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Abstract

In this article we study a VOA with two Miyamoto involutions generatingS3. In [math.GR/
0112031], Miyamoto showed that a VOA generated by two conformal vectors whose Miya
involutions generate an automorphism group isomorphic toS3 is isomorphic to one of the fou
candidates he listed. We construct one of them and prove that our VOA is actually the sa
VA(e, f ) studied by Miyamoto. We also show that there is an embedding into the moonshine
Using our VOA, we can define the 3A-triality of the Monster.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Vertex operator algebras (VOAs) associated with the unitary series of the Vir
algebras are very useful for studying VOAs in which they are contained. This m
was initiated by Dong et al. [7] in the study of the moonshine VOA as a module of a t
product of the first unitary Virasoro VOAL(1

2,0). Along this line, Miyamoto showed tha
the Virasoro VOAL(1

2,0) defines an involution of a VOA in [22], which is often calle
the Miyamoto involution. In the moonshine VOA, this involution gives a 2A-involut
in the Monster sporadic simple groupM. There are many interesting properties relate
the 2A-involutions. For example, Mckay noted that there are some mysterious rel
between theE8 Dynkin diagram and the 2A-involutions of the Monster. There are
some similar relations between theY555-diagram and the Bimonster. For reference,
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[1,2,21]. Motivated by the topics on 2A-involutions above, Miyamoto studied VO
generated by two conformal vectors with central charge 1/2 whose Miyamoto involution
generateS3 in [24] and he determined that the possible inner products of such a p
conformal vectors are 1/28 or 13/210. Furthermore, he determined the possible candid
of VOAs generated by such two conformal vectors. When the inner product is eq
13/210, he showed that a VOA generated by such two conformal vectors is isomorp
one of the following [24, Theorem 5.6]:
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Unfortunately, these VOAs are just candidates and it is still unknown if they actually
In this paper, we construct a VOAU which has the same shape as that of the cand
(4). We show that in (4) there is a unique simple VOA structure. We classify all irredu
modules and the fusion algebra forU and prove thatU is a rational VOA. We also prov
that it is generated by two conformal vectors with central charge 1/2 whose inner produc
is 13/210 and also we show that their Miyamoto involutions generateS3. Namely,U is
the same as the VOA studied in [24] and gives a positive solution for Theorem 5.6
[24]. We further prove that the candidates (1)–(3) do not exist so that only the candid
occurs (Theorem 5.3). Therefore, we can verify thatU is contained in the moonshine VOA
Using a fact that all irreducibleU -modules admit a naturalZ3-grading which comes from
theZ3-symmetries of the fusion algebras for the 3-state Potts modelL(4

5,0)⊕L(4
5,3) and

the tricritical 3-state Potts modelL(6
7,0)⊕ L(6

7,5), we can define the 3A-triality of th
Monster (Theorem 5.5). Throughout the paper, we will work over the fieldC of complex
numbers unless otherwise stated.

2. Preliminaries

2.1. The unitary series of the Virasoro VOAs

For any complex numbersc andh, denote byL(c,h) the irreducible highest weigh
representation of the Virasoro algebra with central chargec and highest weighth. It is
shown in [10] thatL(c,0) has a natural structure of a simple VOA. Let

cm := 1− 6
(m= 1,2, . . .), (2.1)
(m+ 2)(m+ 3)
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h(m)r,s := {r(m+ 3)− s(m+ 2)}2 − 1

4(m+ 2)(m+ 3)
(2.2)

for r, s ∈ N, 1� r �m+ 1 and 1� s �m+ 2. It is shown in [25] thatL(cm,0) is rational
andL(cm,h

(m)
r,s ), 1 � s � r � m+ 1, provide all irreducibleL(cm,0)-modules (see als

[7]). This is so-called the unitary series of the Virasoro VOAs. The fusion rules am
L(cm,0)-modules [25] are given by

L(cm,hr1,s1)×L(cm,hr2,s2)=
∑

i∈I,j∈J
L(cm,h|r1−r2|+2i−1,|s1−s2|+2j−1), (2.3)

where

I = {
1,2, . . . ,min{r1, r2,m+ 2− r1,m+ 2− r2}

}
,

J = {
1,2, . . . ,min{s1, s2,m+ 3− s1,m+ 3− s2}

}
.

2.2. GKO-construction

Let g be the Lie algebrâsl2(C) with generatorsh, e, f and relations[h, e] = 2e,
[h,f ] = −2f and [e, f ] = h. We use the standard invariant bilinear form ong defined
by 〈h,h〉 = 2 and〈e, f 〉 = 1. Let ĝ be the corresponding affine algebra of typeA(1)1 and
Λ0, Λ1 the fundamental weights for̂g. For any non-negative integersm andj , denote by
L(m, j) the irreducible highest weightĝ-module with highest weight(m− j)Λ0 + jΛ1.
ThenL(m,0) has a natural structure of a simple VOA [10]. The Virasoro vectorΩm of
L(m,0) is given by

Ωm := 1

2(m+ 2)

( 1
2h(−1)h+ e(−1)f + f(−1)e

)
(2.4)

with central charge 3m/(m+ 2).
Letm ∈ N. ThenL(m,0) is a rational VOA and{L(m, j) | j = 0,1, . . . ,m} is the set of

all irreducibleL(m,0)-modules. The fusion algebra (cf. [10]) is given by

L(m, j)×L(m, k)=
min{j,k}∑

i=max{0,j+k−m}
L(m, j + k − 2i). (2.5)

In particular,L(m,m) × L(m, j) = L(m,m − j) and thusL(m,m) is a simple curren
module. A reasonable explanation whyL(m,m) is a simple current is given in [19].

The weight 1 subspace ofL(m,0) forms a Lie algebra isomorphic tog under the 0-th
product inL(m,0). Let h1, e1, f 1 be the generator ofg in L(1,0)1 andhm, em,f m those
in L(m,0)1. Thenhm+1 := h1 ⊗ 1 + 1 ⊗ hm, em+1 := e1 ⊗ 1 + 1 ⊗ em andfm+1 :=
f 1 ⊗ 1 + 1 ⊗ f m generate a sub-VOA isomorphic toL(m + 1,0) in L(1,0)⊗ L(m,0)
with the Virasoro vectorΩm+1 made fromhm+1, em+1, andf m+1 by (2.4). It is shown in
[3] and [15] thatωm :=Ω1⊗1+1⊗Ωm−Ωm+1 also gives a Virasoro vector with centr
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chargecm = 1−6/(m+2)(m+3). Furthermore,Ωm+1 andωm are mutually commutativ
andωm generates a simple Virasoro VOAL(cm,0). Hence,L(1,0)⊗ L(m,0) contains a
sub-VOA isomorphic toL(cm,0)⊗L(m+ 1,0). Since bothL(cm,0) andL(m+ 1,0) are
rational, everyL(1,0)⊗L(m,0)-module can be decomposed into irreducibleL(cm,0)⊗
L(m+ 1,0)-submodules. The following decomposition is obtained in [11]:

L(1, ε)⊗L(m,n)=
⊕

0�s�m+1
s≡n+εmod2

L
(
cm,h

(m)
n+1,s+1

)⊗L(m+ 1, s), (2.6)

whereε = 0,1 and 0� n�m. Note thath(m)r,s = h(m)m+2−r,m+3−s . This is the famous GKO
construction of the unitary Virasoro VOAs.

2.3. Lattice construction ofL(m,0)

Let A1 = Zα with 〈α,α〉 = 2 be the root lattice of typeA1 andVA1 the lattice VOA
associated withA1. Let

A∗
1 =

{
x ∈ Q⊗Z A1 | 〈x,α〉 ∈ Z

}
be the dual lattice ofA1. ThenA∗

1 =A1 ∪ (1
2α +A1). It is well known thatVA1 � L(1,0)

and V 1
2α+A1

� L(1,1) (cf. [9,10], etc.). LetAm1 = Zα1 ⊕ Zα2 ⊕ · · · ⊕ Zαm be the

orthogonal sum ofm copies ofA1. Then we have an isomorphismVAm1 � (VA1)
⊗m �

L(1,0)⊗m. LetHm := α1
(−1)1 + · · · + αm(−1)1, Em := eα1 + · · · + eαm andFm := e−α1 +

· · ·+ e−αm . Then it is shown in [3] thatHm, Em, andFm generate a sub-VOA isomorph
to L(m,0) in VAm1 .

2.4. Vertex operator algebraL(4
5,0)⊕L(4

5,3)

Here we review the simple VOAL(4
5,0)⊕L(4

5,3). It is aZ2-simple current extensio
of the unitary Virasoro VOAL(4

5,0) and is deeply studied in [14,23]. By the fusion ru
(2.3), there exists a canonical involutionσ onL(4

5,0)⊕L(4
5,3) which acts as identity on

L(4
5,0) and acts as a scalar−1 onL(4

5,3). We also note thatσ is the only non-trivial
automorphism onL(4

5,0) ⊕ L(4
5,3). For anyL(4

5,0) ⊕ L(4
5,3)-module(M,YM(·, z)),

we can consider itsσ -conjugate module(Mσ ,YM(·, z)) which is defined as follows. As
vector space, we putMσ �M and the action ofa ∈ L(4

5,0)⊕L(4
5,3) is given by

YσM(a, z) := YM(σa, z).

We will denote theσ -conjugate ofM simply byMσ .

Theorem 2.1 [14]. A VOAL(4
5,0)⊕ L(4

5,3) is rational and every irreducible module
isomorphic to one of the following:
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W(0) := L( 4
5,0

)⊕L( 4
5,3

)
, W

( 2
3

)± := L(4
5,

2
3

)±
,

W
( 2

5

) := L( 4
5,

2
5

)⊕L( 4
5,

7
5

)
, W

( 1
15

)± := L( 4
5,

1
15

)±
,

whereW(h)− is the σ -conjugate module ofW(h)+. The dual modules are as follow:
(W(h)±)∗ �W(h)∓ if h= 2

3 or 1
15 andW(h)∗ �W(h) for the others.

Remark 2.2. We may exchange the sign± since there is no canonical way to determ
the type+ and− for the modulesW(h)+ andW(h)−. However, if we determine a sign o
one module, then the following fusion rules automatically determine all the signs.

The fusion algebra forW(0) has a naturalZ3-symmetry. For convenience, we use t
following Z3-graded names.

A0 :=W(0), A1 :=W( 2
3

)+
, A2 :=W( 2

3

)−
,

B0 :=W( 2
5

)
, B1 :=W( 1

15

)+
, B2 :=W( 1

15

)−
.

Theorem 2.3 [23]. The fusion rules for irreducibleW(0)-modules are given as

Ai ×Aj =Ai+j , Ai ×Bj = Bi+j , Bi ×Bj =Ai+j +Bi+j ,

wherei, j ∈ Z3. Therefore, the fusion algebra forW(0) has a naturalZ3-symmetry.

2.5. Vertex operator algebraL(6
7,0)⊕L(6

7,5)

In this subsection we give some facts about the VOAL(6
7,0) ⊕ L(6

7,5). This is a
Z2-simple current extension of the unitary Virasoro VOAL(6

7,0) and is studied in [18]
Also, all statements in this subsection are included in [17]. So we give a slight expla
here.

Theorem 2.4 [17,18]. There exists a unique structure of a simple VOA onL(6
7,0) ⊕

L(6
7,5).

Proof. It follows from the fusion rules (2.3) that if it has a structure of a VOA then it m
be unique. So we should show the existence of a structure. This will be given later.✷

As in the case ofL(4
5,0)⊕L(4

5,3), a linear mapσ which acts as a scalar 1 onL(6
7,0)

and acts as−1 onL(6
7,5) defines an automorphism of a VOAL(6

7,0)⊕L(6
7,5). We also

note thatσ is the only non-trivial automorphism onL(6
7,0)⊕L(6

7,5).

Theorem 2.5 [17,18].A VOAL(6
7,0)⊕L(6

7,5) is rational and all its irreducible module
are the following:
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N(0) := L( 6
7,0

)⊕L( 6
7,5

)
, N

( 1
7

) := L(6
7,

1
7

)⊕L(6
7,

22
7

)
,

N
(5

7

) := L( 6
7,

5
7

)⊕L( 6
7,

12
7

)
, N

( 4
3

)± := L( 6
7,

4
3

)±
,

N
( 1

21

)± := L( 6
7,

1
21

)±
, N

( 10
21

)± := L(6
7,

10
21

)±
,

whereN(h)− is theσ -conjugate module ofN(h)+. Also, the dual modules are as follow:
(N(h)±)∗ �N(h)∓ if h= 4

3, 1
21 or 10

21 andN(h)∗ �N(h) for the others.

The fusion algebra forN(0) is also determined in [17,18]. To state the fusion rules,
assignZ3-graded names to irreducible modules (cf. [18]). Define

C0 :=N(0), C1 :=N( 4
3

)+
, C2 :=N( 4

3

)−
,

D0 :=N( 1
7

)
, D1 :=N( 10

21

)+
, D2 :=N( 10

21

)−
,

E0 :=N( 5
7

)
, E1 :=N( 1

21

)+
, E2 :=N( 1

21

)−
.

Theorem 2.6 [17,18].The fusion rules for irreducibleN(0)-modules are given as

Ci ×Cj = Ci+j , Di ×Dj = Ci+j +Ei+j ,
Ci ×Dj = Di+j , Di ×Ej =Di+j +Ei+j ,
Ci ×Ej = Ei+j , Ei ×Ej = Ci+j +Di+j +Ei+j ,

wherei, j ∈ Z3. Therefore, the fusion algebra forN(0) has a naturalZ3-symmetry.

3. Simple current extensions

In this section we consider how vertex operator algebras are extended by their
current modules (see also [4,5,16,19]). LetD be an Abelian group andV 0 a simple and
rational VOA. Assume that a set of irreducibleV 0-modules{V α | α ∈D} indexed byD is
given. One can easily verify the following lemma.

Lemma 3.1. Assume that
⊕
α∈D V α carries a structure of a VOA such that0 �= V α ·V β ⊂

V α+β , whereV α · V β = {∑a(n)b | a ∈ V α, b ∈ V β, n ∈ Z}. It is simple if and only ifV α

andV β are inequivalent irreducibleV 0-modules for distinctα andβ ∈D.

Proof. Assume thatVD is simple. Then the automorphism group ofVD contains a group
isomorphic to the dual groupD∗ of an Abelian groupD becauseVD is D-graded. It is
clear that theD∗-invariants ofVD is exactlyV 0. Therefore, by the quantum Galois theo
[5,13], eachV α is an irreducibleV 0-modules.

Conversely, if{V α | α ∈ D} is a set of inequivalent irreducibleV 0-modules such tha
VD = ⊕

α∈D V α forms aD-graded vertex operator algebra, thenVD must be simple
because of the density theorem.✷
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The lemma above leads us the following definition.

Definition 3.2. A D-graded extensionVD of V 0 is a simple VOA with the shapeVD =⊕
α∈D V α whose vacuum element and Virasoro element are given by those ofV 0 and

vertex operations inVD satisfiesY (uα, z)vβ ∈ V α+β((z)) for anyuα ∈ V α andvβ ∈ V β .

It is natural for us to ask how many structures can sit inVD .

Lemma 3.3 [6, Proposition 5.3].Suppose that the space ofV 0-intertwining operators
of typeV α × V β → V α+β is one-dimensional. Then the VOA structure of aD-graded
extensionVD of V 0 overC is unique.

By the lemma above, we adopt the following definitions.

Definition 3.4. An irreducibleV 0-moduleX is called asimple currentV 0-moduleif it
satisfies that for every irreducibleV 0-moduleW , the fusion product (or the tensor produ
X×W is also irreducible.

Definition 3.5. A D-graded extensionVD =⊕
α∈D V α of V 0 is called aD-gradedsimple

current extensionif all V α, α ∈D, are simple currentV 0-modules.

Clearly, ifVD is aD-graded simple current extension, then it satisfies the assumpt
Lemma 3.3. LetE be any subgroup ofD andD =⋃|D|/|E|

i=1 (ti +E) a coset decompositio

of D with respect toE. Set V ti+E := ⊕
β∈E V t

i+β . The definition ofV ti+E does
not depend on the choice of representatives{ti}. It is clear from the definition tha
VE :=⊕

α∈E V α is an E-graded extension ofV 0 and VD/E := ⊕|D|/|E|
i=1 V ti+E is a

D/E-graded extension ofVE . Furthermore, ifVD is aD-graded simple current extensio
thenVE (respectivelyVD/E) is also anE-graded and (respectivelyD/E-graded) simple
current extension ofV 0 (respectivelyVE); the proof will be given in Lemma 3.10. Se
Remark 3.11.

Let M be a VD-module. Since we have assumed thatV 0 is rational, there is an
irreducibleV 0-submoduleW ofM.

Lemma 3.6. Let VD be a D-graded extension ofV 0 and let M be an admissible
VD-module. For an irreducibleV 0-submoduleW of M, V α ·W := {∑a(n)w | a ∈ V α ,
w ∈W , n ∈ Z} are also non-trivial irreducibleV 0-submodules ofM for all α ∈D.

Proof. Recall that the associativity and the commutativity of vertex operators. Letx, y be
any element in a VOA andv be any element in a module. Then there existN1,N2 ∈ N such
that

(z1 − z2)N1Y (x, z1)Y (y, z2)v = (z1 − z2)N1Y (y, z2)Y (x, z1)v, (3.1)

(z0 + z2)N2Y (x, z0 + z2)Y (y, z2)v = (z2 + z0)N2Y
(
Y (x, z0)y, z2

)
v. (3.2)
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The first equality is called the commutativity and the second is called the associativ
vertex operators. An integerN1 depends onx andy, whereasN2 does not only onx andy
but alsov. Using the associativity (3.2), we can show thatV α · (V β ·W)⊂ (V α ·V β) ·W =
V α+β . In particular, allV α ·W,α ∈D, areV 0-submodules. We show thatV α ·W is not
zero and then we prove that it is irreducible. IfV α ·W = 0, then by the iterate formula

(a(m)b)(n) =
∞∑
i=0

(−1)i
(
m

i

){
a(m−i)b(n+i) − (−1)mb(m+n−i)a(i)

}

we obtainV nα ·W = 0 for n= 1,2, . . . . ButD is a finite Abelian, we arrive atV 0 ·W = 0,
a contradiction. Therefore,V α · W �= 0 for all α ∈ D. Next, assume that there exists
proper non-trivialV 0-submoduleX in V α ·W . Then we haveV−α ·X ⊂ V −α · (V α ·W)⊂
(V −α · V α) ·W = V 0 ·W =W and hence we getV−α ·X =W becauseW is irreducible.
Then we obtainV α ·W = V α · (V−α ·X)⊂ (V α ·V −α) ·X = V 0 ·X =X, a contradiction
Therefore,V α ·W is a non-trivial and irreducibleV 0-submodule ofM. ✷

LetM andW be as in the lemma above and assume thatM is irreducible underVD .
ThenM = VD · W = ∑

α∈D V α · W . SetDW := {α ∈ D | V α · W � W }. Since both
V α · (V β ·W) andV α+β ·W are irreducibleV 0-modules by the previous lemma, it follow
from the associativity thatDW is a subgroup ofD. LetD =⋃|D/DW |

i=1 (αi +DW) be a cose
decomposition withα1 = 0. We note thatV α ·W � V β ·W if and only if α ∈ β +DW .
SetMαi+DW := ∑

β∈DW (V
αi+β ·W). ThenMαi+DW is a direct sum of some copies

V α
i ·W ’s as aV 0-module andM decomposes into a direct sum of|D/DW |-isotypical

components

M =
|D/DW |⊕
i=1

Mαi+DW

as aV 0-module. We note that eachMαi+DW is aVDW -module andM is aD/DW -graded

VDW -module, that is,V α
i+DW ·Mαj+DW =Mαi+αj+DW . Therefore, by the irreducibility

ofM, allMαi+DW are irreducibleVDW -submodules.

Definition 3.7. A VD-moduleM is said to beD-stableif DW = 0 for some irreducible
V 0-submoduleW ofM.

It is obvious that the definition of theD-stability is independent of the choice of a
irreducibleV 0-moduleW .

Proposition 3.8. LetVD be aD-graded simple current extension ofV 0. Then the structure
of every irreducibleD-stableVD-module is unique overC. In other words, theV 0-module
structure completely determines theVD-module structure of all irreducibleD-stable
VD-modules.
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Proof. LetM be aD-stable irreducibleVD-module and letW be an irreducibleV 0-sub-
module ofM. By definition, we haveM =⊕

α∈D(V α ·W) and allV α ·W , α ∈D, are non-
trivial inequivalent irreducibleV 0-submodules. SetWα := V α ·W for α ∈ D. We show
that there exists a uniqueVD-module structure on

⊕
α∈DWα . Suppose that there are tw

VD-modulesM = (⊕α∈DWα,Y 1(·, z)) andM̃ = (⊕α∈D W̃α,Y 2(·, z)) such thatWα �
W̃α asV 0-modules for allα ∈D. By assumption, there existV 0-isomorphismψα :Wα →
W̃α such thatY 2(a, z)ψα = ψαY 1(a, z) for all a ∈ V 0. Then bothY 1(·, z)|V α⊗Wβ and
ψ−1
α+βY 2(·, z)ψβ |V α⊗Wβ areV 0-intertwining operators of typeV α ×Wβ → Wα+β and

hence there exist non-zero scalarsc(α,β) ∈ C such thatY 2(a, z)ψβ = c(α,β)ψα+βY 1(a, z)

for all a ∈ V α . Then, by the associativity (3.2) we obtain

c(α + β,γ )= c(α,β + γ )c(β, γ ) (3.3)

for α,β, γ ∈D. Defineψ̃ :M→ M̃ by ψ̃|Wα = c(α,0)ψα . Then, fora ∈ V α , we have

Y 2(a, z)ψ̃|Wβ = c(β,0)Y 2(a, z)ψβ

= c(β,0)c(α,β)ψα,βY 1(a, z)

= c(α + β,0)ψα,βY 1(a, z) by (3.3)

= ψ̃ |Wα+β Y 1(a, z).

Therefore,ψ̃ defines aVD-isomorphism betweenM andM̃ . This completes the proof.✷
Remark 3.9. In the case thatD is a cyclic group generated by a generatorσ , the previous
assertion claims that the structure of aσ -stableVD-module is unique overC.

Next, we consider the fusion rules for simple current extensions. The following ass
is a direct consequence of the associativity (3.2) for intertwining operators.

Lemma 3.10 [3]. Let VD be aD-graded extension and letX, W and T be irreducible
VD-modules. LetX0 andW0 be irreducibleV 0-submodules ofX andW , respectively.
Denote by

(
T
X W

)
VD

the space ofVD-intertwining operators of typeX×W → T . Then by
a restriction we obtain the following injection:

π :

(
T

X W

)
VD

� I (·, z) �→ I (·, z)|X0⊗W0 ∈
(

T

X0 W0

)
V 0
.

Remark 3.11. By the lemma above, we can prove that for any subgroupE of D, VD/E =⊕|D/E|
i=1 V t

i+E is aD/E-graded simple current extension ofVE if VD is aD-graded simple

current extension ofV 0, whereD = ⋃|D/E|
i=1 (ti +E) denotes a coset decomposition ofD

with respect toE.
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We prove that the injectionπ becomes an isomorphism in the case whenV 0 contains
a tensor product VOAL(cm1,0) ⊗ · · · ⊗ L(cmk ,0), VD is a D-graded simple curren
extensionV 0 and all ofX,W andT areD-stable.

Lemma 3.12 [17, Lemma 5.3].Assume thatV 0 contains a sub-VOA isomorphic to
tensor productL(cm1,0) ⊗ · · · ⊗ L(cmk ,0) of unitary Virasoro VOAs sharing the sam
Virasoro vector. Assume thatVD is a D-graded simple current extension ofV 0. Let X,
W and T beD-stable irreducibleVD-modules and letX0, W0 and T 0 be irreducible
V 0-submodules ofX, W andT , respectively. For anyV 0-intertwining operatorI (·, z) of
typeX0 ×W0 → T 0, there exists aVD-intertwining operatorĨ (·, z) of typeX×W → T

such thatĨ (·, z)|X0⊗W0 = I (·, z).

Proof. The idea of the proof is almost the same as that of [17, Lemma 5.7]. By assum
we haveD-graded decompositionsX = ⊕

α∈D Xα , W = ⊕
α∈DWα andT = ⊕

α∈D T α
such that allXα ,Wα andT α , α ∈D, are irreducibleV 0-submodules. By [12, Theorems 3
and 3.5] there existV 0-intertwining operatorsIα,0(·, z) andI0,α(·, z) of typeXα ×W0 →
T α andX0 ×Wα → T α , respectively such that

ι−1
20

〈
t∗, Iα,0

(
Y

(
uα, z0

)
x0, z2

)
w0〉∣∣

z0=z1−z2= ι
−1
12

〈
t∗, Y

(
uα, z1

)
I0,0(x0, z2

)
w0〉 (3.4)

and

ι−1
12

〈
t∗, Y

(
uα, z1

)
I0,0(x0, z2

)
w0〉= ι−1

21

〈
t∗, I0,α(x0, z2

)
Y

(
uα, z1

)
w0〉 (3.5)

because allV α are simple currentV 0-modules, whereuα ∈ V α , x0 ∈ X0, w0 ∈ W0,
t∗ ∈ T ∗, and ι−1

12 f (z1, z2) denotes the formal power expansion of an analytic func
f (z1, z2) in the domain|z1|> |z2| (cf. [8]). Then, again by [12, Theorems 3.2 and 3.5],
can findV 0-intertwining operatorsIα,β(·, z) of typeXα ×Wβ → T α+β such that

ι−1
12

〈
t∗, Y

(
uα, z1

)
I0,β(x0, z2

)
wβ

〉= ι−1
20

〈
t∗, Iα,β

(
Y

(
uα, z0

)
x0, z2

)
wβ

〉∣∣
z0=z1−z2. (3.6)

We claim thatĨ (xα, z)wβ := Iα,β(xα, z)wβ defines aVD-intertwining operator of type
X×W → T . We only need to show the associativity and the commutativity ofĨ (·, z). Let
vβ ∈ V β andwγ ∈Wγ . Then we have

ι−1
120

〈
t∗, Y

(
uα, z1

)
Iβ,γ

(
Y

(
vβ, z0

)
x0, z2

)
wγ

〉∣∣
z0=z3−z2

= ι−1
132

〈
t∗, Y

(
uα, z1

)
Y

(
vβ, z3

)
I0,γ (x0, z2

)
wγ

〉
= ι−1

342

〈
t∗, Y

(
Y

(
uα, z4

)
vβ, z3

)
I0,γ (x0, z2

)
wγ

〉∣∣
z4=z1−z3

= ι−1
240

〈
t∗, Iα+β,γ

(
Y

(
Y

(
uα, z4

)
vβ, z0

)
x0, z2

)
wγ

〉∣∣
z4=z1−z3,z0=z3−z2

= ι−1 〈
t∗, Iα+β,γ

(
Y

(
uα, z6

)
Y

(
vβ, z0

)
x0, z2

)
wγ

〉∣∣ ,
260 z6=z1−z2,z0=z3−z2
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and hence we obtain the following associativity:〈
t∗, Y

(
uα, z1

)
Iβ,γ

(
xβ, z2

)
wγ

〉= 〈
t∗, Iα+β,γ

(
Y

(
uα, z0

)
xβ, z2

)
wγ

〉∣∣
z0=z1−z2. (3.7)

Next we prove the commutativity ofIα,β(·, z). We have

ι−1
201

〈
t∗, Iβ,α

(
Y

(
vβ, z0

)
x0, z2

)
Y

(
uα, z1

)
w0〉∣∣

z0=z3−z2
= ι−1

321

〈
t∗, Y

(
vβ, z3

)
I0,α(x0, z2

)
Y

(
uα, z1

)
w0〉

= ι−1
312

〈
t∗, Y

(
vβ, z3

)
Y

(
uα, z1

)
I0,0(x0, z2

)
w0〉

= ι−1
132

〈
t∗, Y

(
uα, z1

)
Y

(
vβ, z3

)
I0,0(x0, z2

)
w0〉

= ι−1
342

〈
t∗, Y

(
Y

(
uα, z4

)
vβ, z3

)
I0,0(x0, z2

)
w0〉∣∣

z4=z1−z3
= ι−1

204

〈
t∗, Iα+β,0

(
Y

(
Y

(
uα, z4

)
vβ, z0

)
x0, z2

)
w0〉∣∣

z0=z3−z2,z4=z1−z3
= ι−1

250

〈
t∗, Iα+β,0

(
Y

(
uα, z5

)
Y

(
vβ, z0

)
x0, z2

)
w0〉∣∣

z0=z3−z2,z5=z1−z2
= ι120

〈
t∗, Y

(
uα, z1

)
Iβ,0

(
Y

(
vβ, z0

)
x0, z2

)
w0〉∣∣

z0=z3−z2.

Thus, we get the following:〈
t∗, Y

(
uα, z1

)
Iβ,0

(
xβ, z2

)
w0〉= 〈

t∗, Iβ,α
(
xβ, z2

)
Y

(
uα, z1

)
w0〉. (3.8)

Then

ι−1
123

〈
t∗, Y

(
uα, z1

)
Iβ,γ

(
xβ, z2

)
Y

(
vγ , z3

)
w0〉

= ι−1
132

〈
t∗, Y

(
uα, z1

)
Y

(
vγ , z3

)
Iβ,0

(
xβ, z2

)
w0〉

= ι−1
302

〈
t∗, Y

(
Y

(
uα, z0

)
vγ , z3

)
Iβ,0

(
xβ, z2

)
w0〉∣∣

z0=z1−z3
= ι−1

230

〈
t∗, Iβ,α+γ

(
xβ, z2

)
Y

(
Y

(
uα, z0

)
vγ , z3

)
w0〉∣∣

z0=z1−z3
= ι−1

213

〈
t∗, Iβ,α+γ

(
xβ, z2

)
Y

(
uα, z1

)
Y

(
vβ, z3

)
w0〉

and hence we arrive at the following commutativity:〈
t∗, Y

(
uα, z1

)
Iβ,γ

(
xβ, z2

)
wγ

〉= 〈
t∗, Iβ,α+γ

(
xβ, z2

)
Y

(
uα, z1

)
wγ

〉
. (3.9)

This completes the proof of Lemma 3.12.✷
In the rest of this section, we study a relation between automorphisms ofV 0 and

its extensions. Letσ be an automorphism ofV 0 and denote by(V α)σ the σ -conjugate
V 0-module ofV α for α ∈ D. If there exists aD-graded extensionVD = ⊕

α∈D V α
of V 0, then we can construct anotherD-graded extensionV ′

D = ⊕
α∈D(V α)σ in the

following way. By definition, there exist linear isomorphismsϕα :V α → (V α)σ such that
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last,
Y(V α)σ (a, z)ϕα = ϕαYV α(σa, z) for all a ∈ V 0. Fora ∈ V α andb ∈ V β , define the vertex
operation inV ′

D =⊕
α∈D(V α)σ by

YV ′
D
(ϕαa, z)ϕβb := ϕα+βYVD(a, z)b.

Since YV ′
D
(·, z)|(V α)σ×(V β)σ is a V 0-intertwining operator of type(V α)σ × (V β)σ →

(V α+β)σ , (V ′
D,YV ′

D
(·, z)) also forms aD-graded extension ofV 0. Moreover, ifVD is a

D-graded simple current extension ofV 0, then so isV ′
D . We call V ′

D the σ -conjugate
of VD. It is clear from its construction thatVD andV ′

D are isomorphic as VOAs even
{V α | α ∈D} and{(V α)σ | α ∈D} are distinct sets of inequivalentV 0-modules. Therefore
we introduce the following definition.

Definition 3.13. Two D-graded simple current extensionsVD = ⊕
α∈D V α and ṼD =⊕

α∈D Ṽ α are said to beequivalentif there exists a VOA-isomorphismΦ :VD → ṼD such
thatΦ(V α)= Ṽ α for all α ∈D.

The following is clear from its definition.

Lemma 3.14. Let σ be an automorphism ofV 0. LetVD be aD-graded extension ofV 0

and letV ′
D be theσ -conjugate ofVD. Then theVD and V ′

D form equivalentD-graded
extensions ofV 0.

The following assertion will be needed later.

Lemma 3.15. Suppose thatVD is a D-graded extension ofV 0. For an automorphism
σ ∈ Aut(V 0), assume that there is an automorphismΨ onVD such thatΨ (V 0)= V 0 and
Ψ |V 0 = σ . Then as sets of inequivalent irreducibleV 0-modules,{Ψ−1V α | α ∈ D} and
{(V α)σ | α ∈D} are the same.

Proof. DenoteYVD(·, z)|V 0⊗V α by Yα(·, z). By definition, we can take linear isomo
phismsϕα :V α → (V α)σ such thatY(V α)σ (a, z)ϕα = ϕαYα(σa, z) for all a ∈ V 0. Define
Ψα :Ψ−1V α → (V α)σ byΨα = ϕα ◦Ψ |Ψ−1V α . Then fora ∈ V 0 we have

Y(V α)σ (a, z)Ψα = Y(V α)σ (a, z)ϕαΨ = ϕαYα(σa, z)Ψ = ϕαYα(Ψ a, z)Ψ
= ϕαΨYVD(a, z)|Ψ−1V α = ΨαYVD(a, z)|Ψ−1V α .

Therefore,Ψα is aV 0-isomorphisms. Hence, we get the assertion.✷

4. Vertex operator algebra with two Miyamoto involutions generating S3

In this section we study a VOA on whichS3 acts. First, we construct it from a lattic
VOA. More precisely, we will find it in an extension of an affine VOA. Then we show
there exists a unique VOA structure on it. All irreducible modules are classified. At
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we prove that they are generated by two conformal vectors with central charge 1/2 and the
full automorphism group is isomorphic toS3. Namely, it is the VOA of involution typeA2
in the sense of Miyamoto [24].

4.1. Construction

LetA5
1 = Zα1⊕Zα2⊕· · ·⊕Zα5 with 〈αi ,αj 〉 = 2δi,j and setL :=A5

1∪ (γ +A5
1) with

γ := 1
2α

1+ 1
2α

2+ 1
2α

3+ 1
2α

4. ThenL is an even lattice so that we can construct a VOAVL
associated toL. We have an isomorphismVL = VA5

1
⊕Vγ+A5

1
� {L(1,0)⊗4⊕L(1,1)⊗4}⊗

L(1,0). By (2.6) and the fusion rules (2.3) and (2.5), we can show the following.

Lemma 4.1. We have the following inclusions

L(1,0)⊗3 ⊃ L
( 1

2,0
)⊗L( 7

10,0
)⊗L(3,0),

L(1,1)⊗3 ⊃ L
( 1

2,0
)⊗L( 7

10,0
)⊗L(3,3).

Therefore,VL contains a sub-VOA isomorphic to

L(3,0)⊗L(1,0)⊗L(1,0)⊕L(3,3)⊗L(1,1)⊗L(1,0).

Lemma 4.2. We have the following decompositions:

L(3,0)⊗L(1,0)⊗L(1,0)

� {
L

(4
5,0

)⊗L(6
7,0

)⊕L(4
5,3

)⊗L( 6
7,5

)⊕L( 4
5,

2
3

)⊗L( 6
7,

4
3

)}⊗L(5,0)

⊕ {
L

(4
5,0

)⊗L( 6
7,

5
7

)⊕L( 4
5,3

)⊗L( 6
7,

12
7

)⊕L(4
5,

2
3

)⊗L( 6
7,

1
21

)}⊗L(5,2)

⊕ {
L

(4
5,0

)⊗L( 6
7,

22
7

)⊕L(4
5,3

)⊗L(6
7,

1
7

)⊕L(4
5,

2
3

)⊗L( 6
7,

10
21

)}⊗L(5,4),

L(3,3)⊗L(1,1)⊗L(1,0)

� {
L

(4
5,0

)⊗L(6
7,5

)⊕L(4
5,3

)⊗L( 6
7,0

)⊕L( 4
5,

2
3

)⊗L( 6
7,

4
3

)}⊗L(5,0)

⊕ {
L

(4
5,0

)⊗L( 6
7,

12
7

)⊕L(4
5,3

)⊗L(6
7,

5
7

)⊕L(4
5,

2
3

)⊗L( 6
7,

1
21

)}⊗L(5,2)

⊕ {
L

(4
5,0

)⊗L( 6
7,

1
7

)⊕L( 4
5,3

)⊗L( 6
7,

22
7

)⊕L(4
5,

2
3

)⊗L( 6
7,

10
21

)}⊗L(5,4).

Hence,L(3,0) ⊗ L(1,0) ⊗ L(1,0) ⊕ L(3,3) ⊗ L(1,1) ⊗ L(1,0) (and VL) contains a
sub-VOAU isomorphic to



L(4

5,0)⊗L(6
7,0)⊕

L(4
5,3)⊗L(6

7,5)⊕
L(4

5,
2
3)⊗L(6

7,
4
3)


⊕



L(4

5,0)⊗L(6
7,5)⊕

L(4
5,3)⊗L(6

7,0)⊕
L(4

5,
2
3)⊗L(6

7,
4
3)


 . (4.1)
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Remark 4.3. Note that the sub-VOAU has exactly the same form as stated in Theo
5.6(4) of [24]. In the following context, we will show that our VOAU is actually the same
as VA(e, f ) in [24].

Remark 4.4. By the lemma above, we note thatL(6
7,0) ⊕ L(6

7,5) is a sub-VOA ofU ,
which completes the proof of Theorem 2.4.

We can also defineU in the following way. Fori = 1,2, . . . ,5, set:

Hj := α1
(−1)1+ · · · + αj(−1)1,

Ej := eα1 + · · · + eαj ,
F j := e−α1 + · · · + e−αj ,
Ωj := 1

2(j + 2)

(1
2H

j

(−1)H
j +Ej(−1)F

j + Fj(−1)E
j
)
,

ωi :=Ωi + 1
4

(
αi+1
(−1)

)21−Ωi+1.

ThenHj,Ej and Fj generate a simple affine sub-VOAL(j,0) and ωi , 1 � i � 4,
generate simple Virasoro sub-VOAsL(ci,0) in VL. Furthermore, we have an orthogon
decomposition of the Virasoro vectorωVL of VL into a sum of mutually commutativ
Virasoro vectors as

ωVL = ω1 +ω2 +ω3 +ω4 +Ω5.

Then we may defineU to be as follows:

U = {
v ∈ VL | ω1

(1)v = ω2
(1)v =Ω5

(1)v = 0
}
.

Set

e := 1
16

((
α4 − α5)

(−1)

)21− 1
4

(
eα

4−α5 + e−α4+α5)
,

v0 := 5
18ω

3 + 7
9ω

4 − 16
9 e,

v1 := (
9F 4 − 8F 5)

(−1)

(
4F 3 − 3F 4)

(0)e
1
2 (α

1+α2+α3+α4)

− 1
2

(
9H 4 − 8H 5)

(−1)F
4
(0)

(
4F 3 − 3F 4)

(0)e
1
2 (α

1+α2+α3+α4)

− 1
2

(
9E4 − 8E5)

(−1)

(
F 4
(0)

)2(4F 3 − 3F 4)
(0)e

1
2 (α

1+α2+α3+α4). (4.2)

Then we can show that bothe andvi are contained inU2 ande(1)e = 2e, e(3)e = 1
41,

ω3
(1)vi = 2

3vi , andω4
(1)vi = 4

3vi for i = 0,1. Therefore,e generates a sub-VOA isomorph

to L(1
2,0) in U andvi , i = 0,1, are highest weight vectors for〈ω3〉 ⊗ 〈ω4〉 � L(4

5,0)⊗
L(6,0) with highest weight(2, 4). Since the weight 2 subspace ofU is 4-dimensional, we
7 3 3
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ate
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2.6,
note thatω3,ω4, v0, andv1 spanU2. In the next subsection we will show that they gener
U as a VOA.

4.2. Structures

By Lemma 4.2, we know that there exists a structure of a VOA in (4.1). Here
will prove that there exists a unique VOA structure on it. By (4.1),U contains a tenso
product of two extensions of the unitary Virasoro VOAsW(0) = L(4

5,0)⊕ L(4
5,3) and

N(0)= L(6
7,0)⊕L(6

7,5) (see Sections 2.4–5). Since bothW(0) andN(0) are rational,U
is completely reducible as aW(0)⊗N(0)-module. Therefore,U as aW(0)⊗N(0)-module
is isomorphic to

U �W(0)⊗N(0)⊕W(2
3

)ε1 ⊗N( 4
3

)ξ1 ⊕W( 2
3

)ε2 ⊗N( 4
3

)ξ2,
whereεi, ξj =±. Recall that bothW(0) andN(0) have the canonical involutionsσ1 and
σ2, respectively. Then they can be lifted to involutions ofW(0)⊗N(0) and we still denote
them byσ1 andσ2, respectively. By our construction,U has aZ2-gradingU =U+ ⊕U−
with

U+ ⊂ L(3,0)⊗L(1,0)⊗L(1,0)⊂ VA5
1

and

U− ⊂ L(3,3)⊗L(1,1)⊗L(1,0)⊂ Vγ+A5
1
. (4.3)

We note that the decomposition above defines a natural extension of an involutionσ1σ2
on W(0) ⊗ N(0) to that onU , which we will also denote byσ1σ2. Therefore, by
Lemma 3.15, we have(W(2

3)
ε1 ⊗ N(4

3)
ξ1)σ1σ2 =W(2

3)
ε2 ⊗N(4

3)
ξ2 and henceε2 = −ε1

andξ2 =−ξ1. Since we may rename the signs of the irreducibleN(0)-modules of±-type
(cf. Remark 2.2), we may assume thatε1 = ξ1.

Theorem 4.5. A VOAU contains a sub-VOAW(0)⊗N(0). As aW(0)⊗N(0)-module,U
is isomorphic to

W(0)⊗N(0)⊕W( 2
3

)+ ⊗N( 4
3

)+ ⊕W( 2
3

)− ⊗N( 4
3

)− (4.4)

after fixing suitable choice of±-type ofN(4
3)

±. Therefore,U is a simple VOA and
generated by its weight2 subspace as a VOA.

Proof. The decomposition is already shown. SinceU is a sub-VOA ofVL, we have
Y (x, z)y �= 0 for all x, y ∈ U . Then by fusion rules forW(0) ⊗ N(0)-modules,U is a
Z3-simple current extension ofW(0)⊗N(0). Therefore,U is a simple VOA. So we shoul
show thatU2 generatesU . SinceU2 contains the Virasoro vectorsω3 andω4 and highest
weight vectors ofW(2

3)
± ⊗ N(4

3)
±, U2 generates whole ofW(2

3)
± ⊗N(4

3)
±. SinceVL

is simple, for any non-zero vectorsu ∈ W(2
3)

+ ⊗ N(4
3)

+ andv ∈W(2
3)

− ⊗ N(4
3)

− we
haveY (u, z)v �= 0 in U (cf. [3]). Therefore, by the fusion rules in Theorems 2.3 and
W(2)± ⊗N(4)± generateW(0)⊗N(0) in U . Hence,U2 generates whole ofU . ✷
3 3
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By Lemma 3.14, we note that there exists the followingZ3-simple current extension o
W(0)⊗N(0).

U ′ =W(0)⊗N(0)⊕W( 2
3

)+ ⊗N( 4
3

)− ⊕W( 2
3

)− ⊗N( 4
3

)+
. (4.5)

Since U and U ′ are σ1-conjugate extensions of each others, they are equiv
Z3-simple current extensions ofW(0)⊗N(0). Thus, we get the following.

Theorem 4.6. The followingZ3-simple current extensions ofW(0)⊗N(0) are equivalent:

W(0)⊗N(0)⊕W( 2
3

)+ ⊗N( 4
3

)± ⊕W( 2
3

)− ⊗N( 4
3

)∓
.

Hence, there is a uniqueZ3-graded VOA structure in(4.1).

4.3. Modules

Let U be the Z3-graded VOA as in (4.1). In this subsection we will classify
irreducibleU -modules. SetU = U0⊕U1⊕U2 with U0 =W(0)⊗N(0),U1 =W(2

3)
+⊗

N(4
3)

+ andU2 =W(2
3)

− ⊗N(4
3)

−.

Lemma 4.7. Every irreducibleU -modules isZ3-stable.

Proof. Let M be an irreducibleU -module. Take an irreducibleU0-submoduleP of M.
By Lemma 3.6, bothU1 · P andU2 · P are non-zero irreducibleU0-submodules ofM.
It follows from the fusion rules forU0 =W(0)⊗N(0)-modules thatUi · P �� Uj · P as
U0-modules ifi �≡ jmod3. Therefore,M = P ⊕ (U1 · P) ⊕ (U2 · P) and henceM has
aZ3-grading under the action ofU . This completes the proof.✷

By this lemma and Proposition 3.8, theU0-module structure of each irreducib
U -module completely determines itsU -module structure.

Lemma 4.8. LetM be an irreducibleU -module. Then, as aW(0)⊗N(0)-module,M is
isomorphic to one of the following:

W(0)⊗N(0)⊕W( 2
3

)+ ⊗N( 4
3

)+ ⊕W( 2
3

)− ⊗N( 4
3

)−
,

W(0)⊗N( 1
7

)⊕W( 2
3

)+ ⊗N( 10
21

)+ ⊕W( 2
3

)− ⊗N( 10
21

)−
,

W(0)⊗N(5
7

)⊕W( 2
3

)+ ⊗N( 1
21

)+ ⊕W( 2
3

)− ⊗N( 1
21

)−
,

W
( 2

5

)⊗N(0)⊕W( 1
15

)+ ⊗N( 4
3

)+ ⊕W( 1
15

)− ⊗N( 4
3

)−
,

W
( 2

5

)⊗N( 1
7

)⊕W( 1
15

)+ ⊗N( 10
21

)+ ⊕W( 1
15

)− ⊗N( 10
21

)−
,

W
( 2

5

)⊗N( 5
7

)⊕W( 1
15

)+ ⊗N( 1
21

)+ ⊕W( 1
15

)− ⊗N( 1
21

)−
.
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Proof. Let M be an irreducibleU -module andP 0 an irreducibleU0-submodule ofM.
ThenM = P 0 ⊕ P 1 ⊕ P 2 with P 1 = U1 × P 0 andP 2 = U2 × P 0. The vertex operator
YM(·, z) on M give U0-intertwining operators of typeUi × Pj → P i+j for i, j ∈ Z3.
The powers ofz in an intertwining operator of typeUi × Pj → P i+j are contained in
−hUi − hP i + hP i+j +Z, wherehX denotes the top weight of aU0-moduleX. Since the
powers ofz in YM(·, z) belong toZ, by considering top weights we arrive at the candida
above. ✷
Theorem 4.9. All irreducible U -modules are given by the listed in Lemma4.8. In other
words, there exist structures ofU -modules in them.

Proof. We already know that if there existU -module structures in the candidates
Lemma 4.8, then they must be unique by Proposition 3.8. So we only need to sho
they are actuallyU -modules. Recall thatU ⊗L(5,0) is a sub-VOA of a VOA

T = L(3,0)⊗L(1,0)⊗L(1,0)⊕L(3,3)⊗L(1,1)⊗L(1,0).

It is shown in [19] that

L(3,2)⊗L(1,0)⊕L(3,1)⊗L(1,1)

is an irreducibleL(3,0)⊗L(1,0) ⊕L(3,3)⊗L(1,1)-module. Hence,

L(3,2)⊗L(1,0)⊗L(1,0)⊕L(3,1)⊗L(1,1)⊗L(1,0)

is an irreducibleT -module. Then by using (2.6), we get the following decompositions

L(3,0)⊗L(1,0)⊗L(1,0)⊕L(3,3)⊗L(1,1)⊗L(1,0)

� {
W(0)⊗N(0)⊕W(2

3

)+ ⊗N( 4
3

)+ ⊕W( 2
3

)− ⊗N( 4
3

)−}⊗L(5,0)

⊕ {
W(0)⊗N( 5

7

)⊕W( 2
3

)+ ⊗N( 1
21

)+ ⊕W( 2
3

)− ⊗N( 1
21

)−}⊗L(5,2)

⊕ {
W(0)⊗N( 1

7

)⊕W( 2
3

)+ ⊗N( 10
21

)+ ⊕W( 2
3

)− ⊗N( 10
21

)−}⊗L(5,4),

L(3,2)⊗L(1,0)⊗L(1,0)⊕L(3,1)⊗L(1,1)⊗L(1,0)

� {
W

(2
5

)⊗N(0)⊕W( 1
15

)+ ⊗N( 4
3

)+ ⊕W( 1
15

)− ⊗N( 4
3

)−}⊗L(5,0)

⊕ {
W

( 2
5

)⊗N( 5
7

)⊕W( 1
15

)+ ⊗N( 1
21

)+ ⊕W( 1
15

)− ⊗N( 1
21

)−}⊗L(5,2)

⊕ {
W

( 2
5

)⊗N( 1
7

)⊕W( 1
15

)+ ⊗N( 10
21

)+ ⊕W( 1
15

)− ⊗N( 10
21

)−}⊗L(5,4).

Therefore, all candidates in Lemma 4.8 areU -modules. ✷
Theorem 4.10. U is rational.
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Proof. Let M be an admissibleU -module. Take an irreducibleU0-submoduleP . By
Lemma 3.6, bothU1 ·P andU2 ·P are non-trivial irreducibleU0-submodule ofM. Since
Ui ·P ��Uj · P if i �≡ j mod3,P + (U1 ·P)+ (U2 ·P)= P ⊕ (U1 ·P)⊕ (U2 · P) is an
irreducibleU -submodule ofM. Hence, every irreducibleU0-submodule ofM is contained
in an irreducibleU -submodule. ThusM is a completely reducibleU -module. ✷
4.4. Conformal vectors

In this subsection we study the Griess algebra ofU . Recalle, v0, v1 ∈ U2 defined by
(4.2). Set

ω := ω3 +ω4, a := 105

28 (ω− e),

b := 32

28

(−5ω3 + 7ω4 − 4e
)
, c := kv1,

where the scalark ∈ R is determined by the condition〈c, c〉 = 35/211. Then{e, a, b, c} is
a set of basis ofU2. By direct calculations one can show that the multiplications and i
products in the Griess algebra ofU are given as follows:

e(1)a = 0, e(1)b = 1

2
b, e(1)c= 1

16
c,

a(1)a = 105

27 a, a(1)b= 32 · 5 · 7
29

b, a(1)c= 31· 105

212
c,

b(1)b= 37

215e+
33

27a, b(1)c= 32 · 23

210 c, c(1)c= 35

213e+
31

25 a +
23

25 b,

〈a, a〉 = 36 · 5 · 7

218 , 〈b, b〉 = 37

216, 〈c, c〉 = 35

211.

Hence, we note that the Griess algebra of our VOAU is isomorphic to that of VA(e, f )
with 〈e, f 〉 = 13/210 in [24]. Therefore, by tracing calculations in [24] we can find
following conformal vectors with central charge 1/2 inU2.

f := 13

28
e+ a + b+ c, f ′ := 13

28
e+ a + b− c.

And by a calculation we get

e(1)f = −105

29 ω+ 9

25e+
9

25f + 7

25f
′, e(1)f

′ = −105

29 ω+ 9

25e+
7

25f + 9

25f
′,

f(1)f
′ = −105

ω+ 7
e+ 9

f + 9
f ′, 〈e, f 〉 = 〈

e, f ′〉= 〈
f,f ′〉= 13

.

29 25 25 25 210
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Using these equalities, we can show that the Griess algebraU2 is generated by two
conformal vectorse andf . SinceU2 generatesU as a VOA by Theorem 4.5,U is generated
by two conformal vectorse andf . Thus

Theorem 4.11. U is generated by two conformal vectorse andf with central charge1/2
such that〈e, f 〉 = 13/210.

Now we can classify all conformal vectors inU . First, we seek all conformal vecto
with central charge 1/2. It is shown in [22] that there exists a one-to-one correspond
between the set of conformal vectors with central chargec in U and the set of idempoten
with squared lengthc/8 inU2. So we should determine all idempotents with squared le
1/16 in U2. Let X = αω + βe + γf + δf ′ be a conformal vector with central char
1/2. Then we should solve the equations(X/2)(1)(X/2)= (X/2) and〈X,X〉 = 1/16. By
direct calculations, the solutions of(α,β, γ, δ) are(0,1,0,0), (0,0,1,0) and(0,0,0,1).
Therefore,

Theorem 4.12. There are exactly three conformal vectors with central charge1/2 in U2,
namelye, f , andf ′.

The rest of conformal vectors can be obtained in the following way. We should
all idempotents and their squared lengths inU2. Since we have a set of basis{ω,e,f,f ′}
of U2 and all multiplications and inner products are known, we can get them by d
calculations. After some computations, we reach that the possible central charges a/2,
81/70, 58/35, 4/5 and 6/7. In the following,(α,β, γ, δ) denotesαω+ βe+ γf + δf ′.

(1) Central charge 1/2: (0,1,0,0), (0,0,1,0), (0,0,0,1).
(2) Central charge 81/70: (1,−1,0,0), (1,0,−1,0), (1,0,0,−1).
(3) Central charge 58/35: (1,0,0,0).
(4) Central charge 4/5: (14/9,−32/27,−32/27,−32/27), (−7/18,14/27,32/27,

32/27), (−7/18,32/27,14/27,32/27), (−7/18,32/27,32/27,14/27).
(5) Central charge 6/7: (−5/9,32/27,32/27,32/27), (25/18,−14/27,−32/27,

−32/27), (25/18,−32/27,−14/27,−32/27), (25/18,−32/27,−32/27,−14/27).

4.5. Automorphisms

Let V be any VOA ande ∈ V a rational conformal vector with central charge 1/2.
Thene defines an involutionτe of a VOA V , which is so-called the Miyamoto involutio
(cf. [22]). By Theorem 4.12,U has three conformal vectorse, f , andf ′. Sinceeτf �= e
nor f and f τe �= f nor e, we must haveeτf = f τe = f ′. Therefore,τeτf τe = τf τe =
τeτf = τf τeτf and so(τeτf )3 = 1. It is clear that bothτe andτf are non-trivial involutions
acting onU and τe �= τf . Henceτe and τf generateS3 in Aut(U). We prove that
〈τe, τf 〉 = Aut(U).

Theorem 4.13. Aut(U)= 〈τe, τf 〉.
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Proof. Let g ∈ Aut(U). SinceU is generated bye and f , the action ofg on U is
completely determined by its actions one andf . By Theorem 4.12, the set of conform
vectors with central charge 1/2 inU is {e, f,f ′}, so that we get an injection from Aut(U)
to S3. Since〈τe, τf 〉 acts on{e, f,f ′} asS3, we obtain Aut(U)= 〈τe, τf 〉. ✷
Remark 4.14. We note that bothω3 and ω4 are S3-invariant so that the orthogon
decompositionω = ω3 +ω4 is thecharacteristicdecomposition ofω in U .

Summarizing everything, we have already shown thatU is generated by two conform
vectorse andf whose inner product is〈e, f 〉 = 13/210 and its automorphism group
generated by two involutionsτe and τf with (τeτf )3 = 1. Hence, we conclude that o
VOA U is the same as VA(e, f ) in [24] and gives a positive solution for Theorem 5.6
of [24].

Theorem 4.15. As a 〈ω3〉 ⊗ 〈ω4〉-module,U 〈τe,τf 〉 = L(4
5,0) ⊗ L(6

7,0) ⊕ L(4
5,3) ⊗

L(6
7,5). It is a rational VOA.

Proof. Since we may identifyU as VA(e, f ) in [24], we can use the results obtain
in [24]. It is shown in [24] that〈ω3〉 ⊗ 〈ω4〉 = L(4

5,0) ⊗ L(6
7,0) is a proper sub-VOA

of U 〈τe,τf 〉. SinceU has both aZ2-grading (4.3) and aZ3-grading (4.4), all irreducible
L(4

5,0) ⊗ L(6
7,0)-submodules butL(4

5,0) ⊗ L(6
7,0) andL(4

5,3) ⊗ L(6
7,5) cannot be

contained inU 〈τe,τf 〉. Hence,U 〈τe,τf 〉 must be as stated. The rationality ofU 〈τe,τf 〉 will
immediately follow from results in [17]. ✷
4.6. Fusion rules

Here we determine all fusion rules for irreducibleU -modules. We will denote the fusio
product of irreducibleV -modulesM1 andM2 byM1�V M2. SetU =U0⊕U1⊕U2 with
U0 =W(0)⊗N(0), U1 =W(2

3)
+ ⊗N(4

3)
+ andU2 =W(2

3)
− ⊗N(4

3)
−. Recall the list

of all irreducibleU -modules shown in Theorem 4.9. We note that all of them areZ3-stable
and each irreducibleU -module contains one and only one of the following irreduc
U0-modules:

W(h)⊗N(k), h= 0, 2
5, k = 0, 1

7,
5
7.

Therefore, seen asU0-modules, all irreducibleU -modules have the shapes

U�
U0

(
W(h)⊗N(k))

=W(h)⊗N(k)⊕
{
U1�

U0

(
W(h)⊗N(k))}⊕

{
U2�

U0

(
W(h)⊗N(k))}

with h = 0, 2
5 and k = 0, 1

7,
5
7. SinceU �U0 (W(h) ⊗ N(k)) denotes aU0-module in

general, we denote an irreducibleU -module of the shapeU �U0 (W(h) ⊗ N(k)) with
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h= 0, 2
5 andk = 0, 1

7,
5
7 by IndU

U0W(h)⊗N(k) to emphasize that it is aU -module. Using
this notation, the fusion products for irreducibleU -modules can be computed as follows

Theorem 4.16. All fusion rules for irreducibleU -modules are given by the followin
formula:

dimC

(
IndU

U0W(h3)⊗N(k3)

IndU
U0W(h1)⊗N(k1) IndU

U0W(h2)⊗N(k2)

)
U

= dimC

( U�
U0
(W(h3)⊗N(k3))

W(h1)⊗N(k1) W(h2)⊗N(k2)

)
U0

, (4.6)

whereh1, h2, h3 ∈ {0, 2
5} andk1, k2, k3 ∈ {0, 1

7,
5
7}.

Proof. Since all irreducibleU -modules areZ3-graded, the assertion immediately follow
from Lemmas 3.10 and 3.12.✷

5. Application to the moonshine VOA

In this section, we work over the real number fieldR. We make it a rule to denote th
complexificationC⊗RA of a vector spaceA overR by CA. Recall the construction of ou
VOA U in Section 4.1. In it, we only used a formula (2.6), which was shown by God
et al. by using a character formula in [11]. Therefore, we can constructU even if we work
overR. To avoid confusions, we denote the real form ofU by UR. We also note that th
calculations on the Griess algebra ofUR in Section 4.4 is still correct even if we wor
overR.

Definition 5.1. A VOA V overR is said to beof moonshine typeif it admits a weight space
decompositionV =⊕∞

n=0Vn with V0 = R1 andV1 = 0 and it possesses a positive defin
invariant bilinear form〈·, ·〉 such that〈1 ,1〉 = 1.

Assume that a VOAV of moonshine type contains two distinct rational conform
vectorse and f with central charge 1/2. In [24], Miyamoto studied a vertex algeb
VA(e, f ) generated bye andf in the case where their Miyamoto involutionsτe andτf
generateS3. In this subsection, we shall complete the classification of VA(e, f ) in [24] in
the case where the inner product〈e, f 〉 is 13/210.

Theorem 5.2 [24]. Under the assumption above, the inner product〈e, f 〉 is either1/28 or
13/210. When the inner product is equal to13/210, a vertex algebraVA(e, f ) generated
by e andf forms a sub-VOA inV . Denote byVA(e, f )(τe±) the eigen spaces forτe with
eigenvalues±1, respectively. The Griess algebraVA(e, f )2 is of dimension4 and we can
choose a basisVA(e, f )(τe+) = Rω3 ⊥ Rω4 ⊥ Rv0 and VA(e, f )(τe−) = Rv1 such that
2
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ω3 + ω4 is the Virasoro vector ofVA(e, f ) and the multiplications and inner products
VA(e, f )2 are given as follows:

ω3
(1)ω

3 = 2ω3, ω3
(1)ω

4 = 0, ω3
(1)v

0 = 2
3v

0, ω3
(1)v

1 = 2
3v

1,

ω4
(1)ω

4
(1) = 2ω4, ω4

(1)v
0 = 4

3v
0, ω4

(1)v
1 = 4

3v
1,

v0
(1)v

0
(1) = 5

6ω
3 + 14

9 ω
4 − 10

9 v
0, v0

(1)v
1 = 10

9 v
1,

〈ω3,ω3〉 = 2
5, 〈ω4,ω4〉 = 3

7, 〈v0, v0〉 = 1
2, 〈v1, v1〉 = 1.

The complexificationCVA(e, f ) has aZ3-grading CVA(e, f ) = X0 ⊕ X1 ⊕ X2 and as
CVA(ω3,ω4)� L(4

5,0)⊗L(6
7,0)-modules, they are isomorphic to one of the followin:

(i) X0 = {
L

( 4
5,0

)⊕L( 4
5,3

)}⊗L( 6
7,0

)
, X1 = L( 4

5,
2
3

)+ ⊗L(6
7,

4
3

)
,

X2 = L( 4
5,

2
3

)− ⊗L( 6
7,

4
3

);
(ii) X0 = L( 4

5,0
)⊗ {

L
( 6

7,0
)⊕L( 6

7,5
)}
, X1 = L( 4

5,
2
3

)⊗L( 6
7,

4
3

)+
,

X2 = L( 4
5,

2
3

)⊗L( 6
7,

4
3

)−;
(iii ) X0 = L( 4

5,0
)⊗L( 6

7,0
)⊕L(4

5,3
)⊗L(6

7,5
)
, X1 = {

L
( 4

5,
2
3

)⊗L(6
7,

4
3

)}+
,

X2 = {
L

( 4
5,

2
3

)⊗L( 6
7,

4
3

)}−;
(iv) X0 = {

L
( 4

5,0
)⊕L( 4

5,3
)}⊗ {

L
(6

7,0
)⊕L(6

7,5
)}
, X1 = L( 4

5,
2
3

)+ ⊗L( 6
7,

4
3

)±
,

X2 = L( 4
5,

2
3

)− ⊗L( 6
7,

4
3

)∓
.

In the above,M− indicates aZ2-conjugate module ofM+.

We will prove the following.

Theorem 5.3. With reference to Theorem5.2, only the case(iv) occurs. Therefore
CVA(e, f ) is isomorphic toU = CUR constructed in Section4.

Proof. The symmetric groupS3 = 〈τe, τf 〉 on three letters has three irreducible repres
tationsW0 = Cw0,W1 = Cw1 andW2 = Cw2⊕Cw3, whereW0 is a trivial module,τe and
τf act onw1 as a scalar−1, andτe acts onw2 andw3 as scalars respectively 1 and−1.
By the quantum Galois theorem (cf. [5,13]), we can decomposeCVA(e, f ) as follows:

CVA(e, f )= CVA(e, f )〈τe,τf 〉 ⊗W0 ⊕M1 ⊗W1 ⊕M2 ⊗W2,

whereM1 andM2 are inequivalent irreducibleCVA(e, f )〈τe,τf 〉-modules. In the proo
of Theorem 5.2 in [24], Miyamoto found that only the following two cases could
occur: CVA(e, f )〈τe,τf 〉 = CVA(ω3,ω4) or CVA(e, f )〈τe,τf 〉 � CVA(ω3,ω4) and the
former corresponds to the case (i)–(iii) and the latter does the case (iv). We a
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that CVA(e, f )〈τe,τf 〉 = CVA(ω3,ω4) � L(4
5,0) ⊗ L(6

7,0). In this case, seen as
CVA(ω3,ω4)-module,M1 is isomorphic to:L(4

5,3)⊗ L(6
7,0) in the case (i),L(4

5,0)⊗
L(6

7,5) in the case (ii) andL(4
5,3)⊗L(6

7,5) in the case (iii), andM2 as aCVA(ω3,ω4)-
module is isomorphic toL(4

5,
2
3)⊗ L(6

7,
4
3) in each case. Therefore,CVA(e, f )(τe−) has

the following shapes:

CVA(e, f )(τe−)

=



L

( 4
5,3

)⊗L( 6
7,0

)⊗w1 ⊕L( 4
5,

2
3

)⊗L( 6
7,

4
3

)⊗w3 in the case (i),

L
( 4

5,0
)⊗L( 6

7,5
)⊗w1 ⊕L( 4

5,
2
3

)⊗L( 6
7,

4
3

)⊗w3 in the case (ii),

L
( 4

5,3
)⊗L( 6

7,5
)⊗w1 ⊕L( 4

5,
2
3

)⊗L( 6
7,

4
3

)⊗w3 in the case (iii).

We show that dimCVA(e, f )(τe−)3 = 3. SinceCVA(e, f )(τe−)2 = Cv1 andv1 is a highest
weight vector with highest weight(2

3,
4
3), ω

3
(0)v

1 and ω4
(0)v

1 are linearly independen

vectors in CVA(e, f )(τe−)3 . We claim that{ω3
(0)v

1,ω4
(0)v

1, v0
(0)v

1} is a set of linearly

independent vectors inCVA(e, f )(τe−)3 . Set x1 = ω3
(0)v

1, x2 = ω4
(0)v

1, and x3 =
v0
(0)v

1. Using the commutator formula[a(m), b(n)] =∑
i�0

(
m
i

)
(a(i)b)(m+n−i), an invariant

property〈a(m)b1, b2〉 = 〈b1, a(−m+2)b
2〉 for a ∈ CVA(e, f )2, and an identity(a(0)b)(m) =

[a(1), b(m−1)] − (a(1)b)(m−1), we can calculate all〈xi, xj 〉, 1� i, j � 3. For example, we
compute〈x3, x3〉 = 〈v0

(0)v
1, v0

(0)v
1〉:

〈
v0
(0)v

1, v0
(0)v

1〉 = 〈
v1, v0

(2)v
0
(0)v

1〉= 〈
v1,

[
v0
(2), v

0
(0)

]
v1〉

= 〈
v1,

((
v0
(0)v

0)
(2)+ 2

(
v0
(1)v

0)
(1) +

(
v0
(2)v

0)
(0)

)
v1〉

= 〈
v1,

([
v0
(1), v

0
(1)

]+ (
v0
(1)v

0)
(1)

)
v1〉

= 5
6

〈
v1,w3

(1)v
1〉+ 14

9

〈
v1,w4

(1)v
1〉− 10

9

〈
v1, v0

(1)v
1〉

= 113
81 .

By a similar way, we can compute all〈xi, xj 〉, 1 � i, j � 3, and it is a routine work
to check that det(〈xi, xj 〉)1�i,j�3 �= 0. Since VA(e, f )= VA(e, f )(τe+) ⊥ VA(e, f )(τe−),
the non-singularity of a matrix(〈xi, xj 〉)1�i,j�3 implies thatx1, x2 andx3 are linearly

independent. Therefore, dimCVA(e, f )(τe−)3 = 3. One can also see that

v2 := v0
(0)v

1 − 5
9

(
ω3
(0) +ω4

(0)

)
v1

is a non-zero highest weight vector forL(4
5,0)⊗L(6

7,0) with highest weight(3,0). Thus,

the possibility ofCVA(e, f ) is only the case (i). We next show that dimCVA(e, f )(τe−)5= 12. Set
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of
have

rite

e
ce
tative
a one-
ectors

n

y1 = ω3
(−2)v

1, y2 = ω3
(−1)ω

3
(0)v

1, y3 = ω3
(−1)ω

4
(0)v

1, y4 = ω3
(0)ω

3
(0)ω

4
(0)v

1,

y5 = ω3
(0)ω

4
(−1)v

1, y6 = ω3
(0)ω

4
(0)ω

4
(0)v

1, y7 = ω4
(−2)v

1, y8 = ω4
(−1)ω

4
(0)v

1,

y9 = ω3
(−1)v

2, y10= ω3
(0)ω

3
(0)v

2, y11= ω4
(−1)v

2, y12= v0
(−2)v

1.

By a similar method used in computations of〈xi, xj 〉, we can calculate all〈yi, yj 〉,
1 � i, j � 12, based on the informations of the Griess algebra of VA(e, f ) and it is
also a routine work to show that det(〈yi, yj 〉1�i,j�12) �= 0. Therefore,yi , 1 � i � 12,

are linearly independent vectors inCVA(e, f )(τe−)5 . On the other hand, the dimension
the weight 5 subspace of the case (i) is 11, which is a contradiction. Therefore, we
CVA(e, f )〈τe,τf 〉 � CVA(ω3,ω4), and hence only the case (iv) occurs. We can also w
down the highest weight vector explicitly. Set

v3 = 52

34

(
11

3
ω3
(−2) − 2ω3

(−1)ω
3
(−0)

)
v1 + 7

34

(
20

3
ω4
(−2) −ω4

(−1)ω
4
(0)

)
v1

+ 52

23 · 32

(
2ω3
(−1) −ω3

(0)ω
3
(0)

)
ω4
(0)v

1 + 7

22 · 32 · 5
(
8ω4
(−1) −ω4

(0)ω
4
(0)

)
ω3
(0)v

1

− 5

2 · 13

(
1

3
ω3
(−1) −

3

5
ω3
(0)ω

3
(0)

)
v2 + 28

9
ω4
(−1)v

2 − v0
(−2)v

1.

Then one can verify thatv3 is a non-zero highest weight vector forL(4
5,0)⊗L(6

7,0) with
highest weight(0,5) by checking that

〈
CVA(e, f )(τe−)4 ,ωs(2)v

3〉 = 〈
CVA(e, f )(τe−)3 ,ωs(3)v

3〉= 0

for s = 3,4 and〈v0
(−2)v

1, v3〉 = 1405/37. SinceCVA(e, f ) andCUR have unique VOA-
structures,CVA(e, f )� CUR =U . ✷
Remark 5.4. In the proof above, we note that all〈xi, xj 〉, 1 � i, j � 3 and all〈yp, yq〉,
1 � p,q � 12, are completely determined by the Griess algebra of VA(e, f ). Therefore,
the existence of the case (iv) immediately implies the uniqueness ofCVA(e, f ).

By the theorem above, we can find an application ofU to the moonshine VOA. LetV C
R

be the moonshine VOA [9] overR. It is well known that the full automorphism group of th
moonshine VOA is the MonsterM, the largest sporadic finite simple group (cf. [9]). Sin
V
C

R
is (of course) a VOA of moonshine type, its weight two subspace forms a commu

algebra, called the monstrous Griess algebra. As shown in [2] and in [22], there is
to-one correspondence between the 2A-involutions of the Monster and conformal v
with central charge 1/2 in (V C

R
)2. Hence, there is a pair{e, f } of conformal vectors with

central charge 1/2 in V C
R

such thatτeτf defines a 3A-triality ofM. It is shown in [2] that
the inner product〈e, f 〉 of such a pair is equal to 13/210. Therefore, the complexificatio
of the moonshine VOACV C contains a sub-VOA isomorphic toU by Theorem 5.3. As
R
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expected in [14,20,23], we can understand the 3A-triality of the Monster throug
Z3-symmetry of the fusion algebra for the 3-state Potts modelL(4

5,0)⊕L(4
5,3).

Theorem 5.5. There exists a sub-VOA isomorphic toU in the complexificated moonshin
VOA CV

C
R

. Therefore,CV C
R

contains both the3-state Potts modelL(4
5,0)⊕ L(4

5,3) and

the tricritical 3-state Potts modelL(6
7,0)⊕L(6

7,5) and we can define a3A-triality of the
Monster by theZ3-symmetries of the fusion algebras for these models.
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