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Graphs G and H are hypomorphic if there is a bijection q4: V(G) + V(H) such that 

G-u g H- d(u), for all usV(G). The reconstruction conjecture states that 
hypomorphic graphs are isomorphic, if G has at least three vertices. We investigate 
properties of the isomorphisms G-u E H- d(u), and their relation to the 

reconstructibility of G. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

We shall use the graph-theoretic terminology of Bondy and Murty [ 11, 
so that a graph G has vertex set V(G), edge set E(G), v(G) vertices, and 
E(G) edges. G - u denotes the induced subgraph G[V(G) - u]. We use uu to 
denote a pair of vertices U, u E V(G), and write uv E E(G) or uv +! E(G) to 
indicate whether or not they form an edge in G. We work only with simple 
graphs. 

1.1. DEFINITION. A hypomarphism 4, from G to H is a bijection 
4: V(G) -+ V(H) such that G- UE H-d(u), for all UEV(G). G and H are 
said to be hypomorphic graphs. 

The reconstruction conjecture [2, 3, 61 states that hypomorphic graphs 
are also isomorphic, if v > 3. Note that it does not say that if q5 is a 
hypomorphism, then it is an isomorphism. For take any vertex-transitive 
graph G and any permutation q5 of V(G). Then q+ is a hypomorphism from 
G to itself, but in general, q5 will not be an isomorphism. We shall consider 
only graphs with v > 3. 

It is evident that the set of all hypomorphisms from G to itself forms a 
group, which we will denote by Hyp(G). Clearly any automorphism of G is 
also a hypomorphism, so that Aut(G) d Hyp(G), but there does not seem 
to be much connection otherwise between the two. There is a natural 
partition of {G - UI UE V(G)}, the vertex-deleted subgraphs of G, into 
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equivalence classes of isomorphic graphs, which in turn defines a 
corresponding partition of V(G). Any permutation 4 of V(G) which 
respects this partition, i.e., G - u 2 G - d(u), is obviously a hypomorphism, 
and this includes all hypomorphisms from G to itself, so that Hyp(G) is a 
direct product of symmetric groups acting on each cell of the partition. 
Each coset g.Aut(G) of Aut(G) in Hyp(G) defines a hypomorph g(G) of G, 
so that the number of distinct hypomorphs of G which are isomorphic to G 
is [Hyp(G): Aut(G)]. 

Now let G and H be hypomorphic graphs, and let 4: G + H be a 
hypomorphism. Let pU: G - u + H- d(u) be an isomorphism, for each 
UEV(G). Define %,= CJ-‘P,, where mappings are composed from right to 
left. 8, is a permutation of V(G) - u. It does not act on the vertex U. %,, is 
called a partial permutation of V(G). We say that 8, punctures V(G) at u. 

1.2. DEFINITION. A partial permutation of a set V is a bijection from 
XC V to Y c V. A partial automorphism of a graph G is a partial per- 
mutation 0 of V(G) such that for all u, UEV(G), if e(u) and e(v) are 
defined, then UZ) E E(G) if and only if %(uu) E E(G). 

If VWWG)l is defined as above, then given any u, v E V(G), 
%;‘%, =~;‘&~dp~ =p;‘p”. Since each pU is an isomorphism from G- u 
to H-d(u), it follows that 8; lo, is a partial automorphism of G. Write 
0,” = 9; lo,, where u # v. 

1.3. LEMMA. %,, is a partial automorphism of G. %,, maps 
V(G)- {u,%,‘(u)) to V(G)- {u, 8; l(z))}. There exist non-negative integers 
k and m such that either: 

(1) (e,,)“(u) = u and (%,,)m(%;l(u)) = B;‘(u), or 

(2) (e,,)“(u) = 8;‘(u) and (%,,)m(%;‘(v)) = v. 

ProoJ: The first two statements are obvious. Note that we include the 
possibility that {u, v} n {%;i(v), %,‘(u)} # @. Only u and %;‘(u) are not 
images of %,,. If we successively form %Ju), (%,,)‘(u), (%,,)‘(u),..., we must 
eventually come to one of u or 8,‘(u), since V(G) is finite, %,, is a bijection, 
and u is not an image. This gives (o,,)“(u) = v or 8; l(u). This leaves 
(%,,)m(%;‘(v)) = %;‘(u) or u, for some integer m. 1 

In the first case of Lemma 1.3, we will say that 8,” is of type I; and in the 
second case that 9,” is of type II. 

The decomposition of a permutation into disjoint cycles is well known. 
Lemma 1.3 illustrates that in general a partial permutation 8 mapping 
XC V to YC V has a decomposition into disjoint cycles and paths. Each 
u E V - Y is not an image, and so begins a path (possibly of length 0, if 
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u$X) which ends at some u E V-X. So the number of disjoint paths is 
1 V- Yl. The remaining points, if any, fall into disjoint cycles. We write par- 
tial permutations in disjoint cycle and path notation, as illustrated by the 
following example. Angle brackets are used for the paths a.nd parentheses 
for the cycles. 

(1 X2,4, 9)(3, 6, 8, 7, 5) 

(2, 3, 7X1)(4, 9, 8)(5, 6). 

Each 8, contains one path, (u), of length 0. The remaining points are in 
cycles. #,, contains two paths as indicated in the lemma. 

The reconstructibility of G is closely connected with the properties 
of (@,I u E V(G)). In fact the mappings 8, are more important than the 
graph G. 

Note that H-q!~(u)=@,(G-u), so that H= lJ, H-#(u)= 
#(Uu~,(G - u))- 

1.4. DEFINITION. The hypomorph of G is G’ = U,6,( G - u). 

H is isomorphic to G’, being a renaming of V(G) by the (arbitrary) map- 
ping 4. Accordingly, we ignore H and 4, and consider the properties of G, 
its hypomorph G’, and the mappings 0,. 

Each 8,, is a partial automorphism of G. The following lemma shows 
that in general, we want 8, not to be a partial automorphism of 6, if we 
are looking for a non-reconstructible graph. Note that 8, is a partial 
automorphism of G if and only if 8, E Aut(G - u). 

1.5. LEMMA. If 8, E Aut(G - u) and 8, E Aut(G - u), where u # v, then 
GzGG’. 

Proo$ If \ 8, E Aut(G - u) then B,(G-u)=G-u, so that 
G’ - u = B,(G - U) = G - U. Since u E V(G’ - u), it follows that u is joined to 
the same vertices in 6’ as in G. except possibly for the edge uv. Similarly, ZJ 
is joined the same in both. Since (G - U) - v = (G’ - U) - u, it follows that G 
and G’ are identical, except possibly for edge uu. But since hypomorphic 
graphs have the same number of edges (if v > 2), it follows that G = G’. 1 

So if we want to find a non-ret jnstructible graph, no pair of maps 8, 
and 8, can act as partial automorphisms of G. One would like to prove 
that if a single 8, is a partial automorphism of G, then G is reconstructible. 
The best we have been able to prove in this direction is the following. 

1.6. LEMMA. Let 9, E Aut(G - u). If G is non-reconstructible, then for all 
v # u, there is a vertex x E V(G) such that either. 

582b/44/2-5 
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(1) ~Q;~(u)EE(G) but uO,(x)$E(G),or 

(2) xB;‘(u) $ E(G) but u@,(x) E E(G). 

Proof: 0, and 8,” are both partial automorphisms of G. So, therefore, is 
e,e,, = e,(e;le,). If X# {v, eo-yu)), then e,cx) = eueuv(x), SO that 
O,(xJj) E E(G) if and only if xyg E(G), so long as {x, JJ} n {D, Q;‘(u)) = @,, 
i.e., 8, acts as a partial automorphism of G on all edges, except possibly for 
those with one end equal to O;l(u), since 8, does not act on u. It follows 
that if G is non-reconstructible, then for each v # U, there must be some 
XE V(G) satisfying (1) or (2) above; for otherwise, 8, would be a partial 
automorphism of G. 1 

Consider the two pairs xOOP1(u) and uO,(x). Suppose that u # e,(u). Then 
ue,(x)EE(G) if and only if 0,(&,(x)) E E(G), so long as e,,(x) #8;i(u). 
Since 8, is a permutation of the edges not containing v, we could continue 
applying 8, to u@,(x) until we complete the cycle of the permutation and 
come to x0;‘(u). This would make 8, a partial automorphism of G. The 
reason this method cannot be applied in general is that O,‘(u) may be one 
of the vertices appearing in the cycle of the permutation. At this point, 8, 
may not act as a partial automorphism. 

If we are interested in hypomorphic digraphs, rather than graphs, the 
mappings 8, are defined in exactly the same way. Lemma 1.5 does not hold 
for digraphs, however, since we cannot tell the direction of the edge uv by 
counting. 

Hypomorphic hypergraphs are treated in a similar manner. A 
k-hypergraph G has vertex set V(G) and edge set E(G) consisting of 
k-subsets of V(G). G - u is the induced hypergraph G[V(G) - u]. A family 
of non-reconstructible 3-hypergraphs is constructed in [ 5 J. Corresponding 
to Lemma 1.5 is the following (with a similar result holding for 
k-hypergraphs). 

1.7. LEMMA. Let G be a 3-hypergraph with 1~24. rf O,EAut(G- u), 
0°C Aut(G - v), and 8, E Aut(G- w), where u, v, and w are three distinct 
vertices, then G z G’. 1 

Similarly, many of the results following can be extended to digraphs or 
hypergraphs. We will always take G as a graph, unless specified otherwise. 

1.8. THEOREM. If there are vertices u, v E V(G) and automorphisms 
g, E Aut( G’ - u) and g, E Aut( G’ - v) such that 
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and 

g;113,(x)=g;1 O,(x) forallx#u, 4 

then G E G’. 

ProoJ Define a map 8: G-t G’ by %(u)=u, 0(v)=v, and 
O(x) = g; l O,(x), if x # u, u. We claim that 0 is an isomorphism. For con- 
sider xy E E(G), where x, y $ {u, v}. Then 8,(xy) E E(G’), by the definition 
of G’. Since g, E Aut(G’ - u), it follows that g; ’ Q,(.xJ~) E E(G’), i.e., 
Qxy) E E(G’). 

If ux E E(G), where x # v, then B,(ux) E E(G’), so that g,(u) Q,(x) E E(G’), 
since g,(u) = O,(u). But g,E Aut(G’- v) so that g;‘(g,(u) O,(x)) = 
ug;‘Q,(x)EE(G’), or ( ) ( 1. 8 ux E E G’ Similarly, if ux E E(G), where x # U, it 
follows that 19(vx) E E(G’). 

Finally, since E(G) = s(G’), it follows that uu E E(G) if and only if 
uv = O(uv) E E(G’). So 0 is an isomorphism. 1 

1.9. COROLLARY. If there are u, v E V(G) such that Cl,(v) = v, O,(u) = u, 
and e,(x) = O,(x), for x # u, u, then G E G’. 

Proof. Take g, and g, to be the identity. [ 

Corollary 1.9 says that if we are looking for a non-reconstructible graph, 
then no two of the mappings 8, can be equal. (Again, this does not apply 
to digraphs because we cannot determine the direction of the edge uv. The 
mappings for Stockmeyer’s tournaments [7,8] contain many pairs of 
equal partial permutations.) The corresponding result for k-hypergraphs 
requires that k of the mappings be equal. 

2. ORBITS OF PARTIAL PERMUTATIONS 

Each O,, acts as a partial automorphism of G. If the Q,, were per- 
mutations, rather than partial permutations, the most natural thing to do 
would be to find the orbits of the group they generate. Partial permutations 
do not generate a group, but we can still define their orbits, as follows. 

2.1. DEFINITION. Let P = {p, , p2 ,..., p,!} be partial permutations acting 
on a set V. P partitions V into orbits, where each orbit B G V is defined as 
a minimal non-empty subset of V such that if x E B, then p,(x) E B, 
whenever p,(x) is defined, and p,‘(x) E B, whenever pz:‘(x) is defined, for 
all i = 1, 2 ,..., n, and all x E B. 

For each u E V(G), we define the completed permutation f3,* of V(G) as 
the permutation got from 6, by replacing the path (u) by a cycle (u). 

iX?b,44/‘-5* 
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Let O* denote the group generated by the 6:: O* = ((0: 1 UE V(G)} ). 
Let @‘= ({(e,,)*Iu, ueV(G)}), where (e,,,)*=(f?,*))‘ti,*, and let 
O= {&&, UEV(G)}. 

2.2. THEOREM. O*, O’, 0, and { 8, I u E V(G)} all have the same orbits 011 
V(G). 

ProoJ: Let 0’ have orbits O;, O;,..., Oh., and let 0 have orbits 

01 2 L., 0,. If 0 has only one orbit, then so does 0’. Since 0’ < O*, the 
same is true of O*. 

Otherwise, 0 has N3 2 orbits. Let Oi and Oj be two orbits of 0, and 
pick u E Oi and v E 0,. Then 8,, is of type II; for otherwise (d,,)“(u) = o, for 
some integer k, by Lemma 1.3. This is impossible, since Oin O,= 0. It 
follows that (e,,)“(u) = e;‘(u), f or some k, by Lemma 1.3. This means that 
Q;l(u) E 0,. Re peating the argument shows that 8;‘(u) E Oi, etc., so that O,, 
fixes Oi. Therefore Qz fixes Oi, too. It follows that 0, fixes all orbits Oi, for 
which v 6 Oi. Therefore it also fixes Oj, the only orbit containing u. Then 

(et/“)* also fixes all orbits Oi. This means that 0, O’, O*, and 
(e,lu~V(G)} all have the same orbits O,, 02,..., 0,. 1 

Each UEV(G) has the same degree in G and G’, since G and G’ are 
hypomorphic graphs with v 3 3 (see [2, 31). We denote this common 
degree by deg(u). 

2.3. THEOREM. If some 0, preserues degree, i.e., deg(u) = deg(o,(v)), for 
all v # u, then G cz 6’. 

Proof: Let A,={~/u~EE(G)), f or each vcV(G). Write AL for the 
corresponding set in G’. Then IA,. I = IA :, / = deg(o). 8, maps A, - u to 
BU(A” - u) = Ab,c,, - U. If 8, preserves degree, then IA,/ = IA&,,/. But 
IA, - 4 = lQ,M~ - u)l = IAk,(L>, --uI. Since /A,1 = IAbUcv,l, it follows that 
UEA, if and only if UEA~,~~), i.e., that B,*(G) = G’, so that G s G’. 1 

2.4. COROLLARY. If O,* E Aut(G), for some u E V(G), then G g G’. 

ProoJ: If 0,* E Aut(G), then 8, preserves degree. It follows that 
G = t?,*(G) = G’. 1 

Lemma 1.5 shows that no pair 0,, f3, can act as partial automorphisms of 
G, if G is non-reconstructible. Although we were unable to prove that no 
single 0, can be a partial automorphism, if any single 0: is an 
automorphism, then G is reconstructible. 

It is tempting to strengthen the reconstruction conjecture to say that if 
G, G’, and (0, } are given, then some l3,* is an isomorphism of G with G’, as 
is indicated in Corollary 2.4. However, the author has constructed exam- 
ples where no 0,* is an isomorphism of G with G’, but still G z G’. 
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q= <1>(2,5.4) 2 

e2= <2>(1,6,4,3) 1 1 

e3= <3>(2,6,5) 

e4= <4>(1,2,5) G= G’= 

8j= <5>(1,3,4,6) 3 3 
es= <6X2,3,5) 

5 2 

FIGURE 1 

2.5. EXAMPLE. Take n = 6. 8,) 0, ,..., e6 , G, and G’ are as in Fig. 1. No 
9: is an isomorphism of G with G’. Furthermore, no 8, is a partial 
automorphism of G. 

3. THE PAIR-ORBITS 

Since each Q,, acts as a partial automorphism of G, the edges of G must 
fall into a number of orbits of 0 = (%,, / U, v E V(G), u # v}. We define the 
pair-orbits of 0 analogously to the vertex orbits. Let (r) denote the set of 
all 2-subsets of V(G). 0 induces an action on (,“) in the obvious way, which 
partitions it into orbits which we call the pair-orbits of 0. 

Let 0 have pair-orbits P,, P2,..., P,. Let 0’ have pair-orbits 
Pi) P; )...) Pk’ . Then UPi= (,“) = UP:, and Pin P,= Pin PJ = @. Each Pi 
or Pi defines the edges of a graph with vertex-set V. We will also denote 
this graph by Pi and Pi, respectively. Note that each Pi. is the union of one 
or more Pi, by the definition of 0 and 0’. Also, E(G) is a union of one or 
more pair-orbits Pi, since each %,, is a partial automorphism of G. 

3.1. THEOREM. If {PI, P, ,..., P,} = {Pi, P; ,..., Pk,} then GE G’. 

ProoJ: E(G) is a disjoint union of some of P,, P2,..., P,. Suppose that 
P, E E(G). Without loss of generality, take Pi= Pi. We prove that 
%,*(Pj) c E(G’), for each u E V(G). Clearly %JPi) E E(G’), by the definition 
of G’, where %JP:) = %,(Pj - u); and %,(P:) L %z(P:). %,*(Pi) - %,(P:) con- 
sists of edges of the form UX. 

If u is adjacent to all vertices in G, then the same is true in G’, so that 
%,*(P;) c E(G’). Otherwise there is some v E V(G) not adjacent to u in G. 
Now %z(Pi) = %z(P;), since Pi is a pair-orbit of 0’ = ({ (8:))’ %,*> ). We 
have %,(P:) c %:(P;.) = %,*(Pi) 1 %JP:). Now %,(P:) contains all edges of 
%:(P;) except for those of the form UX. %,JP;) contains all except those of 
the form ux. Since uv $ Pi, %JP:) u %,(P:) = %z(P:). It follows that 
%z(P:) E E(G’), for every %,*, so that G’= 8,*(G). 1 
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P3= 

20 -6 

P4= 
40 05 

FIGURE 2 

Note that Theorem 3.1 also holds for digraphs and hypergraphs (if 
modified suitably). 

By Theorem 2.2, 0 and 0’ have the same orbits on V(G). One way to 
prove the reconstruction conjecture would be to prove that the pair orbits 
are also equal. However, the author knows of examples for which the pair- 
orbits of 0 and 0’ are not equal. 

3.2. EXAMPLE. Let 8,, 8, ,..., e6 be as in Example 2.5. 0 has 4 pair orbits 
P,, P,, P,, and P,, whereas 0’ has only two, Pi and Pi, as shown in 
Fig. 2. 

Note that there are two kinds of pair-orbits Pi: 

(1) Pi contains edges of the form uv, where U, u E Oj; in this case, Pi 
defines a graph which is both vertex-transitive and edge-transitive. 

(2) Pi contains edges uv, where u E 0, and v E 0,) where j # k; in this 
case Aut(P;) is transitive on 0, and O,, and on edges of P:, of course. 

The pair-orbits P,, P?,..., P, are more fundamental than G; for all 
graphs for which the 8, act as the hypomorphic mappings are composed of 
some combination of P,, P2,..., P,. Each Pi is either k-regular for some k, 
or else it is bipartite, regular on each side of the bipartition. Example 3.2 
shows that the same need not be true of P,. If it were true, then each 8, 
would preserve degree, so that by Theorem 2.3, the reconstruction conjec- 
ture would be proved. 

3.3. DEFINITION. For each pair-orbit P, of 0, the hypomorph of Pi is 
Qi = U, I,. 
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Note that 8, does not act on all of Pi, but punctures it at U. Each P, and 
Qi are reconstructions of each other. 1 Pi 1 = 1 Qi 1, since v > 3. Vertices have 
the same degree in Pi as in Qi. { PiI i= 1, 2,..., m} defines a partition of (,“). 
{Q,/i= 1, 2,..., m} defines another partition. A third partition is 
{6,*(Pi)I i= 1, 2 ,..., m], for each UE V(G). Qi is the hypomorph of Pi. 
t3,*(Pi) is called the u-translation of Pi. Note that if 6,*(Pi) = Qj for some u 
and all i, then 0,*(G) = G’, so that G is reconstructible. If there is a non- 
reconstructible graph G, then for every U, there is some P, such that 
~Wi) Z Qi. 

Note that if there are N orbits Oi, where N> 2, then for any pair-orbit 
Pk whose edges uv have both ends in Oi, t3,,,(Pk) = Qk for any w  $ Oi, so 
that Pk z Qk. If N> 3 then pair-orbits P, whose edges have ends in dif- 
ferent orbits 0, and 0, are also isomorphic to their hypomorph. So if 
N3 3, every Pk z Qk, but we still can not necessarily say that G is 
reconstructible in this case, since we would need a common isomorphism 
for all pair-orbits, since in general, G is a union of various pair-orbits. 
Stockmeyer’s tournaments [7] have N = 2. 

3.4. LEMMA. Suppose that O,*(Pj) # Qi. Then B,S(P;)- Qi and 
Qi - iI,* consist of edges of the form ux, where x E V(G). 

Proof: By definition e,(Pj) c Qi. Since O,*(Pi) - OJP,) consists of edges 
of the form UX, so does t3,*(Pj)- Qi. Since lO,*(P,)I = IQ,], Qi-e,*(Pi) 
contains an equal number of edges which exclude e,(P,), giving edges of 
the form UX. 1 

So if t9:(Pi) # Qi, then O,*(Pi) - Qi contains some edge UX. But ux E Qi,, 
for some i,, so that O,*(P,,) # Qi,. 19: (P,,) - Q, then contains uxl E Qiz, etc. 
This defines a sequence of edges (see Fig. 3) UX= u.+,, uxl, UX~,..., uxk, 
where UX,E%,T(P,,)- (2, and UX,E Q,,, -Oz(P,+,), forj=O, l,..., k- 1, and 
ux/, E Q, - t!I;(P,,). 

e:(P,,) 

FIGURE 3 



196 W.L.KoCAY 

3.5. THEOREM. I f  Pi is a pair-orbit of 0 such that t3,*(Pi) = Oz(Pi), where 
u # v, then Qi = d,*(Pi). 

Proof: Suppose that Qj#O~(Pi)=O~(Pi). By Lemma 3.4, Qi-6z(P,) 
consists of edges of the form ux, and Q, - e,*(Pj) consists of edges of the 
form vx. It follows that Qi- 6T(Pi) = {uv>. The same argument shows that 
QXPi) - Qi = { uv}, a contradiction. 1 

So if Q,# O,*(Pi) for any U, it follows that e,*(P,), UEV(G), are all 
mutually distinct sets of edges. Note that Theorem 3.5 does not hold for 
digraphs, since the direction of the edge uv is not determined. The similar 
theorem for 3-hypergraphs requires that /3,*(Pi) = f3,*(Pj) = O;(Pi). 

4. THE COSET DIAGRAM 

The group @‘=({(O,,)*l u,v~V(G),u#v}) is a subgroup of 
O* = ((0: 1 u E V(G)} ). In this section we consider several properties of 
these groups and their Schreier coset diagram. By the definition of @‘, all 
permutations e,* lie in the same coset O,*O’ in 0”. In some sense, the graph 
G corresponds to the subgroup 0’ and its hypomorph G’ to the coset 
O,* O’, since G’ is a translation of G by {O,I u E V(G)}. For the groups 
arising from Stockmeyer’s tournaments [7], @‘a@* and 0*/O’ is a group 
of order two. 

Let 0 have pair-orbits {P,, P2,..., Pm> and 0’ have pair-orbits 
{% p;,..., FL,}. Choose any $ E @*. Then $@‘I+-’ has pair-orbits {$(P;), 

$(f’;),..., WY,,,}. Th’ is is a standard sort of result on orbits of permutation 
groups. Given any O,*, II/,* E $e~$-’ is a permutation of V(G) fixing $(u). 
Define $, by “puncturing” $z at $(u). Then {tiUI u E V(G)} forms a set of 
mappings suitable for constructing hypomorphic graphs, like the 8,. 

4.1. LEMMA. The pair-orbits of Y = (I),, I u, VE V(G), u#v} are {W1), 

W2L Wm)~. 

ProofI Consider the action of 0 acting on (I;). If 0,” maps xy to O,,(xy), 
then X, Y 4 {v, e;1(4}. $,, = ti;Q,k. It maps $64 to $,? $U4 = $LW 
since $t?,(x) Z+(u). Similarly, $(y) is mapped to $0,,(y). The result 
follows. 1 

4.2. LEMMA. If 0’40*, then 0*/O’ is a cyclic group. 

Proof. All the O,* are in the same coset of 0’. Let e,*, O,*, and 0; 
be any three mappings. By the definition of O’, (0,*)-l eg E @‘, so 
that (O~)~l(O,*)-l~,*~$~@‘, since @‘a@*. But this implies that 
e,*e;@’ = e~O;O’. Consequently all products 13,*e: are in the same coset 
of @‘, for all U, v E V(G). Similarly, all triple products 0: S,* 62 are in the 
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same coset, etc. If k is the first power of O,* for which (0:)” E O’, then 
0*/O’ is a cyclic group of order k, being generated by any coset O,*O’. 1 

So every $ E O* defines a hypomorphic pair $(G) and $(G’). In 
particular, successively taking $ = e,*, IJ = (6,*)2, etc., gives graphs 
fJ,*(G), (d,*)‘(G), etc. 

It is clear that if @‘a@*, then {Pi, Pi ,..., P;,} = ($(P;), 
$(P;) ,..., $(PL,.)} for any $E@*, since $ will permute the orbits of 0’. It 
seems unlikely that {PI, P2,..., P,) = {$(P1), $(P2),..., $(Pm)} in general, 
though, when O’qO*, since each orbit Pi is composed of several pair- 
orbits Pi. 

4.3. PROBLEM. Let O’qO*. Is it true that for all $E@*, 
(Pl, P2Y> c?J = W(PI)> ~(P2L vwm)Y 

4.4. PROBLEM. Let @‘a@*. Is {PI, P, ,..., P,} = (Q,, Q2 ,..., Q, >, i.e., 
are the hypomorphs of the pair-orbits also pair-orbits? 

When 0’ is not a normal subgroup, Example 4.5 shows that in general 
the hypomorphs need not be pair-orbits. However, it seems to occur quite 
often that the hypomorphs are in fact pair-orbits. This is the case, for 
example, with Stockmeyer’s tournaments. 

4.5. EXAMPLE. Let 8,, 02,..., 6, be as in Examples 2.5 and 3.2. The 
hypomorphs Q1, Q2, Q3, and Q4 are not pair-orbits of 0, as can be seen 
by comparing Example 3.2 with Fig. 4. 

We conclude this section by constructing the groups 0’ and O* 
corresponding to Stockmeyer’s tournaments [7]. Stockmeyer’s tournament 
A, has vertex set V, = { 1, 2,..., 2”). The non-reconstructible tournament B, 
derived from A, has vertex set V, u (2” + l)} = V,*. Together with its 
hypomorph C,, it satisfies: 

B,-kgCC,-(2”-k+ 1) if kd2”; 

B,-(2"+1)EC,-(2"+1). 
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We can normalize them, by the mapping q5 of Section 1, so that 
B, - k g C, - k. When this normalization is done, the mappings 
0 n>k : B, -k -+ C, -k are the following [4]: 

(1) ifn-1, then 

~,,,(2) = 2 and e,,,(l)= 1; 

(2) if n > 1, then 

ci) en,2k~1(2U-1)=2e,-I,k(u)-1, 

6 n.2k- ,(2U) = 2” - 2k + 2, where u# k; 

(ii) 8,.,,(2u- 1)=2”-2k+ 1, 

h, 2k(2k) = 26, - I,kw where u # k; 

(3) 6,k(2”+1)=2”+1,foralln, and allk#2”+1; 

(4) B,(k)=2”-k+l, for all k<2”; 

where we have written 8, for t3,, k when k = 2” + 1. The mappings 8, k 
satisfy a number of properties given by the following lemmas. They can be 
easily verified by induction on n. 

4.6. LEMMA. 8; k= 0* ,,kfN, where N=2+‘. 

4.7. LEMMA. e,* t!?~,k(6,*)-'=6~,Npk+l, where N=2”-I. 

Write @,*=({@,ikEV,*)) and ol,=({(e~,k)~‘e~,ilj,kEV~}). 

4.8. THEOREM. 10; 1 = 22"m1+1, ifn 32. 

ProoJ: 0: has order 2, being generated by Of = (1,2), which does not 
fit the pattern when n > 2. When n 2 2, the proof is by induction on n. 
When n=2, lO:l=S, since it is generated by 0:,=(2,4), 0;,=(1,3), 
and 0: = (1,4)(2, 3). Note that all the 8:,, fix 2” + 1, so that we can dis- 
card the point 2” + 1, and work with the Qz, k, 1 < k d 2” + 1, acting only on 
V,. There is a natural partition of V,, into odd and even integers, which we 
denote as odd( V,) and even( V,), which is a block system for O,*, since all 
Oz,, preserve the partition, for 1 d k d 2”, and 0, interchanges odd( V,) and 
even( V,). The subgroup r, fixing this block system obviously has index 2, 
and is generated by $z,k, where k E V,. Consider the action of r,, on V,. All 
the fl:, 2k, where kE VnpI act on even( V,) as f3,*- i, k on V,- 1, by the 
definition of 9,. k. Let even(r,) denote the subgroup generated by these. 
Then even(r,) g I-,- i. Its action on odd( V,) is either that of O,*- i on 
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V,,- I, or else it fixes all of odd( V,). Exactly half of even(r,) fixes odd( V,), 
so that r, contains Ir,- 1 l/2 permutations fixing each point of odd( V,). 
Since e:, 2k ~ I all act on even( V,) as l3,*_ 1 on V,- 1, and even(r,) acts on 
even(V,) as r,-,, it follows that the transitive constituent of r,, on 
even( V,) is isomorphic to O,*- 1. The kernel of the corresponding 
homomorphism is all those permutations of r, fixing all of even( V,). Their 
number is Ir,- 1 l/2, as noted above. This gives 

io,*I=21r,i=21o~~,I.ir,-,//2=(i/2)10,*_,12. 

Solving this recurrence, beginning with 10: 1 = 8 gives the result. 1 

In particular, IO,* I = 32, 10: 1 = 512, and 10: I = 217, etc. 

4.9. THEOREM. [IO,* : O;] = 2. 

ProoJ 0; can be generated by ((e,*)-‘e~,k(kE V,}. By Lemma 4.7, 
any product of these generators can be written as a product of several ez,, 
possibly followed by 0,*, if the number of generators is odd. It follows that 
Ol, is isomorphic to r, = ( (ez,, I k E V, } ). Since r, has in.dex two in O,T, 
the result follows. 1 

Note that the groups O,* and 0: are 2-groups giving rise to 
hypomorphic, non-isomorphic digraphs. All the mappings ez,, are in the 
coset e,* 0;. 

4.10. PROBLEM. Can we find a family of p-groups analogous to O,* and 
0; giving rise to hypomorphic, non-isomorphic graphs or digraphs, with 
p>2? 

This seems to be a very likely place to look for non-reconstructible 
graphs. 
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