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Abstract

Multi-objective Optimization Problems (MOPs) are commonly encountered in the study and design of complex systems. Pareto 
dominance is the most common relationship used to compare solutions in MOPs, however as the number of objectives grows 
beyond three, Pareto dominance alone is no longer satisfactory. These problems are termed “Many-Objective Optimization 
Problems (MaOPs)”. While most MaOP algorithms are modifications of common MOP algorithms, determining the impact on 
their computational complexity is difficult. This paper defines computational complexity measures for these algorithms and 
applies these measures to a Multi-Objective Evolutionary Algorithm (MOEA) and its MaOP counterpart.
© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Informally, computational complexity is ultimately concerned with the time and space (resources) required to 
solve a given problem.  While time is often the primary concern, space should be considered as well.  Typically, the 
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resources are generically categorized as CPUs (number of independent computational units), primary storage 
(amount of memory/RAM), secondary storage (disk, cloud, etc.).  In the case of multiple CPUs, the topology 
interconnecting them is also important.  Regarding time, it may be measured either in wall-clock time which is 
pragmatic but machine dependent or by the number of operations required. The standard time complexity measures 
used in algorithm analysis are framed in iterations which is itself a simplified measure of the number of operations 
required.

Tractability is an important concept that is related to computational complexity.  Computational problems are 
divided into two categories: tractable and intractable.  Notionally, tractable problems can be thought of as possessing 
a degree of complexity that is solvable and intractable problems as possessing a degree of complexity that is not 
solvable.  Many optimization problems are intractable, so when solving these problems, it is generally not possible 
to solve them exactly.  When speaking of a solution to such a problem, we are actually speaking of solving either an 
approximation to the actual problem or finding a local optimum rather than the global optimum.

Single objective optimization problems, generally speaking, are intractable time-wise but have finite space 
(memory) requirements.  Multi-objective optimization problems, on the other hand, are intractable both with regards 
to time and space.  Intractability will be dealt with in more detail later, but for now it sufficient to note that for the 
current purpose, spatial complexity, not temporal complexity creates the essential differences between single and 
multiple objective algorithms.  Many objective optimization problems (MaOP) are a relatively new classification of 
multiple objective algorithms.  The distinction is necessary because as the number of objectives grows, the use of 
Pareto dominance, which is the corner-stone of MOP algorithms, becomes ineffective.  This is because solutions in 
these higher order spaces no longer dominate one another and therefore the set of optimal solutions becomes, in 
effect, the entire solution space.  The number of objectives where this occurs is problem dependent, but usually 
begins when there are four to six objectives1.  Since there are active research fields, such as systems architecting, 
where the number of objectives routines exceed this threshold, MaOPs are worthy of commiserate attention.  
Evolutionary algorithms (EAs) will be the focus due to their wide use and applicability to MOPs and MaOPs.

In order to effectively find solutions for MaOPs, the use of Pareto dominance to determine the optimal set must 
either be modified or abandoned altogether.  The effects of this on algorithmic complexity will be explored and 
complexity measures will be set forth.  In order to achieve this, a basic review of complexity measures focusing on 
“big-oh” notation, NP problems, and intractability is in order along with a review of Pareto dominance since it is 
fundamental to understanding the difference between single optimization problems, multiple optimization problems, 
and many optimization problems.

2. Complexity Measures

Computational complexity is usually defined as a function of the size (cardinality) of the input data set.  In this 
case, it is common to speak in terms of the asymptotic growth of an algorithm in terms of the asymptotically 
dominate term that bounds some aspect of its behavior.  When discussing computational complexity, time 
complexity is assumed unless otherwise stated.  For example, if an algorithm requires 6+2n+3n2 iterations to finish 
given any set of input data and n is the cardinality of the input data set, then the algorithm is often called an n2

n2).  An f(n)) if, and only if, it is both O(f(n)) and 
(f(n)).  Big-oh (O) denotes the asymptotic upper bound and may be defined as the set of functions O(f(n)) = {g(n) : 
c, n0 Z+  0 g(n) cf(n) n n0}

2.  Big- ) denotes the asymptotic upper bound and may be 
similarly defined as th f(n)) = {g(n) : c, n0 Z+  0 cf(n) g(n) n n0}.  Big- )
would then denote the asymptotically tight bound where it is the set f(n)) = { g(n) : c1, c2, n0 Z+  
0 c1f(n) g(n) c2f(n) n n0}.  Of these, big-oh is the most popularly used as the upper bound is usually of 
greater interest than the lower bound and an algorithm cannot be described by big-theta unless there exists a function 
that is both big-oh and big-omega.

A broader way to view computational complexity is to categorize problems and algorithms as either “P” or “NP”.  
Here, P stands for “Polynomial” and NP for “Non-deterministic Polynomial”3.  Sometimes NP is understood to 
mean non-polynomial and while not strictly correct, it has never been demonstrated to be false.  The difference 
between P and NP is whether or not the algorithm can be solved in polynomial time or space with a Deterministic 
Turing Machine (DTM) or if it requires a Non-Deterministic Turing Machine (NDTM).  It has been shown that if a 
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problem can be solved in O(f(n)) with an NDTM, then it can be solved in O(2f(n)) on a DTM.  However that is an 
upper bound and a lower bound has yet to be established.  Because the upper bound complexity is exponential for all 
polynomial f(n), NP can be considered non-polynomial and is often further labeled “intractable”.  Intractability 
conveys the notion that a problem is unsolvable due to its time or space complexity, however caution should be 
applied as this is only the upper bound and the complexity of the average case may be polynomial.  One case where 
this can be seen is Dantzig's simplex method.  The simplex method was believed to be a polynomial time algorithm 
at one time because it usually requires so few iterations, but has now been proven to be NP and intractable4.

3. Pareto Dominance

Pareto dominance is a way to apply a “less than” or “greater than” relationship to solutions with multiple 
variables.  This relationship is usually defined within the context of whether the problem is a minimization or 
maximization problem so that the minimum or maximum solutions dominate respectively.  For a maximization 
problem, a solution s* = ( s1

*, s2
*, …, sn

*) is said to dominate s = ( s1, s2, …, sn), denoted s* s, if, and only if, si
*

si, i : 1 i n, and sj
* > sj j : 1 j n.  For a minimization problem, a solution s* = ( s1

*, s2
*, …, sn

*) is said to 
dominate s = ( s1, s2, …, sn), denoted s* s, if, and only if, si

* si, i : 1 i n, and sj
* < sj j : 1 j n.

Pareto dominance is necessarily employed weakly in MOPs because it cannot be assumed that one solution 
would dominate all others.  In fact, it is possible for no solution to dominate any other.  Therefore, the optimal set is 
not constructed of the Pareto dominate solutions, since there may not be any, but rather it consists of the set of all 
non-dominated solutions.  As a simple illustration of this, consider a two objective problem where one objective is 
equal to the negative of the other.  If one objective is increased, then the other is decreased, therefore no solution can 
dominate another and furthermore, every solution is non-dominated and optimal.

4. Optimization Problems

An optimization problem seeks the solution that minimizes or maximizes some objective (single objective 
optimization problem) or objectives (multiple objective optimization problem) while satisfying a possible set of 
constraints.  The objective is represented as a function and the solutions are comprised of the decision variables that 
are the parameters of the objective function.  The standard form for a constrained single objective optimization 
problem is

minimize f(x), x = (x1, x2, …, xn)

subject to gi(x) i ng
hj(x) j nh
xk xk k n

where f(x) is the is the objective function, x = (x1, x2, …, xn) are the decision variables, gi(x) i ng and 
hj(x) j nh are the constraint functions, xk k n are the constraint sets, n is the number 
of decision variables, ng is the number of inequality constraints, and nh is the number of equality constraints.  This 
can be extended to the multiple objective problem by replacing f(x) with fm(x), m = p, where p is the number 
of objectives.  The problem is stated as a minimization problem, but without loss of generality as any maximization 
problem may be formulated as a minimization problem.

There are a number of considerations regarding optimization problems.  Some important ones are whether it is 
constrained or unconstrained, the domain of the each decision variable (reals, integers, etc.), the number of 
objectives, and if the objective function(s) are differentiable.  To be as widely applicable as possible, the most 
general case of each will be taken.  To this end, optimization problems will be treated as multiple objective, 
constrained, and non-differentiable.
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5. Evolutionary Algorithms

Evolutionary Algorithms mimic the concept of biological evolution.  An optimal solution is found by performing 
biologically inspired operations upon a population and thus creating the next generation of individuals.  These 
individuals are evaluated using fitness functions that are the objective functions defining an optimization problem.  
Based upon fitness and other criteria, some individuals are removed from the population and the process is repeated 
until a stopping criteria is meet and the more fit individual(s) are the optimal solutions(s).  Individuals are 
represented by a chromosome that encodes the decision variables.  Careful encoding can be used to define 
chromosomes that adhere to the domain of each decision variable and sometimes even to satisfy certain constraints.

A generic EA has the following form5:

Generic Evolutionary Algorithm

t 0 Generation counter

C0 Initial population

while stopping condition(s) not true do Create new generation

Evaluate fitness, f(x), of each individual x Ct

Perform reproduction to create offspring

Select the new population Ct+1

t t + 1 Advance to new generation

end while

While this is straight-forward for a fitness function with a single objective, it is not so clear in the case of multiple 
objectives. Evolutionary algorithms that handle multiple objectives are termed Multiple Objective Evolutionary 
Algorithms (MOEAs). MOEAs typically rely on Pareto dominance to determine a non-dominated set of individuals 
to retain or use for reproduction. Many methods have been employed to make these determinations so that 
exploration and exploitation are achieved (this is sometimes referred to as “progress”6). To demonstrate the variety
of methods that are possible, here is a partial list of current MOEAs7:

Vector Evaluated GA (VEGA)
Lexicographic Ordering GA
Vector Optimized Evolution Strategy (VOES)
Weight-Based GA (WBGA)
Multiple Objective GA (MOGA)
Niched Pareto GA (NPGA, NPGA 2)
Nondominated Sorting GA (NSGA, NSGA-II)
Distance-based Pareto GA (DPGA)
Thermodynamical GA (TDGA)
Strength Pareto Evolutionary Algorithm (SPEA, SPEA2)
Multi-Objective Messy GA (MOMGA-I,II,III)
Pareto Archived ES (PAES)
Pareto Envelope-based Selection Algorithm (PESA, PESA II)
Micro GA-
Multi-Objective Bayesian Optimization Algorithm (mBOA)

While these algorithms are designed for MOPs, they may not work well for MaOPs because of the inadequacy of 
Pareto dominance when there is a large number of objectives present.  Taking this into consideration, here are some 
modifications to Pareto dominance to be incorporated directly into other MOEAs that have been suggested:
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Fuzzy Dominance8

Corner Sort9

Objective Reduction10

Hybrid Framework11

Here are a few MaOP specific algorithms that have been advanced:

Pareto Corner Search Evolutionary Algorithm (PCSEA)12

Borg13

Fuzzy Dominance SPEA2 (FD-SPEA2)8

Multiobjective Evolutionary Algorithm (DMOEA)14

Nondominated Sorting GA (NSGA-III)15

Multiobjective Evolutionary Algorithm/Decomposition (MOEA/D)16

These algorithms usually attempt to assist exploration and exploitation (progress) by either modifying the definition 
of Pareto dominance or by adding additional steps.

The advantage of EAs is that they do not require the objective (fitness) function to be convex, linear, or 
differentiable (i.e. they are a non-gradient method).  The downside is that it is difficult to explore the solution space 
without a gradient.  Therefore, when any of these properties are met, EAs are inefficient compared to those 
algorithms that can utilize the additional information.

6. MOEA Complexity

The space complexity of MOEAs is si np), where np is the population size.  This, of course, assumes a 
fixed population size, but that is expected even with algorithms using external archiving.  With other, non-
evolutionary, types of algorithms, the space complexity can be NP since the non-dominated Pareto set can be 
uncountably infinite.  However, EAs, as a rule, only maintain a specific population size, so in their case the space 
complexity is linear (P).

The time complexity of MOEAs is more complicated.  The upper bound time complexity of an MOEA is dictated 
by the length of the given chromosome because it can be (2nc) time, where nc is the 
number of bits required to encode the chromosome.  However, since searching exhaustively is guaranteed to have 
exponential (NP) time complexity (lower bound as well as upper), it is too inefficient to be practical.  Even though 
no MOEA, by definition, employs an exhaustive search of all the possible chromosome permutations, this allows a
worst-case bound of O(2nc) to be set for the entire class with the exception of specific algorithms proven to have a 
better bound.

Like the simplex method mentioned earlier, even though the upper bound is NP, the average case and lower 
bound may be P.  Some of the more common MOEAs have complexity that appears to be P.  For example, slower 
MOEAs like NSGA17 and SPEA18 are O(nonp

3), while faster ones like NSGA-II19, SPEA220, and PAES21 are 
O(nonp

2), where no is the number of objectives.  The catch is that the complexity given here is the computational 
complexity involved for advancing a single generation of the population, not the algorithm's aggregate complexity.  
The reason why the computational complexity is often stated with respect to a single generation is that it allows 
algorithms to be compared when the convergence rate of the overall algorithm is unknown.

In order to calculate the actual computational complexity of an MOEA, it is necessary to know both the 
complexity for each generation and the number of generations.  Although the convergence of EAs using at least the 
operations of reproduction and mutation combined with elitism has been proven22,23,24, the rate of convergence has 
not.  Therefore, we can say that the faster algorithms such as NSGA-II, SPEA2, and PAES are O(ngnonp

2), where ng

is the number of generations.  Depending upon the stopping criteria used, ng can have any complexity from constant 
to NP.  It should be noted that when ng is not constant or otherwise limited, it is a function of the chromosome 
length, nc.

Since we now have defined the complexity of three algorithms representative of the fastest general purpose 
MOEAs, we now turn our attention to those specifically designed for MaOPs.  We shall examine two such 
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algorithms, FD-SPEA2 and NSGA-III and compare them to their conventional MOEA counterparts, SPEA2 and 
NSGA-II, respectively. This information can then be used to understand the impact that solving for a large number 
of objectives has on multiple objective optimization problems.

FD-SPEA2 is a hybrid method that replaces the fitness assignment with a fuzzy fitness assignment and a fuzzy 
ranking assignment.  The fuzzy fitness assignment process needs to assess each individual of the population with 
regard every other individual for each objective and is therefore O(ngnonp

2).  The fuzzy ranking assignment process 
may need to execute the fuzzy fitness assignment process up to np times, making the entire process O(ngnonp

3).
Since the fuzzy ranking assignment process is performed once per generation, the overall complexity is O[ng(nonp

3 +
nonp

2)] = O(ngnonp
3).

NSGA-III is nearly identical to NSGA-II except for the selection process.  The NSGA-III selection process 
utilizes reference points to apply the selection pressure that a non-dominated Pareto approach lacks.  The effect of 
this approach on the computational complexity is minimal as NSGA-III is O[max(ngnp

2logno-2np, ngnonp
2)]15.

7. Conclusion

Only the effect of a large number of objectives on computational complexity when multiple objective 
evolutionary algorithms are employed as optimizers has been analyzed.  Incorporating other optimization 
approaches in the analysis would certainly strengthen this work, and is an obvious source of future work in this area. 
However, the results from the MOEAs should be indicative of the field as a whole since they are among the state-of-
the-art in multiple objective optimization. Given this, the effect on computational complexity varies when 
incorporating an approach that is designed for the additional challenges inherent to MaOPs that don't exist in other 
MOPs.  One MaOP MOEA, FD-SPEA2, is significantly slower than its MOP counterpart, SPEA2.  However, 
depending on the size of the population relative to the number of objectives, NSGA-III can have the same 
computational complexity as its MOP parent, NSGA-II.  We can therefore conclude that many objective 
optimization is essentially no more complex than conventional multiple objective optimization when presented with 
a suitable algorithm.
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