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Abstract In our previous work, partial least squares (PLSs) were employed to develop the near

infrared spectroscopy (NIRs) models for at-line (fast off-line) monitoring key parameters of

Lactococcus lactis subsp. fermentation. In this study, radial basis function neural network

(RBFNN) as a non-linear modeling method was investigated to develop NIRs models instead of

PLS. A method named moving window radial basis function neural network (MWRBFNN) was

applied to select the characteristic wavelength variables by using the degree approximation (Da)

as criterion. Next, the RBFNN models with selected wavelength variables were optimized by select-

ing a suitable constant spread. Finally, the effective spectra pretreatment methods were selected by

comparing the robustness of the optimum RBFNN models developed with pretreated spectra. The

results demonstrated that the robustness of the optimal RBFNN models were better than the PLS

models for at-line monitoring of glucose and pH of L. lactis subsp. fermentation.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lactococcus lactis subsp. as a kind of probiotics has been used

in food fermentation and used as a producer of Nisin which is
one kind of biopreservative (Lv et al., 2004). Nisin composed
of 34 amino acids is a lantibiotic with a very strong bactericidal

effect, which is one of the safe, efficacious and non-toxic nat-
ural food grade biopreservatives with international permission
(Cheigh and Pyun, 2005; Delves-Broughton et al., 1996;
Soriano et al., 2004; Loir et al., 2005). L. lactis subsp. is usually

used as an expression vector with its many advantages which
are listed as follows: firstly, L. lactis subsp. secretes fewer
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Table 1 The statistical values of the glucose concentration

and pH.

Components Samples numbers Average Ranges

Glucose (g/l) 145 9.768 2.210–18.258

pH 120 6.082 4.670–7.690
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proteins, which makes its extraction, separation and purifica-
tion processes much simpler; secondly, the degradation of
the expression products could be greatly reduced as the low

activity of extracellular enzyme secreted by L. lactis subsp.
However, it was reported that L. lactis subsp. fermentations
required harsh nutrition of broth and culturing conditions

(Vuyst, 1995; Ashraf et al., 2013), therefore, the fermentation
parameters should be strictly controlled to elevate the yield
and the quality of fermentation. The nutritious component

concentrations especially glucose and the pH of the broth must
be strictly controlled during fermentation due to their signifi-
cant effect on bacterial growth and the yield of the products.
It should be an ideal idea that glucose and pH could be

at-line measured, and then took appropriate feedback
adjustments according to the measuring results, such as adding
glucose, acid or base and so on during L. lactis subsp. fermen-

tation processes (Butt et al., 2015). Though the traditional elec-
trochemical probe for monitoring pH is very popular, it must
be adjusted using pH standard solutions before application

and the high temperature would shorten the life of the probe
(Surhio et al., 2014). The electrochemical probe for monitoring
glucose is much expensive and its’ operation is cumbersome,

which restrains its application. It was reported that near infra-
red spectroscopy (NIRs) could be used for simultaneous at-line
monitoring of some fermentation parameters such as glucose,
biomass and pH etc. during fermentation using fiber optic

cables (Fernández-Novalesa et al., 2008). As optic cables could
withstand sterilization temperatures and the other fermenta-
tion conditions, NIRs could simultaneously strictly monitor

and control the fermentation parameters under the extreme
conditions. However, the data of NIRs are numerous and
the information of the spectra would be usually interfered by

the bubbles which are produced by agitation, the changing
shape of the microbes and the variational viscosity of the
broth, and so on. It is a challenge to parse the NIRs

(Teixeira et al., 2009; Cervera et al., 2009; Rinnan et al.,
2009). Chemometric methods were usually recommended to
parse NIRs. Nowadays, principal component analysis (PCA)
and partial least squares (PLSs) as linear chemometric meth-

ods are usually used for NIRs modeling. Both of them have
many advantages for linear multivariate analysis such as effec-
tively reducing data dimensions, fast calculation and simple

modeling processes with few modeling parameters. However,
it was not so satisfying to use PCA and PLS for complex sys-
tem modeling such as fermentation broth, food-processing

monitoring, pharmaceutical process monitoring, and so on.
Non-linear modeling methods should be considered under
these situations (Madakyaru et al., 2012; Batool et al., 2015).

Artificial neural network (ANN) method is one of the most

popular non-linear modeling methods. The fundamental prin-
ciple of ANN simulates the work of the brain. Radial basis
function neural network (RBFNN) is a kind of a three-layer

feed-forward neural network with many advantages such as
simple operation, fast calculation, good generalization, great
robustness, and so on. RBFNN as the nonlinear modeling

method has been widely used in many fields, such as the pat-
tern recognition and function approximation (Basheera and
Hajmeerb, 2000; Liu et al., 2010; Du et al., 2007). In this paper,

RBFNN was used for modeling the correlation between the
NIRs and the two parameters (glucose and pH) instead of
the PLS method. The results of PLS models were reported in
the literature (Guo et al., 2012).
Characteristic wavelength variables selection is a key step
in the development of RBFNN model (Chu et al., 2004).
Moving window radial basis function neural network

(MWRBFNN) is a wavelength interval selection method for
multi-component spectra analysis. Its fundamental principle
is similar to that of moving windows partial least square

(MWPLS) (Du et al., 2004; Khaskheli et al., 2015). Briefly,
MWRBFNN builds a series of RBFNN models in a fixed size
window that moves over the overall spectral region and then

locates useful spectral regions in terms of the best capability
of RBFNN models reaching a desired error level.
MWRBFNN provides a viable approach to eliminate the
extra variability generated by non-composition-related factors

such as the perturbations in experimental conditions and
physical properties of samples. A salient advantage of
MWRBFNN is that the calibration model is very stable

against the interference from non-composition related factors.
Moreover, the selection of wavelength variables in terms of
the best capability of the models enables the reduction of

the size of a calibration sample set (Kasemsumran et al.,
2004; Naureen et al., 2014).

In this paper, the established models have been optimized

by selecting the suitable spectra pretreatment methods and
the optimum parameters of MWRBFNN models such as W:
the size of the moving window; Wn: the number of selected
wavelength variables; nw: the number of selected moving win-

dows; the number of hidden nodes and the spread constant.
The capability parameters of the RBFNN models would be
compared to those of PLS models for choosing the suitable

modeling methods.

2. Materials and methods

2.1. Microorganism, medium components, fermentation and
spectra measurement can be seen in literature (Guo et al., 2012)

2.1.1. Analytical methods

60% of the total samples were randomly selected as the cali-
bration samples, and the remaining samples were selected as
the prediction samples (external validation samples which were
not used for calibration), the statistic glucose concentrations

and pH values of the samples are shown in the Table 1.
RBFNN was employed to develop the models for quantitative
analysis of the glucose and the pH of fermentation broth with

NIRs using Matlab R2010a (MathWorks, Inc., USA). The
degree of approximation (Da) was used as the criterion for
optimizing the developed models. The definition of Da is given

by Eq. (1):

Da ¼ c
nc�RMSEC

n
þ np�RMSEP

n
þ RMSEC� RMSEPj j

ð1Þ

where n is the total number of samples, nc is the number of
calibration samples, np is the number of prediction samples
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and c is the constant which can be adjusted cased to the chart.

In the presented study, the c for monitoring glucose and pH
were 5 and 0.5 respectively. RMSEC is the root mean square
error of calibration set; RMSEP is the root mean square error

of prediction set.
The characteristic wavelength variables were selected by

MWRBFNN. The MWRBFNN procedure was compiled
by Matlab 2010a (Mathwork, USA). The basic steps of

MWRBFNN procedure is as follows: A RBFNN model is
developed with the wavelength variables in the moving window
which starts at the first wavelength of the spectra and has been

optimized by selecting the suitable number of hidden nodes
using Da as criterion. The maximum Da value is recorded as
the value of the first wavelength in the Da spectra. The moving

window moves down a wavelength. And than its’ wavelength
variables are used for developing the RBFNN model which
is also optimized as the first RBFNN model and the maximum
Da is recorded as the value of the second wavelength in the Da

spectra. It was done till the moving window moves across over-
all spectra regions and the Da spectra are recorded for identi-
fying the characteristic wavelength regions (Safi et al., 2015).

The characteristic wavelength variables were selected by com-
bining several moving windows with the maximum Da values.
The RBFNN model is developed by the selected characteristic

wavelength variables and optimized by selecting the suitable
number of moving windows with the maximum Da values
(nw), the number of hidden nodes and spread constant. The

spread constant is fixed at 2.0 in this optimizing procedure.
Finally, the RBFNN model with selected wavelength variables
is optimized by selecting the suitable spread constant using Da
as criterion.

The size of the moving window is a key parameter of
MWRBFNN for selecting wavelength variables. Therefore,
the MWRBFNN procedure had been carried out when the size

of the moving window was 5, 7, 9 and 11 for glucose and 21,
31, 41 and 51 for pH values which were set due to the prelim-
inary experiments. The RBFNN models developed by raw

spectra and each pretreated spectra were optimized by
MWRBFNN and selected the most efficacious spectra pre-
treatment methods by using Da as criterion.

NIRs were pretreated by Fast Fourier Transform (FFT),

Savitzky–Golay Smoothing, first derivative, second derivative
and Standard Normal Variate (SNV) methods with different
sizes of pretreatment window using Origin 8.5.1 SR2 b315

(OriginLab Corporation, USA). The developed models were
optimized by selecting efficacious spectra pretreatment meth-
ods with the suitable sizes of pretreatment windows, the char-

acteristic wavelength variables, the number of hidden nodes
and the spread constants by MWRBFNN.
Figure 1 The glucose and pH profiles of each batch of

Lactococcus lactis subsp. fermentation ((A) glucose, (B) pH).
3. Results and discussion

3.1. Samples

Sampling scheme greatly affects the NIRs model generaliza-
tion as the NIRs would be influenced by different batches of

fermentation with different conditions, fermentors or different
fermentation phases (Cervera et al., 2009). 15 batches of L. lac-
tis subsp. fermentation were carried out under different condi-
tions which were designed by Box–Behnken design in 3

different fermentors. Broth samples were drawn out at an
interval of 1 h and the glucose concentration and their pH val-
ues were determined by reference methods immediately. The
glucose and pH profiles of each batch of L. lactis subsp.

fermentation are shown in Fig. 1. As can be seen, glucose
concentrations and pH values continually decreased since
2 h, and then, became stable after 7 h, which was indicating

that 0–2 h was in incubative phase, 2–7 h was in growth phase
and 7–10 h was in stable phase of L. lactis subsp. fermentation.
The calibration samples were collected from each phase of

different batches of L. lactis subsp. fermentation, which was
good for the generalization of the calibration models.

3.2. NIRs of samples

It was proposed that infrared spectroscopic techniques, mainly
NIR (780–2526 nm) and MIR (2500–40,000 nm), had in recent
years become important tools in the context of bioprocess

monitoring to rapidly assess the state of the culture. Both
NIR and MIR spectroscopy allow a fingerprint of the culture
bulk within a few minutes (Teixeira et al., 2009). However,

there are several interfering factors such as aeration intensity,
high biomass concentration, viscosity, filamentous production
strain, temperature, microorganism morphology etc, that neg-

atively influence the quality of chemometric models built for



Figure 2 The NIRs of the samples.
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at-line or on-line monitoring of the cell culture or fermentation
processes. In this paper, the NIRs of the samples are shown in
Fig. 2. As can be seen, the NIRs of the samples showed strong

absorption peaks in range of 1400–1600 nm which was the
absorption of water O–H octave-band (Pasquini, 2003). The
characteristic peaks of the target components have been con-

cealed. Chemometric techniques such as PCA, PLS, ANN,
etc. allow researchers to explore the relationship between
NIRs and analyte concentration changes and remove the noise
induced by the above mentioned interfering factors. PLS as a

linear modeling method was used for monitoring the nisin
titer, biomass, pH and glucose of L. lactis subsp. fermentation
broth had been reported in the literature (Guo et al., 2012).

The selection of calibration method is one of the most impor-
tant factors affecting the measurement accuracy with NIRs
(Mireeia et al., 2014; Kiyani et al., 2014). The frequent non-

linearity of the calibration models used in NIRs is the main
source of large errors in analyte determinations with this tech-
nique. Non-linearity in this type of system arises from factors

such as the multiplicative effect of differences in particle size
among samples or an intrinsically non-linear absorbance–con
centration relationship resulting from interactions between
components, hydrogen bonding, etc (Blanco et al., 2000). In

this paper, RBFNN as a non-linear modeling method was used
Table 2 The results of selecting suitable spectra preprocessing meth

hidden layer and spread constants.

Components W1 Pretreatment methods Windows

Glucose concentration 7 Original spectra

5 Savitzky–Golay smoothing 31

7 FFT 21

5 First order derivative 11

11 Second order derivative 51

11 Standard normal variate

pH 20 Original spectra

30 Savitzky-Golay Smoothing 21

20 FFT 41

30 First order derivative 51

40 Second order derivative 51

30 Standard normal variate

1 W: the size of the moving window; Windows: the size of pretreatmen
2 Wn: the number of selected wavelength variables.
3 nw: the number of selected windows.
for developing NIRs models for monitoring glucose and pH of
L. lactis subsp. fermentation broth expecting a better result
than PLS models.

3.3. Selection of efficacious wavelength variables, the number of

hidden nodes, spread constants and the spectra pretreatment
methods

Selection of characteristic wavelength variables, the suitable
number of hidden nodes and spread constant and the size of

moving window of MWRBFNN and the suitable spectra pre-
treatment methods greatly influence the measurement accuracy
of NIRs. The influences of the selected characteristic wave-

length variables, the size of moving window, the numbers of
hidden nodes, the spread constants and spectra pretreatment
methods on RBFNN Da values were studied respectively
and the results are shown in Table 2.

3.4. Selection the characteristic wavelength variables

MWRBFNN was employed to select the characteristic wave-

length variables with the fixed sizes of the moving window
and the results are shown in Table 2. The Da spectra are
shown in Fig. 3. As can be seen, the characteristic wavelength

variables for monitoring glucose distribute in 800–920 nm,
990–1030 nm and 1320–1850 nm regions. The characteristic
wavelengths for monitoring pH distribute in 1460–1560 nm
and 1800–1850 nm, respectively. Via optimization by MWRBFNN,

the number of the selected wavelengths for monitoring glucose
and pH were 62 and 71 respectively.

3.5. Selection the number of hidden nodes

The effect of the number of hidden nodes on Da was investi-
gated when the spread constant was fixed at 2.0 and the other

parameters of RBFNN model were fixed at constant values
which are shown in Table 2 and the results are shown in
Fig. 4, as can be seen, RMSEC decreased along with the

increase of the number of hidden nodes. However, RMSEP
decreased firstly and rose later along with the increase of the
ods, efficacious wavelength variables, the number of nodes in the

Wn
2 nw

3 RMSEC RMSEP Da NH1 Spread

62 22 1.2987 1.3076 3.8133 19 0.53000

17 6 1.9816 1.9834 2.5200 9 0.53000

33 3 2.0296 2.0073 2.4475 5 0.92000

28 8 1.8983 1.9528 2.5323 9 0.98000

64 20 1.8358 2.0805 2.2956 11 0.00037

26 4 2.0014 2.0204 2.4656 9 0.61000

44 4 0.3774 0.3754 1.3204 17 0.21000

34 2 0.3593 0.3589 1.3906 18 0.21000

33 4 0.2942 0.2967 1.6799 17 0.33000

104 8 0.3316 0.3361 1.4972 18 0.00056

127 10 0.3532 0.3625 1.3652 20 0.00029

71 12 0.2439 0.2417 2.0390 28 0.13000

t window.



Figure 3 The Da spectra for selecting characteristic wavelengths.
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number of hidden nodes. Consequently, the trends of the Da
curves for monitoring glucose and pH rose firstly and then
decreased later, namely the prediction of model would become

worse when increasing too many hidden nodes. This phe-
nomenon was named over-fitting. The optimum numbers of
the hidden nodes for monitoring glucose and pH with the high-

est Da values and the lowest RMSEP were 19 and 28
respectively.
Figure 6 The correlation coefficient of the calibration set (Rc)

and the prediction set (Rp) of the optimum RBFNN model for

monitoring glucose and pH ((a) glucose; (b) pH).
3.6. Selection of the spread constants

The effect of the spread constants on RMSEC, RMSEP and
Da value was investigated and the results are shown in
Fig. 5. As can be seen, the RMSEC, RMSEP and Da value

become stable when the spread constant of RBFNN models
for monitoring glucose and pH were larger than 0.44 and
0.13 respectively. The optimum spread constants of RBFNN

models for monitoring glucose and pH with the highest Da
values were 0.53000 and 0.13000, respectively.
Figure 4 The effect of the number of hidden nodes on RMSEC, RMSEP and Da.

Figure 5 The effect of the spread constants on RMSEC, RMSEP and Da.



Table 3 The comparison of capability parameters between the optimum PLS models and RBFNN models.

Targets variables Models The optimum spectra pretreatment method RMSEC RMSEP Rc Rp Da

Glucose PLS SNV 1.7273 1.9437 0.9000 0.8730 2.4627

RBFNN Original spectra 1.2987 1.3076 0.9491 0.9427 3.8133

pH PLS FFT 0.2088 0.2571 0.9581 0.9275 1.8088

RBFNN SNV 0.2439 0.2417 0.9390 0.9445 2.0390
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3.7. Selection of spectra pretreatment methods

As shown in Table 2, the capability parameters including
RMSEC, RMSEP and Da of RBFNN model with raw NIRs
for monitoring glucose were better than those of the models

with pretreated NIRs. This result indicated that the spectra
pretreatment methods investigated in this paper were not so
suitable for calibrating the effective information of glucose in

the NIRs of L. lactis subsp. fermentation broth. The
RBFNN model for monitoring pH with NIRs pretreated by
SNV had the highest Da values and the lowest RMSEC and

RMSEP. It was concluded that the best methods for PLS mod-
eling were SNV and FFT for determination of glucose and pH
in the literature (Guo et al., 2012). It was suggested to select

suitable spectra pretreatment method case to the modeling
methods. In this research, the result supports the view that
RBFNN has better fault tolerance on comparing to the PLS
modeling method, the requirement of spectra pretreatment

methods was less harsh. SNV pretreatment method which
can remove the multiplicative interference of scatter and parti-
cle size work well in PLS model for monitoring glucose and

RBFNN model for monitoring pH (Chu et al., 2004; Bampi
et al., 2013).
3.8. The comparison of the optimum RBFNN models and PLS
models

The developed RBFNN models for monitoring glucose and

pH have been optimized by selecting characteristic wave-
length variables, the number of hidden nodes, and the spread
constants and efficacious pretreatment methods. The effica-
cious spectra pretreatment methods for glucose and pH were

without the pretreatment method and SNV method, the num-
bers of the characteristic wavelengths were 62 and 71, the
suitable numbers of hidden nodes were 19 and 28, and the

optimum spread constants were 0.53000 and 0.13000, respec-
tively. The optimum RBFNN models with the optimized
parameters were used for determining the glucose concentra-

tion and the pH values of all the samples and the results are
shown in Fig. 6. The correlation coefficient of the calibration
set (Rc) and the prediction set (Rp) of the optimum RBFNN
model for monitoring glucose and pH were over 0.9000. The

comparison of capability parameters between the optimum
PLS models and RBFNN models are shown in Table 3. As
can be seen, the Rc and RMSEP of RBFNN model for mon-

itoring the glucose were much better than those of the PLS
model. The RMSEP of RBFNN model for monitoring pH
was lower than that of the PLS model, meaning that

RBFNN has a better predictive capability. It was suggested
that the non-linear modeling method was better than linear
ones for NIRs and this conclusion was also supported by sev-
eral literatures as follows: Bampi et al. (2013) applied NIRs

with PLS and ANN to predict the average drophlet size
and water content in biodiesel emulsions respectively. The
results indicated that the predictive capability of ANN mod-

els was better than those of PLS models. Nie et al. researched
on using PLS, back propagation-artificial neural networks
(BP-ANN), multiple linear regressions (MLR) and least

square-support vector machine (LS-SVM) to develop models
based on NIRs data for quantitative analysis of chrysin and
galangin in Chinese propolis and concluded that BP-ANN
had the best robustness. Fulop and Hancsok (2009) com-

pared to the prediction efficiency of the models for determin-
ing the oleic acid concentration of vegetable oils developed by
PCA-MLR, PLS, PCA-ANN and GA-ANN methods and

concluded that the GA-ANN model was the best.

4. Conclusions

In this paper, NIRs combined with RBFNN were used to real-
time monitor glucose and pH during L. lactis subsp. fermenta-
tion. The calibration and external validation samples were col-

lected from 15 batches of the L. lactis subsp. fermentation in
three different 5 1 fomenters. The fermentation conditions
including agitation rate, temperature, inoculate, air flow rate,

seed age, work volume of 15 batch fermentations were
designed by central composite design method, the samples
were collected at every fermentation phase. Therefore, the
model developed by these representative samples would have

good generalization. Comparing to PLS models, RBFNN
model shows better robustness in this research. This paper suc-
cessfully combined NIR spectroscopy technology with

MWRBFNN method to monitor the glucose concentration
and pH during L. lactis subsp. fermentation, this paper
could offer reference on key parameters for further NIR

spectroscopy technology to real-time monitor bacterial
fermentations.
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