A; B) of the cables be
connected. Then this system of cables makes the one-story building in4nitesimally
rigid if and only if

|N ∗(X )| · k ¿ |X | · l
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for all proper subsets X of A or

|N ∗(Y )| · l¿ |Y | · k

for all proper subsets Y of B; where N ∗(Z) denotes the set of vertices in the other
vertex class which can be reached with directed paths from Z .

There is an interesting question implied by this theorem: what kind of cable systems
can occur as minimal rigid cable systems. The ,rst special case is when we prescribe
that all the cables must be parallel. Then we have a simple necessary and suMcient
condition:

Theorem 6.3 (Recski [15]). Consider a system of k+l−1 diagonal cables in the k×l
square grid where the corners are pinned down; and suppose that all the diagonals are
parallel. Let G(A; B) be the corresponding bipartite graph. Then the system makes
the grid in4nitesimally rigid if and only if |N (X )|¿ (l=k)|X | holds for every proper
subset X of A; where N (X ) denotes the set of those vertices of B which are adjacent
to at least one vertex of X .

Recall that a bipartite graph, with bipartition subsets A; B of cardinalities k and l,
respectively, has a perfect-matching if and only if k = l and |N (X )|¿ |X | holds for
every subset X of A. This theorem of Hall has a strengthening which is in complete
formal analogue of the condition of Theorem 6.3, namely that every edge of a con-
nected bipartite graph is contained in some perfect matching if and only if k = l and
|N (X )|¿ |X | holds for every proper subset X of A (see [9]).
On the other hand, the graph of a minimal system, since the required number of

cables is k + l− 1, can be a directed tree. The natural questions are: which trees can
also be the graphs of a minimal system, and are there any other possibilities as well?
The answer to the second question is in the aMrmative (i.e. the graph need not be a
tree) but there is only one exception:

Theorem 6.4 (Recski [15]). Consider a system of k+l−1 diagonal cables in the k×l
square grid where the corners are pinned down. Suppose the corresponding graph is
not a tree. Then the system of cables makes the grid in4nitesimally rigid if and only
if k−l=±1 and the corresponding graph consists of an isolated vertex and a directed
circuit with 2min(k; l) vertices (like in Fig. 9).

As we saw the graph of most of the rigid minimal systems of cables is a directed
tree. Let us consider the reverse problem: if we have an undirected tree as the graph
of the cables (we have information only about the squares in which the cables are
placed but the positions of the cables are unknown) is there a good orientation of the
edges (and that of the cables in the squares) which makes the one-story building rigid?
There is a simple characterization of these “rigid” trees. Call an edge e of the tree F
critical, if F − {e} is a symmetric 2-component forest (cf. Theorem 5.1).
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Fig. 9.

Theorem 6.5 (Recski and SchwTarzler [16]). F has a rigid orientation if and only if F
has no critical edges. The rigid orientation; if it exists; is essentially (up to inversion
of the whole orientation) unique.

The necessity of the condition is obvious: the remark about the collinearity of the
points u; v and w following Theorem 5.1 shows that if F − {e} is symmetric then a
single cable cannot prevent a deformation like that of Fig. 8c.
In [16] we can ,nd an algorithm which provides a good orientation if it exists: Let

V1, V2 denote the vertex sets of the two connected components of F − {e}. The edge
e has tail in Vi and head in Vj if and only if kilj ¿ kjli, where ki denotes the number
of vertices in Vi which correspond to rows of the grid, and li denotes the number of
vertices in Vi which correspond to columns.

6. Results in 3-dimension

The 3-dimensional problem of cubic grids is much more diMcult than the planar
problem, we have no such e7ective methods in the space as the graph theoretic model
was in the plane. But the problem is very interesting so partial results have been already
published about rigidity of special cubic grids [10,13] or general observations about
d-cube grids [11]. However, the problem of the t-story buildings with diagonal rods,
as the simplest 3-dimensional case is solved.
The description of the one-story building can easily be generalized to the case of

higher buildings. It is easy to see that in each -oor at least three vertical walls, not
all parallel, must contain diagonal rods, hence we have to consider only the horizontal
motions of the -oors. Describing the e7ect of a diagonal rod we will obtain similar
linear equations as in the case of one-story buildings [13]. In this system of equations
the number of variables is t(k + l+ 2) (in the case of a k × l-sized t-story building),
while the number of equations is equal to the number of diagonal rods.

Theorem 7.1 (Radics [13]). A k × l-sized t-story building is in4nitesimally rigid if
and only if there are at least three vertical walls braced in each <oor and these are
not all parallel; and the system of equations obtained from the rods has the zero
vector as the only solution.
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Fig. 10.

This means that we need at least t(k + l+2) diagonal rods to make a (k × l)-sized
t-story building rigid.
Similarly to the one-story case we can de,ne the matroid of a t-story building. Of

course this matroid will be a representable matroid but from Theorem 5.3 it is obvious
that such a matroid can be graphic only if k = l=1 (that is, for a 1× 1× t building).
However, in this case the structure of these matroids is very simple:

Theorem 7.2 (Radics [13]). The matroid of a 1×1× t building is always graphic and
the corresponding graph is a “chain” of a pentagon (corresponding to the 4rst <oor)
and t − 1 pieces of hexagons; like in Fig. 10.

7. Other grid-like structures

It is easy to see that all the results in Sections 2–4 are almost the same if we have
a planar grid of parallelograms [17]. The only changes will arise when we construct
the linear equations or inequalities because the coeMcients depend on the size of the
parallelograms.
The graph theoretical method can be applied for other grid-like structures as well, see

[12] for the Archimedian semiregular grids in the plane. The semiregular grids (33344)
and (33434) are isomorphic to square grids with diagonal rods of certain squares (see
Fig. 11) so we can use the graph theoretical method of square grids to make these
semiregular grids rigid. But if there are hexagons or larger faces in the grid then this
method can work only with special further assumptions about the motions of the rods.

8. Algorithmic aspects

As it was mentioned, using the rigidity matrix the number of operations required
to determine the rigidity of a framework is proportional to the cube of the number of
joints, hence can be bounded from above by c×n where n= k+ l (k+ l+ t in Section
6) and c; q are constants. But using the new results all the above problems require less
operations. The decrease is signi,cant in every case except for the grid with holes: if
we have a large number of holes, the new method decreases only the coeMcient c in
the bound for the number of operations, as compared to the original method. In all the
other cases the exponent q is reduced in the upper bound.
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In all cases the set of minimal rigid systems form the base set of a matroid. It
means that the greedy algorithm can work in these cases, so we can make these types
of frameworks rigid even if we have special requirements about placing the rods or
cables. For example, if we wish to ,nd a minimum system of diagonals to make a
system rigid then the “user” may specify priorities for certain diagonals.
Another problem is how can one extend a given set of diagonal rods or cables in a

planar square gird to obtain a rigid system or to increase the reliability of the system
(if it is not only rigid but also remains rigid if one diagonal is “broken”). Ref. [2]
contains a linear time algorithm for the connectivity augmentation problem for graphs
with special requirements. A special case of this problem—augmenting the connectivity
of bipartite graphs while preserving bipartiteness—gives a linear time algorithm for our
problem. The analogous problem concerning strong connectivity of digraphs was solved
in [6]. Their algorithm solves, still in linear time, the problem of completing square
grid framework with diagonal cables.
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Hungarian).
[10] Gy. Nagy, Diagonal bracing of special cube grid, Acta Tech. Acad. Sci. Hungar. 106 (3–4) (1994)

265–273.
[11] Gy. Nagy, The rigidity of special d cube grids, Ann. Univ. Sci. Budapest 39 (1996) 107–112.
[12] Gy. Nagy, Diagonal bracing of regular planar grids, Alkalmaz. Mat. Lapok 18 (1998) 101–109.
[13] N. Radics, Rigidity of t-story buildings, Proceedings of the 1st Japanese–Hungarian Symposium on

Discrete Mathematics and Its Applications, 1999, pp. 181–187.
[14] A. Recski, Elementary strong maps of graphic matroids, Graphs and Combin. 3 (1987), 379–382 (Part

1);
A. Recski, Elementary strong maps of graphic matroids, Graphs and Combin. 10 (1994) 205–206 (Part
2).

[15] A. Recski, One-story buildings as tensegrity framework II, Structural Topology 17 (1991) 43–52.
[16] A. Recski, W. SchwTarzler, One-story buildings as tensegrity frameworks III, Discrete Appl. Math. 39

(1992) 137–146.
[17] W. Whiteley, private communication, June 1990.

For further reading

Gy. Nagy, How to brace an annex building? Proceedings of the Second International Conference on
Graphs and Mechanics, 1999, pp. 35–36.
A. Recski, Applications of combinatorics to statics—a survey, Rend. Circ. Mat. Palermo 3 (2) (1984)
237–247.
A. Recski, Applications of combinatorics to statics—a second survey, Discrete Math. 108 (1992)
183–188.


	Applications of combinatorics tostatics---rigidity of grids
	Planar square grids with diagonal and long rods
	Planar square grids with diagonal and long cables
	Planar square grids with holes
	One-story buildings with diagonal and long rods
	One-story buildings with diagonal and long cables
	Results in 3-dimension
	Other grid-like structures
	Algorithmic aspects
	Acknowledgements
	References


