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THE PICARD GROUPS OF THE MODULI SPACES OF CURVES 

ENRICO ARBARELLO* and MAURIZIO CORNALBA* 

(Receioed 6 January 1986) 

$1. PRELI.WINARIES 

WE DENOTE by M,,, the moduli space of smooth h-pointed curves of genus g over C and by 

&is,h its natural compactification by means of stable curves. It is known that the Picard group 

of M,,, is a free Abelian group on h + 1 generators when g 2 3. This is due to Harer [4, 51 (cf. 

the Appendix). 

Instead of dealing with the Picard group of the moduli space it is usually more convenient, 

from a technical point of view, to work with the so-called Picard group of the moduli functor 

(see below for a precise definition), which we shall denote by Pit (JY~,,) if we are restricting to 

smooth curves and by Pit #&if we are allowing singular stable curves as well. As Mumford 

observes in [S], Pit (Jg.J has no torsion and contains Pit (MgJ as a subgroup of finite index 

(a proof of this will be sketched in the Appendix). The purpose of this note is to exhibit explicit 

bases for Pit (&& and for Pit (d&g,h)r which is also a free Abelian group. This is done in 

Theorem 2 (53), of which Theorem 1 in $2 is a special case. 

We shall now say a couple of words about our terminology. A family of h-pointed stable 

curves of genus g parametrized by S is a proper flat morphism II : V + S together with disjoint 

sections ol, . . . , a,, having the following properties. Each fiber n-‘(s) is a connected curve of 

genus g having only nodes as singularities and such that each of its smooth rational 

components contains at least three points belonging to the union of the remaining 

components and of the sections; moreover, for each i, Go is a smooth point of n-‘(s). 

Following Mumford [7,8], by a line bundle on the moduli functor Jjtg,h we mean the 

datum of a line bundle L, (often written L,) on S for any family F = (n : %Z + S, (rl, . . . , CT,,) of 

h-pointed stable curves of genus g, and of an isomorphism L, s cz*(L,) for any Cartesian 

square 

of families of h-pointed stable curves; these isomorphisms are moreover required to satisfy an 

obvious cocycle condition. It is important to notice that we get an equivalent definition if, in 

the above, we restrict to families of pointed stable curves which are, near any point of the base, 

universal deformations for the corresponding fiber. We write Pit (Sg,h) to denote the group 

l Supported in part by grants from the C.N.R. and the Italian Ministry of Public Education. 

153 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82006667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


154 Enrico Arbarello and Maurizio Cornalba 

of line bundles on _,#g,k, modulo isomorphism; we shall denote by cl(L) the class of the line 
bundle L in Pit (k,. ,,) and shall normally employ the additive notation for the group law in 
Pit (“/t9.J. One defines the notion of line bundle on _,fl,,, and Pit (JtigJ by replacing “stable” 
with “smooth” throughout in the above definitions. As is customary, we shall write Jfl,, ss 
instead of&,,,, Xs,e; likewise, we shall denote the moduli spaces of smooth and stable genus 
g curves by M, and R,, respectively. 

This research was done while the authors were on leave at the Courant Institute of New 
York University and at the Department of Mathematics of Brown University. The authors 
wish to thank these two institutions for their generous hospitality and support. 

52. THE CASE h = 0 

We begin by recalling the definition (cf. [6]) of the Hodge class i. and of the boundary 
classes 6,) 6,) . . . , 6cg,23: these are all elements of Pit (2,). For any family of stable curves 
TC: V -+ S we set A, = APACE, where o, is the relative dualizing sheaf. This defines a line 
bundle A on iig, whose class we denote by i.. 

Let C be a stable curve and p a singular point of C. We say that p is a node of type i( 1 5 i 
< [g/2]) if the partial normalization of C at p is the union of two connected components of 
genera i and g - i, while, if it is connected, we say that p is a node of type 0. Any node on C is of 
one of these types. The boundary of moduli space &?, - M, is the union of the irreducible 
components AO, . . . , AcsiZl, where Ai stands for the locus of stable curves with a singular 
point of type i. Let now TC : V+ S be a family of stable curves which is, near any point s of S, a 
universal deformation of n-i(s), and let i be a fixed interger between 0 and b/2]. The locus of 

those s E S such that 7~~ l(s) has a node of type i is a divisor D, in S. We may then define a line 
bundle L on 2, by setting L, = f(D,), with the obvious patching. The class of L in Pit (2,) 
we denote by ai. 

Our aim in this section is to prove the following. 

THEOREM 1. For any g 2 3, Pit (~2~) isfieely generated by i., SO, . . . , dbiz,, while Pit QZg) is 

j?eely generated by 1. 

Any class in Pit (2’,) which restricts to the trivial class on A, is an integral linear 
combination of the boundary classes bi; by Harer’s theorem then any class in Pit (2,) is a 
linear combination of % and the dis with rational coefficients. On the other hand it is well 
known (and follows in any case from our proof of Theorem 1) that d and the dis are linearly 
independent. The strategy of the proof of Therem 1 is the following. Set k = [g/2]. We shall 
construct k + 2 families of stable curves of genus g parameterized by irreducible curves. Let Gi 
= (7t: i%i + Si), i = 1, . . . , k + 2, be these families. Consider the matrix 

dego, &, . . . degc, 6, 

v(G,, . . . , &+,I = 

(here we have used the notation degdo, = deg& and so on). Evidently, the determinant of 

II(G,, . . , G,,,) is an integer. Let < be an element of Pit (2,). We know that < = aA+ Ebidi, 
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with a, bieQ. If we write di for the degree of 5 on Gi, we have a matrix relation 

We shall see that the families G,, . , . , GL+2 can be chosen so that the matrix q is non-singular 

(this shows, in particular, that E. and the dis are independent). Since the di’s are integers, one 

then concludes that det (~)a, det (q)b,, . , det (q)b, are integers. As we shall be able to 

construct two different sets of families G, , . , G, + 2 with the property that the correspond- 

ing values of det (q) are relatively prime, this will show that a and the his are integers. 

Thus the proof of our theorem really rests on the construction of the above families of 

curves. In what follows we shall construct four different classes of families of stable curves and 

at the end we shall choose the ones we need in each class. 

The family&(2 I h I g). 

Pick a smooth K3 surface Y’ of degree 2h -2 in @, or, when h = 2, a double covering of 

ti ramified along a smooth sextic. Consider on it a Lefschetz pencil of hyperplane sections. By 

blowing up Y’ at the base locus of this pencil we get another surface Y. The curves of the pencil 

appear in Y as the fibers of a map cp :Y + B = Pi, and the exceptional curves appear as 

sectionsE,, . . . , E,, off. Fix a genus g - h curve I- and a point 7 on it. Construct a new surface 

X by joining the surfaces Y and I- x P’ along El and {v} x P’. We thus get a familyf: X + P’ 

= B. We shall call this family A,,. Let us compute the degree of L on A,,. We have 

f*(W/) = cP*(o,)O(fifJg-h 

so that /. = A~~*(oJ. Now cp.+(w,) is a rank h vector bundle over B so that, by the 

Riemann-Roth theorem: 

x(cp,o,) = degAh/l + h(1 -g(B)) = deg,,*i. + h. (1) 

We are now going to compute the Euler characteristic of (PEWS in another way. Observe 

first that, since R’cp,o, z CB, one has 

X(cp!O,) = x(q*w,) - X((TB). (2) 

Next, the Leray spectral sequence for p gives 

%(cp!Q = x(c4J (3) 

and the Riemann-Roth theorem on Y says that 

&,) = x(Cy) + C(wJ’ - b;q41/2. 

Now a kml computation shows that 0~2 (p*w&o,, so that o, is isomorphic to 
o@f*w,‘. We then get 

x(w,) = x(c;) - (WV. wy)P. 

To compute the intersection number on the right hand side one uses adjunction on a fiber F of 

cp, plus the fact that q*c~, z c((2g(B)-2)F), to obtain 

0-Q = x(Py) - (S(B) - 1)(2g(F) - 2). 

But Y is the blow-up of a K3 surface, B a rational curve and F a genus h curve, so that 
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~(0,) = 2h. Now, looking at (l), (2) and (3), we get 

deg,,, = h + 1. (4) 

Although we won’t need this, we mention that the degrees of the boundary classes on A,, are as 

follows: 

deg,,,b, = 18 + 6h, 

degAhbi = 
0 if 1 5 i, i + h 

-1 ifi=h. 

The family F,(g - 1 2 2h 2 2, g 2 3) 
Fix smooth curves C, , C,, r of genera h, g - h - 1 and 1, and points x1 E C, , x2 E c2, ‘/E r. 

Consider the surfaces Y, = C, x r, Y, = (r x r blown up at (y, y)), Y, = C, x r, and set: 

A = {x1} x r, 

B = {x2} x r, 
E = exceptional divisor in the blow-up of r x r at (jl, y), 

A = proper transform of the diagonal in the blow-up of r x r at (y, y), 

S = proper transform of [y] x r in the blow-up of r x r at (y, v) (Fig. 1). 

We construct a surface X by identifying S with A and A with B. The surface X comes naturally 
equipped with a projectionf: X + I-. We call this family F,,. The fibers offover points 7’ # y 
are all as in Fig. 2. The fiber over 7 is as in Fig. 3. 

r r 

Fig. 1. 

Fig. 2. 

E 

%I X2 Y 7-n Cl c2 
r 

Fig. 3. 
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Now observe that f*w, is trivial, namely 

f*q z c~“~~c,~o~o~~c,~o~o~w,~l~~~. 

We can therefore conclude that 

degfk;. = 0. 

We will now compute degF,di. For this we need to use the following general principle, for 
which we refer to [6]. 

LEMMA 1. Let II : % + B be afamily of stable curves over a smooth curve B which is obtained 
from a family cp : 9 + B of (not necessarily connected) node curves by identifying sections St, 
T, , S,, T2, . . , S,, T, pairwise. For each j, let Ij denote the image of Sj in 9. Suppose the locus 
of singular points of type i in the fibers of 71 is 

(iJj’j) u lIPI9 . . . T Pm19 
where the pis are distinct points not belonging to ujCj. Then 

t6i)B = Oj(q*CNS,)O P*tNT,)) Fwh))~ 

where N, stands for the normal bundle to S and %? is of the form xy = t”’ near pl. 

In our particular case, since 

degN,=degN,=O; degN,=degN,= -1, 

we conclude that, for the family F,: 

deg 6, = 0, 

r 1 ifh>l 

degd, = 0 ifg-h-l>h=l 

-1 ifg-h-l =h= l(g=3), 

f -1 ifg-h-l>h>l 

0 ifg-h-l>h=l 
degb, = ( 

-2 ifg-h-l=h>l 

-1 ifg-h-l=h=l, 

degb,,, = -1 ifg-h-l> h, 

deg6i = 0 in the remaining cases. 

We shall now construct two more families of stable curves. They will both be constructed 
starting from a general pencil of tonics in the plane. Blow up P2 at the four base points of the 
pencil. Denote by $:X + (FD2 the blow-up, by E,, . . . , E, the exceptional divisors of Ic/ and 
by cp:X -+ ?I the resulting conic bundle. We have: 

WV = o,@cp*G(-2)-’ 

= ti*(c(-3)) (~EJOti*(~(4)) (-2xEi) 

= $*(C( 1)) (- L!q. 

Having fixed the notation, we can now construct the last two families. 
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The family F 

Let C be a fixed curve of genus g - 3 and pi, pz, p3, p4 four points of C. Construct a surfaceY 
by setting 

Y = (X IJ (C X Pl))/(Ei N (pi> X P’, i = 1, . . . , 4). 

We then get a familyf:Y + P’ of curves of genus g. This is the family F. The general fiber of F 
is as in Fig. 4. There are exactly three special fibers, each one of which is as in Fig. 5. 
Each of them gives a contribution of + 1 to deg,b,. Therefore 

deg,b, = 3+xdegNEi = - 1. 

On the other handf,w/ is trivial. In fact 

f*O/ + HO(O,(Cpi))@ fP1 

is injective and therefore surjective. Hence 

deg,A = 0. 

Finally, it is clear that deg,d, = 0 for i > 0. 

The family F’ 
Let C, be a smooth elliptic curve, C, a smooth curve of genus g - 3. Let pl be a point of C, 

and pz, p3, p., points of C,. Set 

Y = (Xu (C, X P’)u (C, X P’))/(E, h {pi} X P’, i = 1, . . . ,4). 

We thus get a familyf :Y -+ P’ of stable curves of genus g. This is the family F’. The general 
fiber of F’ is as in Fig. 6. There are exactly three special fibers, which are as in Fig. 7. 
Each of them gives a contribution of + 1 to deg,.6,. Therefore 

deg,. 6, = 3 + 1 deg NED = 0. 
i>2 

On the other hand 

degF6, = deg NE, = - 1. 

Fig. 4. 

Fig. 5. 
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Fig.6. 

Fig. 7. 

Arguing as for the family F, one observes that 1. is trivial on F’, so that 

degpE. = 0. 

Finally, it is clear that degF 6, = 0 if i > 1. 

We may now complete the proof of Theorem 1. We shall distinguish two cases, according 

to the parity of g. We begin by assuming that g is odd and we write g = 2m+ 1. Set 

qh = dA,,> F, F,, . . . , F,), 

where h is an integer between 2 and [g/2]. We have: 

det qh = det 

h+1 . . . . 
0 -1 . . . 
0 0 1 0 -1 0 . . . 

0 0 1 -1 -1 00’. 

1 0 . . -1 -1 0 

10.. - o-1 

0 0 1 0 . . . 0 -1 

= (-I)“+‘(h+l). 

In view of the strategy of proof outlined after the statement of Theorem 1, taking h = 2,3 in 

the above concludes the proof of the theorem in the case when g is odd. 

Suppose now that g is even. Set g = 2m + 2 and 

qh = tl(Ahr F, F’, F,, . . . , F,). 
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det q,, = det 

h+l. . . . 
0 -1 . . 

0 0 -1 0 . . 

0 0 0 -1 0 0 
0 0 1 -1 -1 0 

I 0 -1 -1 

1 0 . . 

0 0 1 0 . . 

0 . 

0 . 

0 -1 -1 
0 -2 

= (- l)“(h + 1). 

As in the odd genus case, taking h = 2,3 completes the proof of the theorem in the even genus 
case. Theorem 1 is thus fully proved. 

53. THE CASE h > 0 

Our first aim is to exhibit a basis of Pit (J?,,,)@O. Let (C, p1 ,_. . . , p,,) be an h-pointed 
stable curve of genus g, and let p be a singular point of C. Let u and a be integers such that 0 
I a I [g/2], 0 5 a I h. We shall say that p is a node of type 0 if the partial normalization of 
C at p is connected, and that p is a node of type (a; i,, . . . , i,) if the partial normalization of C 
at p is the disjoint union of two connected components, one of genus r and containing 
pi,, . . , pia, the other of genus g-a and containing the remaining marked points. The 
integers a, a, i,, . . . , i, are subjected to the following restrictions: 

I 
0 I ci 5 [g/2], 

O<aSh, 
< (3 

i,<... <i,, 

a22ifa=O. 
\ 

Any singular point on C is one of the above types. Notice that a singular point of type (a; 

11,. . . , i,) is a singular point of type @jr, . . . , jb) if (a; i,, . . , iJ = (/3; jr, . . . , jb) or a = /I 
= g/2, a + b = h, and {ir, . . . , i,, jl,. . . , jb} = (1,. . . , h}. 

The boundary of A,,, is a union of irreducible divisors 

A,., - M,,, = A, u Cub.; i,, , i,h 

with the union running through all the values of a, a, and the ij such that (5) is satisfied. The 
general point ALl;i,, , ia consists of a smooth u-pointed curve of genus a joined to a smooth 
(h - a)-pointed curve of genus g -a at one point. By the same procedure used to define the 
boundary classes in Pit @J, one can define classes 6a;i,, , i, in Pit (J&~,J for all the values of 
CL, a, and the ij satisfying (5), as well as 6,. 

We may define other classes $r, . . . , I),, in Pit (S& as follows. Given a family 
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Genus a Genus g-o 

Fig. 8 

of h-pointed stable curves of genus g we set 

($i)F = aF (w7c)7 i= 1,. . .) h. 

As a corollary of Harer’s result we shall prove the following. 

PROPOSITION 1. The classes E., $I~, . . . , $h, 6,,6x:i,, , i, (0 I IX I [g/2], 0 I a I h, bvith 
r22ifa=O,j,< . . . < i,) form a basis of Pit (y~g,fi)@Q, and the classes i., $I) . . (J,, 

form a basis of Pit (A&@Q. 

We define a group homomorphism 

3: Pit (2g,h) + Pit (,k,., + 1) 

by “forgetting the last section”. More precisely, given an element [ = cl(L) of Pit (..J?&. 3(C) 

is defined as follows. Let F’ = (n’ : X’ + S, 0, , . . . , oh + 1 ) be a family of (h + l)-pointed stable 

curves of genus g. We can simultaneously blow down, in the fibers of n’, all the smooth 

rational curves E of the following two types. 

Type 1: E me‘ets the rest of the fiber at only one point and meets dhtl and only one other 

section. 

Type 2: E meets the rest of the fiber at exactly two points and meets ghcl and no other 

section. 

Let 8: X’ + X be the blow-down map. If we set xi = /?Oi, i = 1, , . . , h, TC’ = n/?, then F 

= (x:X+&s, 5,, . . . , r,,) is a family of h-pointed curves of genus g. We then simply set 

3(L),. = L,; 3(i) = cl( 9(L)). 

It is immediately seen that 

I 
$(11/i> = $im60; i,h+lT i= l,..,h, 

3(6,) = 60, 

3(4) = 6, if u = g/2, h = 0 

9(6,; i,, , i.1 = 6,; i,, , ia + 6,; i,. , i,,h+ 1 otherwise. 

(6) 

Let us look, for instance, at the second relation. Let F, F’ and /? be as above. It is clear that 

blowing down rational smooth components of type 2 has no effect on $i: therefore, if F’ is a 

family of (h + 1)-pointed curves whose fibers do not contain singular points of type (0; i, h 
+ l), 3(Icli) and J/i coincide on F’. It follows that the difference between 3(tii) and Ii/i is an 

integral multiple of 6% i, h + 1 and it suffices to check the second formula in (6) for one family. 

Suppose then that, in the family F’, X’ is a smooth surface; hence S is a smooth curve and a 

general fiber of F’ is smooth. Let E, , . . . . , E, be the exceptional curves of type 1 on X’. Then 



162 Enrico Arbarello and Maurizio Comalba 

which is what we had to prove. 
We are now going to use the homomorphism 3 to prove Proposition 1. In view of Harer’s 

result all we need to prove is that E., the $s and the 6s are independent in Pic(_%,,,)@Q. 
Suppose then that 

Ul+Cbil(/i+Cd,+Zd,:i ,,,... i,6,i ,,.,., i,=O. 

Let now C be a smooth curve of genus g, and let pi, . . . , ph- 1 be distinct points of C. Denote 

by X the blow-up of C x C at the points where the sections (pi> x C meet the diagonal A. Set 

q=({pi}xC)-, i=l,..., h-l; q,=A-, 

where * stands for proper transform. One then obtains a family 

F = (n:X-+C, cl,. . , oh) 

of h-pointed curves of genus g. For this family one easily checks that 

while >. and the remaining 6s vanish. It follows that 

Wbh(X(bi + do;i,h+ b,)pi) = 0. 

Since the points pi are completely arbitrary, b, = 0 and bi + d&i-h = 0 for every i I h - 1. 
Changing the order of the sections, we then conclude that bi = 0 for every i, and therefore d&ij 
= 0 for every i and j. Now fix an integer u I g/2 and a multi index il < . . . < i,, with i, 
< h. Let C be a smooth curve of genus u, r a smooth curve of genus g - IY, pi, . . . , p,, q 

distinct points on C, p, + 1, . . . , p,, _ 1, I distinct points on r. Let X be the blow-up of C x Cat 

the points where the diagonal A meets the sections {pi} x C and {q} x C. Now glue X and r 
x C along S = ({q} x C)^ and T = {r} x C. We then obtain a family f :Y --) C and sections 

Gin = ( {P,> x c, -3 n = 1, . . . ) a, 

oj=oneofthe{pi)xCwithi>aifjji,,...,i,,j<h, 

CT~ = A-. 

For this family 

while II and the remaining 6s vanish. Therefore 

4; i, , , i, = &; i, , , i,, h. 

More generally, by changing the order of the sections, one finds that for every 2, every 
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multi index i, < . . . < i,, with i, d h, and every integer n between 1 and a, 

dx:i,, , im, . . . . i, = dz;i,,.. ., i,? 

~0 that &;i,, . . . . ia only depends on a. We may therefore conclude that our original relation can 
be written in the form 

where 

a3,(4 + c3,(&) + 1 d, 3, (J,), 
3>0 

3,: Pit (2,) + Pit (J2g,h) 

is the obvious map (composition of $s). Now consider the families A,,, F, F’, Fi which we 
constructed in the preceding section. By appropriately choosing sections these families can be 
thought of as families in A?,,,. Since the determinants 

det ~(4, F, F,, . . . , F[,p]X g odd, 

det n&, F, F’, F, , . . . , F[ep] - 1X g even, 

are non-zero, we conclude that the classes Q,,(A), 3,(6,), 3h(8a), a = 1, . . , [g/2], are linearly 
independent. This concludes the proof of Proposition 1. 

We are now going to prove for .2’g,h a result which is a direct generalization ofTheorem 1. 

THEOREM 2. For every g 2 3, Pit (A?,,,) is freely generated by I, the $s and the os, while 

Pit (AO,J is freely generated by 1 and the t+?s. 

We first need a definition and a lemma. Let 

F: f 

be a family of smooth h-pointed curves of genus g. The sections ci pull back to sections of 

%? x ,%?+%. 

Now blow up %? x S%’ along the intersection of the diagonal with these sections and denote by 
X the resulting variety. We then get a family of (h + l)-pointed curves 

where the 5i are induced by the (ii, dis the proper transform of the diagonal in ‘$7 x ,V, and cp 
is induced by projection onto the first factor of ‘27 x S%. Now let L be a line bundle on A,,,+ 1. 

We shall say that L is trivial on smooth curves if L,, is trivial whenever S consists of a single 
point. 

LEMMA 2. Let L be a line bundle on S,,,. 1. If L is trivial on smooth curves there exists a 

line bundle Y on sg,h such that cl(L) E 3(cl(Y)) module boundary classes. Conversely, ifthere 

is 9 on s,, such that cl (L) - 3(cl(Y)) is an integral linear combination of boundary classes 

other than the 69th + 1, then L is trivial on smooth curves. 
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The second statement is obvious. Let us then assume that L is trivial on smooth curves. If 

F, f’ are as above, we set 

YF = f*(LF). 

Now assume that f has a section G such that 

is a family of (h + 1)-pointed curves. What we have to find is a natural isomorphism between 

9(p), and L,. There is a Cartesian diagram 

where 7 is induced by 

(O_/-, 1,): % -+ v x s%, 

and hence a natural isomorphism 

L, g o*(L,,). 

By the very definition of 9, there is also a natural isomorphism 

L, zf*(Y,) =f*(%%). 

Since (T is a section off, combining these two isomorphisms gives 

as desired. This completes the proof of Lemma 2. 

We may now begin the proof of Theorem 2. Let X be a smooth K3 surface of degree 

d = 29-2 in Pg. If X is sufficiently general its Picard group is freely generated by a 

hyperplane section. Choose a general Lefschetz pencil of hyperplane sections on X and 

denote byythe blow-up of X at the base points of the pencil. The surfaceyis fibered over Ip’ 

and the exceptional curves E, , E,, . . . , E, are sections of the fibering: the Picard group ofyis 

freely generated by a fiber and the Ei. Notice that as one varies the Lefschetz pencil the 

monodromy action on the base points of the pencil, and hence on the E,, is given by the full 

symmetric group. We set: 

Y = Y- u{singular fibers}, 

P = projection of Y in P’, 

and denote by IJ :Y -_) ip the projection. By abuse of notation we shall write E, instead of 

Ei nY; the Ei freely generate the Picard group of Y. 
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We now prove Theorem 2 under the assumption that h 5 2g - 2. We proceed 

by induction on h. The case h = 0 is Theorem 1. Suppose Theorem 2 is proved for J?,,~, 

h 5 2g - 3. To prove the theorem for J&‘,,,+, it suffices to show that Pit ( AT?~,~_~) is 

generated, over Z , by 3 (Pit (.,ag, ,,)), $,,+ i, and the boundary classes. Let then M be a line 

bundle on _,&‘g,h + 1 , denote by ,U its class in Pit (-2 g.h+ 1), and let 9 be the blow-up of Y x p Yat 

the points where E,, . . . , Eh meet the diagonal A. Then 

g’-Y, El- ,..., E,-,A- 

is a family ofsmooth (h + 1)-pointed curves (as usual, ^ indicates proper transform). The class 

of M, is an integral linear combination of E,, . . . , E,. By monodromy, the coefficients of 

E h+l,. . ., E, are all equal, that is 

On the other hand it is immediate to see that, for our family, 

II/ h+l = CEj+ 1 Ei* 
i<h 

i+bj = Ej ifj I h, 

do;j,h+l =Ej ifj 4 h, 

while i. and the other boundary classes vanish. Therefore, if we write 

~'=aj~j+BE-+~/j60:j,h+l+ . . . . . 

where the aj, 8, the yj, and so on, are rational numbers, we conclude that 

ah+l = ah+li 2a h+l +aj+Yj = ‘j, j I h. 

In particular, ah + 1 and aj+yj, for j I h, are integers. Set 

~‘=~(-ah+,~h+,-_C(rj+Yj)Go,j,h+l. 

This is a class in Pit (2 g.h+l) which is trivial on Y; in particular it is trivial on any smooth 

h-pointed curve which appears as fiber of Y + P. On the other hand, since we can write 

~=ah+11C/h+l+Caj3(~j)+Bg(j.)+C(aj+Yj)bO;j,h+1+ ..., 

p’ is a linear combination, with rational coefficients, of classes in 3(Pic (.,$,.J) and boundary 

classes not of the form 6cj.h+ 1. As a consequence, p’ is a torsion class on all smooth curves, by 

Lemma 2; since it is trivial on some smooth curves, and M,., + 1 is connected, it is trivial on all 

smooth curves. Again by Lemma 2, we conclude that there is a class c in Pit (_,k,.J such that 

p’ E 3(t) (mod. boundary classes), 

hence 

p = ah+l tih+l f 3(<) (mod. boundary classes), 

which is all that had to be proved. 

We now turn to the case when h > 2g - 2. The proof is again by induction on h and is 

similar to the one for h I 2g - 2. We assume Theorem 2 proved fork,,,, h 2 2g - 2, and try 

toproveitfor_,&,,,+,.WeletIC/:Y+ PandE,, . . . , E,beasabove.WealsosetQ = S1 x P, 

and let D, D29_4, . . . , D, be distinct sections of the projection of Q onto 3. Construct a 

variety Z by glueing Y and Q along E,, _ 3 and D29_4. If cp denotes the natural projection of Z 
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onto ip, then 

cp: Z-P P, E,, . . . . , E2+ D2g_3,. . . , D, 

is family of h-pointed curves. We next consider a family of (h + 1)-pointed curves 

i:T+Z, crl ,..., ah+t, 

where .Y is a modification of Z x PZ whose construction is explained by Figs 9 and 10, c is 
induced by projection onto the first factor of Z x PZ, ai, i 5 h, stands for the proper 
transform of (l,, Ei) or (l,, Di), and ah + 1 is the proper transform of the diagonal. Let Jo be an 
element of pit (Ag,h + t ). Then pz can be uniquely written as 

pz = CUiEi + bD, (7) 

where the a, and b are integers. One easily computes that, on Z, 

29-3 

II/ - E2,-2+’ 1 Ei+(h-29+3)D, h+l - 
i=l 

dO;j,h+l = 2 
ifj=1,...,2h-4 

ifj=2g-3,...,h, 

%2g-3,....h = -E2g_3+D, 

60;2g-3....,h,h+I = E,,-3-Q 

Now write 

3(tij) = O ifj < h. 

C1~all/h+l+CBjbO;j,h+l+YBO;29-3,...,h 

(mod. 3(Pic (2g.h)) and other boundary classes), where the coefficients are rational numbers. 

1 I I , Y 7, I I 

ldent,fv 

r - ‘dent’fv 

lldentlfv 

Step I (7 is a fiber of JI: Y- IPI Step 2 (E ond D are the exceptional divisors) 

Fig. 9. Fiber-by-fiber construction of3. 
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Aflber of q{:X--P 

(u,,...,ch not drawn1 

A fiber of ‘p : 2 - P 

Fig. 10. 

Comparing this formula with (7) we obtain: 

a = a29-2, 

2a + pi = aj ifj I2g-4, 

2a-7 = a2s-3, 

(h--29+3)+ i Bj+r= b. 
j=2g-3 

In particular it follows that a, 7, and the /Ij are integers for j I 2g - 4. Changing the order of 

the sections, we find that bj is an integer for every j. Now set 

cO=p--$h+l- y60;29-3,...,h-CB,~o;j,h+l, 

We know that ,u’ is trivial on 2. Moreover p’ is a linear combination, with rational 

coefficients, of boundary classes different from the 6Rj, h + 1 and of classes in S(Pic (s,,d). By 

Lemma 2 ,u’ is a torsion class on any smooth curve. Arguing as we did for h I 2g - 3, to 

conclude it suffices to show that p’ is trivial on at least one smooth curve. To do this, fix a fiber 

C= $-‘(z)of$:Y+ [P,letBbeadisk,andletS,, . , S, be sections of C x B + B such that 

Si = pi x B, i=1,..,2g-4, 

and S29-3, . . . , S, meet transversely at @29 _ 3, 0). By abuse of notation, we shall use the same 

names to denote the corresponding sections of C x C x B + C x B (Fig. 11, step 1) and their 

proper transforms under successive blow-ups. We also denote by A the product of the diagonal 

in C x C by B and its proper transforms under blow-up. From now on we shall write p to 

denote pzs_3. We blow up C x B at (p, 0) and C x C x B along the corresponding fiber, 

thereby obtaining (C x C x B)’ -+ (C x B)’ (Fig. 11, step 2). The sections S2,_3, . . . , S, and A 

cut the exceptional divisor along a P’ which we blow up obtaining (C x C x B)” + (C x B) 
(Fig. 11, step 3). Now blow up the mutual intersections of S,,_,, . . _ , S,, as well as the 

intersections of A with the Sj. We thus obtain a family of (h + 1)-pointed curves 

(CxCxB)-+(CxB)-, S,,. . . ,&,A, (8) 

whose fibers are described by Fig. 12. Let <: (C x B) ^ -+ B be the natural projection. The 

restriction of family (8) to <-i(r), r + 0 is the family of (h + 1)-pointed curves that one 

canonically constructs starting from a smooth h-pointed curve (see the definition of “trivial 
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Step I Step 2 Step 3 

Fig. 11. Construction of (C x C x B)- -t (C x B)^, h = 29 - 2. 

on smooth curves” right after the statement of Theorem 2), while the fiber over 0 E B is the 
restriction of i : 2 + Z to rp- l(z). S ince $ is trivial on <- ‘(0) and torsion on <- l(t) for any t, it 

is trivial on t-‘(t) for any t. This concludes the proof of Theorem 2. 

$4. FRANCHE’ITA’S CONJECTURE AND OTHER LOOSE ENDS 

In [3], Franchetta first conjectured that “the only rationally determined linear series on 
curves of genus g (g 2 3) are the canonical series and its integral multiples”. In modern 
language, this means that if W:e is the universal curve over the function field of M,, any line 
bundle on %?g is an integral multiple of the canonical bundle. As Arnaud Beauville pointed out 
to us, this follows from Harer’s theorem, the known fact that the moduli space of genus g 
curves together with an n-torsion point in the Jacobian is irreducible, plus a theorem of 
Enriques and Chisini [2] to the effect that the degree of any rationally determined series on 
genus g curves is a multiple of 2g - 2. As we shall presently see, a special case of Theorem 2 
provides a somewhat different proof of Franchetta’s statement. In fact, the conjecture can be 
rephrased as follows. Let (M,.,)’ be the open subset of M,,, consisting ofall genus g h-pointed 
curves without non-trivial automorphisms. Let $5’ + (M,)’ be the universal family of genus g 
curves, S a Zariski open subset of (M,)’ and 7c : X --t S the restriction of the universal family to 
S. Franchetta’s conjecture asserts that, for any line bundle L on X, the restriction of L to any 
fiber of n is an integral multiple of the canonical bundle. Now X can be identified with an open 
subset of (M,,,)‘, and the restriction to X of the universal family on (Mg,i)’ with (n: X x ,X 
+ X, A) where A is the diagonal. Any line bundle L on X extends to a line bundle L’ on M,,i. 
By Theorem 2, L = Lx is an integral multiple of the pullback to X, via A, of the relative 

Over a general Over a general point of 

poll-It of c the exceptlonal dlvlsor 

Over a Over b Over c 

Fig. 12. Fibers of(C x C x B)-+ (C x B)-. 
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dualizing sheaf of Ic’, modulo pullbacks from S. Put otherwise, L is an integral multiple of the 

relative dualizing sheaf of rr, modulo pullbacks from S. This is exactly what had to be proved. 

Having determined the Picard group of,&,.,, one might ask about the Picard group of the 

actual moduli space .1i9,k. There seems to be little hope of settling the problem by our 

methods. It is true that there is a criterion for deciding when a line bundle L on ~a,,~ comes 

from ,Llgeh, namely this happens iff the automorphism group of any h-pointed genus 

g stable curve acts trivially on the corresponding fiber of L. However, this seems to be of little 

use without a much more detailed knowledge of the automorphism groups of curves than is 

presently available. On the other hand, our theorems make it possible to compute the Chow 

group of codimension one cycles in A,., modulo rational equivalence. The result is the 

following. 

PROPOSITIONS. ljg 2 3, A3gt,,_4 (A?,,,) is the index two srlbgroup of Pit (B,.,) generated 

6.s $1, . . . ) l+bh, 24 i. i d,, and the boundary classes different from 6,. 

Suppose first that g 2 4 or that g = 3, h 2 1. Then every component of the locus of 

h-pointed curves with non-trivial automorphisms has codimension two or more in A,+,, 

except for Ai, and (&f,J,,, is equal to the union of (A&O (the locus of automorphism-free 

stable h-pointed curves) and an open subset (Ai)’ of Ai (cf. [6]). If C is an element of (A,)‘, its 

only non-trivial automorphism rp is the - 1 involution on its “elliptic tail” and the identity on 

the rest of C. An element L E Pit (_,&‘J descends to Pit (A,,,),,,) if and only if cp acts trivially 

on L,, where F is the trivial family with fiber C, for any C E (Al)‘. It is clear that cp acts trivially 

on*,,...,IC/h. and on all the boundary classes except 6 I , while it acts as - 1 on (6 l)F and ;.F 

(cf. [6]). Therefore 11/t, . . . , I+!J,,, 26, E. + 6,, and the boundary classes other than 6, generate a 

subgroup of Pit (/\;ig,Jree) which has index 2 in Pit (J&‘&, and hence must necessarily coincide 

with 

If g = 3, h = 0, the locus of curves with non-trivial automorphisms has one additional divisor 

component, namely the hyperelliptic locus. However, the hyperelliptic involution acts by - 1 

on 1. and trivially on all the 6s so the same argument as above applies. 

APPENDIX 

Let g be an integer greater than 2, and let r-g,h be the Teichmiiller space of genus g curves 

with h marked points. Topologically, rg,h is a 2(3g - 3 + h)-cell; moreover, M,,, is the 

quotient of yg.h by the action of the Teichmuller modular group T = rgqh. What Harer shows 

in [4] is that H,(r) = (0) (this is actually due to Powell [9] for h = O)and, for g 2 5, Hz(r) is a 

free Abelian group on h + 1 generators; this last result holds, up to torsion, also for g = 3,4 

(cf. C51). 
Fix g 2 3 and h, denote by Y the locus of curves with automorphisms in 5g,h. The action 

0f r on rg,h -Y is free and, with the notation of 94, the quotient (yg,, -Y)/T is (M,.,)‘. Then 

rri(rqg.h -y) = 7ii(yg,/J = {l>* lIi<2(codimY)-1 

(here, and in the following, codimension is complex codimension). When g 2 4 or g = 3, 

h 2 1, so that Y has codimension two or more, 

9Pfq.h)” = r, 

ni(‘“g,h)o) = (l}t 1 < i < 2 (codimY)- 1, 
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while rti((M,)‘) is an extension of T by Z = n, (9/^, -Y). Since a K(T, 1) can be obtained from 

(M,,,)’ by attaching cells of dimension 2(codimY) or more, 

Hi(r) g Hi((lMg,/JoX i < 2 (codimY)- 1. 

In particular, H1((.Cig,Jre.) vanishes for g 2 4 or g = 3, h 2 1. The same is true for g = 3, h 

= 0. In fact (MJren is the union of (MJ’ and a dense open subset of the hyperelliptic locus; it 

then follows immediately from H,(T) = (0) and the description of rci((&iJ’) given above that 

n,(F-,-Y), and hence H,((MJ,,,; (Ma)‘), surject onto Hi((MJ’). 

We wish to show that Pit (~ti& has no torsion if g 2 3. Suppose this is not the case: then 

there is a non-trivial line bundle L on ~fl,,~ and a prime number p such that the pth power of L 

is trivial. Taking pth roots of a nowhere vanishing section, we get, for any familyf: X + S of 

h-pointed smooth curves of genus g, an unramified (h/(p))-covering S’ + S, functorially with 

respect to base change. These coverings “pull back” to an unramified (Z/(p))-covering of 

Teichmtiller space. which splits completely. Taking as f: X + S the universal family over 

(M,,,)‘, we get a commutative diagram 

C%..-Y) - S’ 

\/ 
S = ( M,,,l’ 

Since r acts freely on F-g.h -Y with quotient (M,,,)’ and has no Abelian quotients, S’ + S 

also splits completely, that is, L has a section over (Mg,Jo. This extends to a section s (a priori 

meromorphic) of L over all of JZ~,~. Since the pth power of s is holomorphic and nowhere 

zero, the same is true of s, and L is trivial, a contradiction. 

A corollary is that Pit (Jgg,h) also has no torsion, for a torsion class would be a linear 

combination of boundary classes, and these are independent, as follows, for example, from 

the computations of 92 and $3. 

Since the action of T on Fg,h is properly discontinuous, H,(T, Q) is equal to Hi(M,.,, CD) for 

any i; in particular, it follows that H’(MJ is free Abelian of rank h + 1. It is easy to show that 

Pit (Mg,J and Pit (.t-ig,J are subgroups of finite index in Pit (Jz!~,J and Pit (2B,h), respectively 

(cf. [S], Cl]). Also, it has been shown in 93 that i., $i, . . . , t,bh are independent in Pit (&&. 

Thus, in order to deduce from Harer’s theorem that Pit (AN,,,) is free Abelian of rank h + 1 

when g 2 3, it suffices to show that, if L is a line bundle on M,,, with vanishing Chern class, 

then L is trivial. This is easy. By what we have just shown it is enough to prove that a power of 

L is trivial. On the other hand, L extends to a line bundle on J?~,~, and hence a power of L 

extends to a line bundle on ~g~,~. We may then suppose that L is the restriction on M,, of a 

line bundle L’ on R,.,. Let L” be the restriction of L’ to (il;i,&eg. The Chern class of L” is a 

linear combination of the fundamental classes of the boundary components of Apeh. Thus, 

adding to L’ a linear combination of boundary classes, and passing to a power, if necessary, we 

may assume that L” also has trivial Chern class. Let now 

be a resolution of singularities. Since H 1 (M,Jreg) and H 1 (M; (M&_) both vanish, Hi(M), 
and therefore Pit’(M), also vanish. Thus 1 a*( L’) 1 contains a linear combination of exceptional 

divisors, and hence L” is trivial on (R,.Jrog. Since Mg,, is normal, L’, and hence L, are also 

trivial. as desired. 
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