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The presesttlon of sitetnaliog permitutinngs vl dubelled Disory tees oo 0 o octine
polyaaminls H 0 s ennmersting polyponsdale far e bilght of peaks b alterar ting
permetations of il 20t A etdbility property of the coethelents of Biese polysomin b
proved, whli! netalzie aad explalon combintonnity 5wl knawn prepety of the fan e
e fuitherinore, noversion of the exponentin: peneiating functton dar the H,, o 0o is
pteen, dewdlng o o new comblantorial dntecprettton of  Domont's modif <4 Cihand]
palyneimials

t. Introduction sud stotensent of ceanttn

A pernndaiicg noof fule =402 b ds ealled alterostizp 1

slpnli v by wliip ot f

o=,

fhe eleivetls fily, atd), 4050, § are the peuke of . Hhe sel of altersating
petaitiaticiis of i will Be detete | b A,y e eatdinalities o th - sete A, ate ths
Fatintiat Eules-Uasigens - i secne -1 pionbers B, Gsse o0 Andie [ 35 Ctinde
[8f p. 35k Netb [ 15 863 Bloane | 11 p 20 and sey. SHT ).

. i
IR TINE t'z,l;“',im;»n--‘lf th

Tui this nrtiehs we are aply dealing with aliernating sermuiations af oded length sl
with the taopent-eoslbeients relatsd to them Fur any nonserm et b othe
likmibsr FH will deneis the sxpanent of 2in k. ie

3(M;| k Pk p g
A well-knawn arithimerieal propey of He nimbers 1, s
Ainbis, n=1I 3 i=1) 12

which may he proved ppalyeically via formal powsr serics manipnlatin s Nwdswn
[16, p. 298] Theajem | thelow) gereralizey this classical resplt ansd wil he given a
combinatar-as proof. I oyder io state this thearemm vie raeudl the pross ntation of

L
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nlternating permutiutions via labelled binary trecs (concerning treer, the ter-
minolgy of Knath [13] will be used here). With every ulierniting permutati n
we Ay, ofie asaocluten an extended bliary tree 1, with 1 extertinl and n |
iternn) nodew, together witl an order-preserving (ineseasing) labelling A, o1, —
P20 ] o ad exatnple:

I oa presentation of e alternnting penmwindon 7 = 750103429, where the
externil (internal resp.) nodes of £ e sguared (cheled cenp), This kina of
correspondence s frequentty enrploved bis the discussion of sacthng and searching
procedures; instead of piving the preciee definitions nml stidements here, (he
render Is referred to Frangon [ HH] for 1 detalled treatment; ses alao Donaghey |6,
Kundu [ 14], Viennot [ 19], Obwinusly the peaks of 7 correapo il 1o the (abelled)
external nodes of 1 The fiefuht of such an external node i the length of the
wirigue path front that node to the root o, the tree; for every eilended binary tree
t we let In(x desate the enumiator polynomial for the leight oof the external nodes
of £ The quinber B(H) Is thus the exiernal path length of + i the usual sense.

In the example glvett above there are three extechul nodes of helght 2 (labelted
Jo B and 9 wnd two external rodes of height 3 (labelled 4 d 6) licice

i ey 3071 200
For == 1 we dlefiie polynomials
Ho e }, Ui e e Ay, h

which iy e viewsd aa tise canimerator polviomials for the leight of pendes in
altornastng pospintaions of {20 L) Owr Bl reouii staten an of it 2tienl property
of thens polynomials 1, (6} whivh s shallar to propeity (1) fer the numbers
ks

Thesvem Lo Al coefficients of the polynemial Ho, 06y wee dioisible by 2 2 More
preciielys e coeffi-Tenn of &" i T, 000 is divisible by 2 aid by io higher
power of 20 whereus all the other coefliciems of H,, (€} are dieb thle ot least by

)

Phin smpliee (21, since we finve by definition of 1, ixn

Hoy - ki,
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thus the theorem is n polynomisl penerelizi 2 of that cassienl result. Moreover,
the proof given below contatnn 1 comblnutc . explanstion for the appearance of
the fuctor 220 7.

G necond cesult s coneerned with e ex el g eneruting futetion for the
polysomilals Ho., i)

Theorem 2,

3 H + e
Hoyqta) S on=idg— B RTINS LTI R B
Z! 1 I Z‘g(ln Pttt

where &' denotes the uwpper factorad polyiamied Gov Dot v and
(e M denotes the dauble factortalsomber 3 60 0 cion )

Thie cosalt bopedable for the fact that It deads (6 0 new combinatori | itespren
ton of the so ealted madifled Ghandi potynomials which were iniroadieed by
Privpont |7, B, 9] dn his lovesthgsdons on comibdntorisl properties < the
iepnechi-monbers. Fhin pspect will be diseussed n the followlng se 't

2. Remarks on the modified Ghandi-polynominin

Property (2) of the wnngent-numbers £, | pives rise 1o the definision
€l =27 "l =1y
these numbiers are vded integers, ke wh s the Genocclti-nunbers (Sloane |10,

sey. 12331 Thelr enpenential gens silng functlon i

b [nv,,, :

ami

W=z

and they wie reluted (o the Dermoull-numbers H,, by
f, -~ 22" LH, tn=1n
M. Ginndi 2] coijectured o representiiion of the Genocehi-numbers, which
iy be phiased ae follows:
PIrfine 1 sequene 0f polyrominls A, 0x) by
Ay =1,
Adu— VA, et e YA, o Ins ),

then far w1 holds that
(= A, (1)

Piris conjecture was proved Independently hy Curlity [3] and hy Riordn and
Sreti 117 Based un this work Dumont 17, 8, 9] gnve the fist comh.ntorial
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interpretations of the Genocchl-numbers, where he eshibited varlous clanses of
[unctlons, permutations, pairs of permutations ete. enumarntod by them, Dusmont
mude use of the polynomlala

Flai=A, (it )zl
aatlsfying the reetsslon

Pyl =1

! ' , . &Y
o= VPR ) B D=,

Ware thit these poimontale F,(x), mamed modified Cllandi-po viuminle 3 18],
ure goluded 1o the Gga eeil=numbers by

=1, fiv= Ay =0y, =),

Oumont wed Foota | 10] studied sysametsy properties of the ob] oy enumersted
hy the coeficlents of the polynominla 1, (0); they Intsodueed poly aamials in three
irinblen Bty y, 2)

te,y,2)=1,
ey 2)e i 4
I,‘!.u, vor)=ls by ziviz, vz 4 - 27F 0y 1) (p=l),
and gave 5 parely combinetortal proof of the remarksole fact thal he polynomials
1,(x, y, z} are symetric with respect to all the three sarlaes o, y, z. Henve it
holds that

o) =F1, 1, x)=F, x|, 1),

wher= the first equality follows from the fact that (4) reducer to (3) when
=y Iowid wheie the secomd equalily ls i conseguetice «f the nyinmetry
toperty.

A inalytle proof of this symimetry property wis later glven b Carlitz [4] who
aludied generuting functions Tor the Fo (% v, 2).

One of ks resulis rends as fuliows:

/k”“y”“
l"uH

(|
O 'yl ,i 2| (]
%, | Pl ) g = Lyt
ol (121 an . K of his notes).
It we wnluw here v by | und & by 2z (where if
wined ‘Theotem 2 lends (e the eonelusion:

oyt = 2"k x) (=), (6

Phis establishes o new combinatorinl intsrpretation of ths n odified Ghandi-
polynonsisls: they are—up to a faetor of the jorm 2 "x-—the e merator polyna-
mials for penks in alternating permutations aecordling to their height.

There i na abviows connection hetwsen Domont's interpretations of the F,(x)
and the one given here. It i» uppleasart that our inferpretsion uses Carlite’

e I pzl) (5)

=1y then cmparison of (5)
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Identity (5) aned Theorein 2, both results reiy'n, on fermnl powar sertes munipuls -
tlonn. A piaof of combinatortal nat e, exb | aing i espliclt copespendentee o
Dumont's inlerpretations, would bo of tnderc 1 In this respect (t should be noted
thut

Hoy ey Al D, (e b)) S0H (g

which follows divectly from U a wd om0 A dbect proot of this recusat s, usiig only
the infarpretation of the FE, Cel interinn of tahelled tieen, would Selp o danty
the citoutwn

A} Piaol of Theorem ;

Let T, ¢ uepote the sel of exleaded Mosty treen withi w eieoml ond v
Jiternnl nodes taee Slonoe [18, po 1491 and Comtel [5, po 52 ior e xamnples); an
wllernmling permutation 7€ Ay, iy thus he wiitlen us 0 pair (1, 4,) with
foe T cand Ay i, =120 1] an order-preseedng lnbelling.

et us eali two alternating pereuistions m, 7' AL eaufonent. i o, anel 1,
are [somarphie i the sepse thal wae can be transformed 5o the other hy o
sequence of aperations, euch of which eschanges the two aubtrees pooted at an
Internal node (Le. woth exiended bims 1y trees nre Identical when vie wed ns roote !
trees; of. Comtet [5, pp. 52-54| fo; s description In terms of the Catalan snd
Wedderburn-Hiheringtop brackelinp problems). It is eriy to see thit the number
of possihle order-preserving labelliizus of trees f, and the polynomiuls i, wre
nvartaints under lsomorphisni, bence also tnder equlvalence. Tel us conshder the
contribution o H,, (x) condng from an darbitrary equivaleice cliuss of A, | we
huve (o estirate the B-villue of the verdinalty of that class. There are -wo
indepetident coiitributons: one fromm the otiosphism of the videiiying trecs, wid
one from the number of possible order-preseiving lubelilngs of such  free

(i} The nuniber of freen e Ty, 0 wnmciphic (o ome pariculsr tiee £ s
abvioualy 8 dower of i let v, denote the exprenent in guestion. Fet fi, denote the
exponent of the kighest power of 2 dividing ol coeffieients of fif ¢r, and fir every
wositive Integer k 1ot ortk) denote the number of porseis cosflicients ur rhe bise-
Lpepressitution of k. We then hav: the fuilawing resuli:

Lomma, For enery extended hinary e 1675,

a vB =aln- 1 i7)

Proor. We will use induction over sibiress in the usuil way. The wsserth o of the
iemma is obviously true for i =1, with equality holding, since for the single
clement te T owe have o, =0 and (3, =0, Assume now n - 1 any tree 1e T3,
may bowritten uniquely as an (ordered) pair (¢, 1) of subtrses where o Ty
and 2Ty for suitable Jo D with Tk b<nand ko E=n (e 1 and (7 are the
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twir subtrces attached to the root of ). Jwo possihilities have to be considered,
according to whether ' and (" are isomorphic or noi:

Cese 1. 10 ¢ and ¢ are isomorphic, then it is ever und k= { = 1nyin this case
we hav.
a, = o+ = ey

and

B T4 =14 B
Using now the induction hypotticss for 1 we get:
IR A ¢ N T

Sath Dy beg —otn 1) 2ol )

Cuae 20 H 1 und 7 sre not somorphic, we ses that
oy v b
wind
H=mindp . B
v iy pssume that B - We have 8= 300, and together with the induction
hypothesis for " it fol ows that
o =all - - Hezoll- - p)=ath -1 8
Henee —hy the induction hypothesis Tor '—we finally get
a B Fa oy LB
zolk -D+tazak+I-ND=a-1,

and the lemma is proved.

Let us Jook back to the cxample given in the first part: there we have n =35,
aidy =1, a, =2, B, = 0. Inequality (7) is best possible in the sznse that for every n
there exists at least one 1€ T,, | such that equalitv holds; see the following
lemma for more details,

(iiy 1t is well known, see e.g. Knuth [13, (Vol. I}, Ch. 5.1 4., exercise 20)], that
the number v, of order preserving labellings of an exiendes, binary tree te T,
equals (2n — ! divided by the product of the cardinalitics of all its (extended
binary) subtrees. The important information is that in our ¢ ise the denominator is
i add number since all extended binary trees have an odd number of nodes.
Thus the highest power of 2 dividing v, equals the highe.t power of 2 dividing
(Zn - DY this latter quantity is well-known from ¢lementa 'y number theory:

prZn—DH=2n—l-o(2n-1.
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Retaarks (1) and (i) together lead to . estimate
o BBy Eo(n- D B(2n- )
=ai2n=-2) -t olda-1y= 20 2.

This shows that the contribution to H,, ((x) which comes from an arhitrary
cunivalence class of alternating permut.dons of A,, i a polynomial. all
coefliclents of which are divisitile by 2°" 2 thus the first assertlon of Theorem |
fattows.

The proof of the fact that the coeflicient of ' w Ho, (x) s divisibie by no
hlghet power of 2 thub 27 7 s w little more intricate., Tt acemy copvenlont o
intraduce the following notation:

A Binary tree e Py, will beoenlled mutinned i

et )
und 1 will be enlted a=imintmal i
by 1

i follows from () Hue oG = 1 is dndesd o Jower bound for o, of 1 ringes over
Ty oo und thet every c-minimal tree is a minimel tree. (The conyverse I not e
the amallest example of o minimal tree which is not a-miniis & ocenrs tor o - 4

The proof of the gasertion coneerning the coetlicient of v ' in H,o 06 is based
on the followlny three simple obs wwvations:

{iil) An cquivalence elass of alterpating peritations of A, related to (the
isomorphism ¢lass of a binary tree 1-=(1, 1) Ty, | will contribute to the
coeflicient of x'in H,, (x1if and only if one of the subtrees " or 17 of 1 reduces
to the single element of T,,
rived in (i), the consribution Lo the coefficient of %' in

(iv) In the situation des
Ha, ,(x) is divisible (precisely) by 2% '/ '#% hence is divisible precisely by 27"
if and only if ¢ is minimal (see the proof of the previous lemma).

(v) M e=(1", 1"y and if ¢ (say) reduces to the trivial treee T, then t is minimal if
and only if " is a-minimal. (This again is implicit in the proof of the previous
lemma, Case 2).

It follows from these three observations, that the assertion in sjuestion is

equivalent to the following statement:

(vi) The number jt,.; of disti~ct isomorphism ciasses of a-minimal binar
trees€ T,,_; is odd. This will be an immediate consequence of the fritowing
lemma, where a precise evaluation of the numbers g, is given.

Lemma. If 1 is a power of 2, i.e. oin) =1, then p, = 1 if nis not a pov » of 2, Le.
a(nm)>1, then p, = (Zo(n) =3I

Proof. Again we will ropresent any binary tree teT,, | as a pat (£, ) of
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G f=in kot s, We have to charae-
ferize those cases in which (s q-minimal,

subtrees, where s Top o 0T 0

Case 1. A0 1" and 1" are somorphic, the k- * und
o 2 = Hotky Uy 2o(n) = 1)

henee ¢ s o-mininaal of und snly iF o(n) =1 und o, 0. This means that ¢ is a
power of 2,0 <Y say, and hat s the “full” binary tfre: of height 7 (e, ke
unigue treee T, with all is 27 external vertices of heigat ),

Case 20 8 1 and 1 are not isomorphic, then

@ o baet Vratky b ath Lematny L

andat turns ott thit ¢is aeminimal i and only it both ¢ and 1 are a-tninimal and
atk) teth G, (e last condition says that k and § are “disjoint” with
tespreet to thedr base-2- representation, Le, the set of powers of 2 appearing in the
e = 2-representation of ks disjoint from the copresponiding set for 4, and the
tnion of buih sets s the set of powers of 2 appearing in the base-2-representation
of o §a particwlar, nocaonot he w power of 2, je we must have ain) = 1),
frony Case 1 sve pet:
i, — i el = 4
sl from Cuse 72

Al

TS ):{;HIN e, ek V= oo b ath =aln))

il ertr) 210 (The factor 2 s due (o the fact that eacl isomorphism class of
w-minimal trees of T, 4 is counted twice due Lo the symimetrie rle of k and [in
the summation) This shows— by Induction—that @ . ns o functon of n, depends
oty on the vatue of on) 1T we write

[ TR L RS T
ther we get:
i, = b
J,m-Z{(;(' Yy e Psle u} b~ i,

Firs teedrston 1y edasiy be feasived using stundaid yenerating fuiction teebini-
ik ot fids thit e e qionentinl generating function for Cie numbers @, is o
=ulitian of

HESRE I (ESRER [}
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and this kads (o the desired result
e ~ 2= for
This proves the lemms,
The proof of the second assertion of Theorem | is now camplete; the st part
of Theorem t can be proved by similar arguments.

Remark, The prool of Theorem 2 does not depend on Thearem |, In Jact, one
could give u proof of Theorem | after having identified the polynominds ., (%)
with the moditled Ghanci-polynomials (up to a factor 27 1, and then using results
of Dumont in [7]. But it seemud more appropriste to adicate 1 direet com-
binutorial prool of Thzorem | which explaing where the factors 27 come from,
and which does not depend on the proof of Theotem 2 by formal methods. of,
the remnriky it the end of the previous section

4. Praof of Theorem 2

Bvery allernmting permutation me A, with {2k -8 may be uniguely
represeated as a triple (8w, md where 5 {otl), L x (2 D) s the set of
{abels attache ! o the left subtree of £, and where e Ay and a0 Ay 4
are Unormadiz :d” ropresentatives of the alternuting sequences w(D - - w2k 1)
and w2k -+ Do 2iF ), Now, when weiting i, () instead of (0, we note
tid this decomposition of 1, le.ds to

B o) = el () by (e
so that H,, . (x) may be written s
Hy, ol = Z {Z fxth, () th, COR(S =, mh E <k <—n},
whete the inner summation rens over all triples (S, m. 7, - with
Sei{2. 3 .., 2 ki), card 8 =2k + 1,

meAn . meA, ..

Henee

3 iy 1
o, 0-3, {(2'(7 ”Y,{xhﬁxi, mEAw i€ A ke

¥ n -
; Z{(M " I)L(v\m,m; e A (i E A s b |<Ir<n}
aiid Buth sufits are obvidusly sysial, each wiving & contiibat o

E{07" Dstta aienia,

= ‘<Ii}*

NG it ot sl
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Thus we have
Hay o lih =20 Y, {(Zk‘f ‘)I-ln (OB, i<k sn}

or

L an 2

- | 2! }
= | = 2t TH., )y m——rn= 1}
)alH;,.”(x\Q")!,u 1} Hm(z)ZIHA,_ \(\')(2”7”! n=l

If we ser

K(x,z):::i{Hz,l,.‘é}ﬁ;HZl]

for the series in guestion, then a few elementary ope-ations on the last identity
fead to
sin(z)ces (2) 8. K(x, 2= K{x, 2)+2x sin* (2 K(x, z) + 1),
where 8, indicates (formal) partial derivation witl. respect to z. If we replace
1-cos(2z) by w and define K(x, w): = K(x. z), then this is cquivalent to
(w?=2w) 8, K (x, w)= K(x, w)+ xw(R(x, wh+ 1).

Setting K(x, w)=Y {k,w"; n ="}, where the k, arc polynomials in x, then this
identity means

ko=, ki =x,
2nk, n=Dk, =k, +k, \x (n=2),
and a simple induction shows that

_xxHD) - (xvn-D) x™

R T A P T 1T

(nz ).

Substituting 1 —cos (2z) back for w gives

K(x‘z):Z{

and the proof is complete.

X N
(‘m;(l —cos (2z))"in = 1}.

5. Table of coefficienis

We set
Honoa (=222 Y {h, 6% s k =0}
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and concluds by listing the coeflicients h, v [ a7 (see Table 1),

Pable 1. The coefliclents b,

N
tk
w0 A 14 LI
|
0 1
3 0 1 2
4 | 3 H 6
5 0 17 54 (o 24
6 0 185 55 762 d80 120
7 02073 K146 12940 024K 4200 720
Note that &, ., = Y 1h, . k>0}=G-,, the nth Gencechi-number, for n =1,
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