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Abstract

In this article we study a VOA with two Miyamoto involutions generatifig In [math.GR/
0112031], Miyamoto showed that a VOA generated by two conformal vectors whose Miyamoto
involutions generate an automorphism group isomorphi§atas isomorphic to one of the four
candidates he listed. We construct one of them and prove that our VOA is actually the same as
VA (e, f) studied by Miyamoto. We also show that there is an embedding into the moonshine VOA.
Using our VOA, we can define the 3A-triality of the Monster.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Vertex operator algebras (VOAs) associated with the unitary series of the Virasoro
algebras are very useful for studying VOAs in which they are contained. This method
was initiated by Dong et al. [7] in the study of the moonshine VOA as a module of a tensor
product of the first unitary Virasoro VOA(%, 0). Along this line, Miyamoto showed that
the Virasoro VOAL(%, 0) defines an involution of a VOA in [22], which is often called
the Miyamoto involution. In the moonshine VOA, this involution gives a 2A-involution
in the Monster sporadic simple grodfi. There are many interesting properties related to
the 2A-involutions. For example, Mckay noted that there are some mysterious relations
between theEg Dynkin diagram and the 2A-involutions of the Monster. There are also
some similar relations between thgss-diagram and the Bimonster. For reference, see
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[1,2,21]. Motivated by the topics on 2A-involutions above, Miyamoto studied VOAs
generated by two conformal vectors with central charg®whose Miyamoto involutions
generateSs in [24] and he determined that the possible inner products of such a pair of
conformal vectors are/28 or 13/21°. Furthermore, he determined the possible candidates
of VOAs generated by such two conformal vectors. When the inner product is equal to
13/210, he showed that a VOA generated by such two conformal vectors is isomorphic to
one of the following [24, Theorem 5.6]:

@ (0oL er$ e i) oL’ oL@ i oLt
@ L(E 098 (LE0eL($9)eLE oL’ ) eLiE e’y
QG L(E9eL$0eLE 3oL’ s)eLE Her’ 9)"
o(L(5 35)®L(3.3)) .
4 (L(3.0eLE3)eLE.0eL’5)eLE ) oLE. ) oL@ 3)
®L(3.3)"

Unfortunately, these VOAs are just candidates and it is still unknown if they actually exist.
In this paper, we construct a VOB which has the same shape as that of the candidate
(4). We show that in (4) there is a unique simple VOA structure. We classify all irreducible
modules and the fusion algebra fgrand prove that is a rational VOA. We also prove
that it is generated by two conformal vectors with central chay@awlhose inner product

is 13/210 and also we show that their Miyamoto involutions genetateNamely, U is

the same as the VOA studied in [24] and gives a positive solution for Theorem 5.6(4) of
[24]. We further prove that the candidates (1)—(3) do not exist so that only the candidate (4)
occurs (Theorem 5.3). Therefore, we can verify tias contained in the moonshine VOA.
Using a fact that all irreducibl& -modules admit a natur&ls-grading which comes from

the Z3-symmetries of the fusion algebras for the 3-state Potts modkl0) & L (2, 3) and

the tricritical 3-state Potts modéJ(%, 0o L(%, 5), we can define the 3A-triality of the
Monster (Theorem 5.5). Throughout the paper, we will work over the fietdf complex
numbers unless otherwise stated.

2. Preliminaries
2.1. The unitary series of the Virasoro VOAs

For any complex numbers and i, denote byL(c, k) the irreducible highest weight
representation of the Virasoro algebra with central charged highest weighk. It is
shown in [10] thatL (¢, O) has a natural structure of a simple VOA. Let
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_{rm+3) —s(m+2)?> -1

R = 2.2
s Am +2)(m + 3) (2:2)

forr,seN,1<r<m+1and1<s <m+ 2. Itis shown in [25] that.(c,,, 0) is rational

and L(c, h%)), 1< s <r <m+ 1, provide all irreducibleL (c,,, 0)-modules (see also
[7]). This is so-called the unitary series of the Virasoro VOAs. The fusion rules among
L(cn, 0)-modules [25] are given by

L(Cmshrys) X Lemohry) = Y L(Cm hiry—ryt2i-1isy—si12j-1).  (2.3)
iel, jeJ

where

I = {1,2,...,min{r1,r2,m+2—r1,m+2—r2}},
J = {1,2,...,min{s1,sz,m+3—s1,m+3—sz}}.

2.2. GKO-construction

Let g be the Lie algebrzﬁz((C) with generatorsi, e, f and relationgh, e] = 2e,
[k, f1=—2f and[e, f1 = h. We use the standard invariant bilinear form guefined
by (h,h) = 2 and(e, f) = 1. Let g be the corresponding affine algebra of typﬁ) and
Ao, A1 the fundamental weights f@r. For any non-negative integersand j, denote by
L(m, j) the irreducible highest weiglgtmodule with highest weightm — j) Ao + j A1.
Then L(m, 0) has a natural structure of a simple VOA [10]. The Virasoro veg26r of
L(m, 0) is given by

1
Q" (3h-vh+ecnf + fiepe) @4

~2m+2)
with central charge@/(m + 2).
Letm € N. ThenL(m, 0) is arational VOA andL(m, j) | j =0,1,...,m} is the set of
all irreducible£(m, 0)-modules. The fusion algebra (cf. [10]) is given by

min{j,k}
L(m, j) x L(m, k)= > L(m, j+k—2i). (2.5)
i=max0, j+k—m}

In particular,L(m,m) x L(m, j) = L(m,m — j) and thusL(m,m) is a simple current
module. A reasonable explanation whym, m) is a simple current is given in [19].

The weight 1 subspace d@f(m, 0) forms a Lie algebra isomorphic gpunder the 0-th
product inL(m, 0). Leth!, ¢, f1 be the generator af in £(1,0)1 andh™, e™, f™ those
in Lm,0)1. Thenh™t !l :=pl@1+1@ 1", "=l @1+ 1" and f11 =
fl®1+1® f" generate a sub-VOA isomorphic f(m + 1,0) in £(1,0) ® L(m, 0)
with the Virasoro vector2”+! made fromi+1, ¢+ and f+1 by (2.4). It is shown in
[3] and [15] thaiw™ := 211+ 1@ 2™ — 2™+ also gives a Virasoro vector with central
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charger,, = 1—6/(m + 2)(m + 3). Furthermore2”+1 andw™ are mutually commutative
andw™ generates a simple Virasoro VO&(c,,, 0). Hence,L(1, 0) ® L(m, 0) contains a
sub-VOA isomorphic td.(c;,, 0) ® L(m + 1, 0). Since bothL(c,,, 0) andL(m + 1, 0) are
rational, everyC(1, 0) ® L(m, 0)-module can be decomposed into irreducible,,, 0) ®
L(m + 1, 0)-submodules. The following decomposition is obtained in [11]:

LA@Lmn= @  Llew hly 1) ®LOm+15), (2.6)
o<s<m+1
s=n+&emod2
wheree = 0,1 and 0< n < m. Note tha’rhﬁf’? = hfﬁz—r,mw—s- This is the famous GKO-

construction of the unitary Virasoro VOAs.
2.3. Lattice construction of (m, 0)

Let A1 = Za with (o, ) = 2 be the root lattice of typel; and V,4, the lattice VOA
associated witht 1. Let

Al={xeQ®z A1| (x,a) € Z}

be the dual lattice ofA;. ThenA] = A1 U (%a + Aj). Itis well known thatV,, >~ £(1, 0)
and Vi, ~ L(1.1) (cf. [9,10], efc.). LetA] = Zal @ Za® @ --- ® Za™ be the
orthogonal sum ofrn copies ofA;. Then we have an isomorphiswrln > (Va,)®" ~
L0 Let H™ i=al 1+ a1, E" i= e + -+ ¢ and F" = e~ +
-4 e " Thenitis shown in [3] that/”, E™, andF" generate a sub-VOA isomorphic
to L(m, 0) in VA’l"-

2.4. Vertex operator aIgeer(‘g‘, 0) @ L(‘E‘, 3)

Here we review the simple VOA (2, 0) ® L(g, 3). It is aZ,-simple current extension
of the unitary Virasoro VOAL(‘E‘, 0) and is deeply studied in [14,23]. By the fusion rule
(2.3), there exists a canonical involutieron L(2, 0) & L(2, 3) which acts as identity on
L(2,0) and acts as a scalarl on L(, 3). We also note that is the only non-trivial
automorphism orL(2,0) & L(2.3). For anyL(2,0) & L(2,3)-module (M, Yy (-, 2)),
we can consider its -conjugate moduléM?, Y (-, z)) which is defined as follows. As a
vector space, we put’® ~ M and the action of € L(2, 0) ® L(g, 3) is given by

Yy(a,z):=Yy(oa,z).
We will denote ther-conjugate of\ simply by M°.

Theorem 2.1 [14]. A VOAL(Z,0) & L(g, 3) is rational and every irreducible module is
isomorphic to one of the following
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where W(h)~ is the o-conjugate module oW (k). The dual modules are as follows
(Wh)H)*~Wh)Fif h= % or 1—15 and W (h)* ~ W (h) for the others.

Remark 2.2. We may exchange the sigh since there is no canonical way to determine
the type+ and— for the modulesv (k)™ andW (k) ™. However, if we determine a sign of
one module, then the following fusion rules automatically determine all the signs.

The fusion algebra foW (0) has a naturalf.z-symmetry. For convenience, we use the
following Z3-graded names.

A%:=w(0), =w(%",

B%:=W(3), =W(5%)"

wIN

(3)
(18) -

Theorem 2.3 [23]. The fusion rules for irreducibl& (0)-modules are given as

w
w

l—‘|'_\

Al x AT = AT Al x B/ = Bt B' x B/ = A"t 4 BT/,
wherei, j € Z3. Therefore, the fusion algebra fé¥ (0) has a naturalZz-symmetry.

2.5. Vertex operator algebra(8,0) & L(§, 5)

In this subsection we give some facts about the VO, 0) @ L(5,5). This is a

Zy-simple current extension of the unitary Virasoro VGJA%, 0) and is studied in [18].
Also, all statements in this subsection are included in [17]. So we give a slight explanation
here.

Theorem 2.4 [17,18]. There exists a unique structure of a simple VOAM@, 0) &
L(§.5).

Proof. It follows from the fusion rules (2.3) that if it has a structure of a VOA then it must
be unique. So we should show the existence of a structure. This will be given later.

As in the case oL(§,0) ® L(¢, 3), a linear map which acts as a scalar 1 dr($, 0)
and acts as-1 onL(8, 5) defines an automorphism of a VQ&($, 0) & L(8, 5). We also
note thats is the only non-trivial automorphism aix($,0) @ L($, 5).

Theorem 2.5[17,18].A VOAL(S, 0) & L(8, 5) is rational and all its irreducible modules
are the following



S. Sakuma, H. Yamauchi / Journal of Algebra 267 (2003) 272-297 277

NO=L(§.0aLE5). NI =L D eLE D).
NE=LGDoLGD.  NEF =L
N(R)* = L(5 A)* NI = L8 1)

whereN (h)~ is theo - conjugate module o (k) *. Also, the dual modules are as follows
(NWE*~NmW)TFif h= 3 21 or %—‘l) and N (h)* ~ N (h) for the others.

The fusion algebra foN (0) is also determined in [17,18]. To state the fusion rules, we
assignZs-graded names to irreducible modules (cf. [18]). Define

C%:=N(0), ct=N(3)" c2:=N(3)",
PO=NG).  ph=NE) DP=NE)
BN Eh=NG) NG

Theorem 2.6 [17,18].The fusion rules for irreducibl@/ (0)-modules are given as

C'xC/ =C*,  D'xD/ =Ct 4+ EM,
Ci X D] — Di+j, Di X Ej =Dl+j +El+l,
Ci x Ej — Ei+j, Ei X EjZCi+j+Di+j+Ei+j,

wherei, j € Z3. Therefore, the fusion algebra fof (0) has a naturalZz-symmetry.

3. Simple current extensions

In this section we consider how vertex operator algebras are extended by their simple
current modules (see also [4,5,16,19]). Iiztbe an Abelian group antt® a simple and
rational VOA. Assume that a set of irreduciBt@-modules{V? | « € D} indexed byD is
given. One can easily verify the following lemma.

Lemma 3.1. Assume tha@D,, ., V* carries a structure of a VOA such th@t: vV - VA C
veth whereVe . VP = {3 aub|aec V®, be VP, neZ). ltissimple if and only ifV*
and V# are inequivalent irreduciblé’°-modules for distinci andg € D.

Proof. Assume tha¥/p is simple. Then the automorphism grouplgf contains a group
isomorphic to the dual group* of an Abelian groupD becausé/p is D-graded. It is
clear that theD*-invariants ofVp, is exactlyV?. Therefore, by the quantum Galois theory
[5,13], eachV? is an irreducible/°-modules.

Conversely, if{V* | « € D} is a set of inequivalent irreduciblé®-modules such that
Vp = @,p V® forms a D-graded vertex operator algebra, th&p must be simple
because of the density theorenta
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The lemma above leads us the following definition.

Definition 3.2. A D-graded extensiofVp of V0 is a simple VOA with the shap&p =
@Dyep V¢ Whose vacuum element and Virasoro element are given by tho$€ aind
vertex operations ivp satisfiesy (u®, z)v? € Vet ((z)) for anyu® e V¢ andv? € V¥,

It is natural for us to ask how many structures can sitin

Lemma 3.3 [6, Proposition 5.3]Suppose that the space ¥P-intertwining operators
of type V* x V# — ve*# is one-dimensional. Then the VOA structure obegraded
extensionVp of V0 overC is unique.

By the lemma above, we adopt the following definitions.

Definition 3.4. An irreducible VO-module X is called asimple currentV°-moduleif it
satisfies that for every irreducible®-moduleWw, the fusion product (or the tensor product)
X x W is also irreducible.

Definition 3.5. A D-graded extensiobp = @, ., V* of V0 is called aD-gradedsimple
current extensioif all V¥, o € D, are simple current°-modules.

Clearly, if Vp is aD-graded simple current extension, then it satisfies the assumption in
Lemma 3.3. LefE be any subgroup ab andD = Ul.g‘l/‘E‘ (t' + E) a coset decomposition
of D with respect toE. Set VitE := B, , V. The definition of Vi+E does
not depend on the choice of representatiyes. It is clear from the definition that
Ve =, V® is an E-graded extension o¥/? and Vp/E = @l‘.l:)'l/'E' VitE s a
D/E-graded extension df . Furthermore, ifVp is a D-graded simple current extension,
then Vg (respectivelyVp, ) is also anE-graded and (respectivelp/E-graded) simple
current extension o¥/? (respectivelyVr); the proof will be given in Lemma 3.10. See
Remark 3.11.

Let M be aVp-module. Since we have assumed thét is rational, there is an
irreducibleV °-submoduleW of M.

Lemma 3.6. Let Vp be a D-graded extension o¥/? and let M be an admissible
Vp-module. For an irreducible/%-submoduleW of M, V¥ . W := > amwlaeVe,
w € W, n € Z} are also non-trivial irreducibleV °-submodules o#/ for all « € D.

Proof. Recall that the associativity and the commutativity of vertex operatorsc,Lebe
any elementin a VOA and be any element in a module. Then there eXist N2 € N such
that

(21— 22)™MY (x, 20 Y (3, 22)v = (21 — 22)™M Y (3, 22) ¥ (x, 21)v, (3.1)
(zo+22)M2Y (x, 20+ 22)Y (¥, 22)v = (z2 + zo)NzY(Y(x, 200, zz)v. (3.2)
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The first equality is called the commutativity and the second is called the associativity of
vertex operators. An integé¥; depends o andy, whereasV, does not only onr andy

but alsov. Using the associativity (3.2), we can show th&t- (VA - W) c (Ve VvF). w =

Vet In particular, allv® - W, « € D, areV%-submodules. We show th&t® - W is not

zero and then we prove that it is irreducibleVif - W = 0, then by the iterate formula

o0
(m
(@mb) ) = E (—1)’(l. >{a(mi)b(n+i) — (=" bonsn—irag)}
i=0

we obtainvV"® . W =0forn =1, 2, .... ButD is afinite Abelian, we arrive &°%- W =0,

a contradiction. Thereforéd/* - W # 0 for all « € D. Next, assume that there exists a
proper non-trivialv %-submoduleX in V¥ . W. Thenwe havé/ @ . X c V2. (V*. W) C
(V=2. v . W =Vv9. W =W and hence we gét—® . X = W becauséV is irreducible.
Thenwe obtaiV® - W =V* . (V™. X) C(V¥-V~%).X = V9. X = X, a contradiction.
Therefore V¢ - W is a non-trivial and irreducibl&®-submodule off. O

Let M and W be as in the lemma above and assume Mas irreducible undeWp.
ThenM =Vp - W =Y,V W. SetDy :={a € D| V%W =~ W}. Since both
ve.(VB.w)andvet# . W areirreducible/°-modules by the previous lemma, it follows
from the associativity thaby is a subgroup ob. Let D = Ul’i{DW'(oﬂ' + Dyw) be a coset
decomposition withx* = 0. We note that’* - W ~ V# . W if and only ifa € 8 + Dy.
SetM*TPw =3, (VP . W). ThenM® +Pw is a direct sum of some copies of
ve . W’s as aV%module andM decomposes into a direct sum [db/ Dy |-isotypical
components

ID/Dwl
M= @ M+
i=1

as av%-module. We note that eagt® +2v s aVp,-module andV is a D/Dw-graded
Vp,,-module, that isy ' +Pw .y’ +Pw — ppe'+’+Dw Therefore, by the irreducibility
of M, all M*'+Pw are irreducibleVp,, -submodules.

Definition 3.7. A Vp-moduleM is said to beD-stableif Dy = 0 for some irreducible
vO-submoduleW of M.

It is obvious that the definition of th®-stability is independent of the choice of an
irreducibleV°-modulew .

Proposition 3.8. Let V, be aD-graded simple current extensiondf. Then the structure
of every irreducibleD-stableVp-module is unique oveE. In other words, thé/°-module
structure completely determines th&)-module structure of all irreducibleD-stable
Vp-modules.
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Proof. Let M be aD-stable irreduciblé/p-module and leW be an irreducible/%-sub-
module ofM . By definition, we have/ = D, . ,(V*- W) and allV®-W,« € D, are non-
trivial inequivalent irreducible/®-submodules. Se#® := V¢ - W for « € D. We show
that there exists a uniquéy,-module structure o&p, ., W*. Suppose that there are two
Vp-modulesM = (P,cp W*. Y1(-.2)) andM = (@,.p, W?, Y?(-, z)) such thatW® ~
W asV°-modules for alte € D. By assumption, there exm’t0 |somorph|sm/fa we —

W such thatY?(a, 2)¥e = ¥ Y(a, 2) for all a € VO, Then bothY1(-, 2)|yagws and
1//a+ﬁY (. D)Yglyegys are vO-intertwining operators of typ&* x W# — w**# and

hence there exist non-zero scales, ) € C such that’2(a, D)Vg =c(a, ﬂ)%ﬂgY (a,z2)
forall a € V*. Then, by the associativity (3.2) we obtain

cla+B,y)=cla,B+y)c(B,y) (3.3)

for o, B,y € D. Defineyr : M — M by ¥|w« = c(a, 0)¥e. Then, fora € V¥, we have

Y2(a,2)¥lwe = c(B,0)Y%(a,2)¥p
= ¢(B,0)c(, B)Vu,pY (a, 2)
= c(a+8,00apY (a,z) by(3.3)

= Ylyesrs Y (a, 2).
Thereforey defines a/p-isomorphism betweem and . This completes the proof.o

Remark 3.9. In the case thab is a cyclic group generated by a generatothe previous
assertion claims that the structure aof astableVp-module is unique ovet.

Next, we consider the fusion rules for simple current extensions. The following assertion
is a direct consequence of the associativity (3.2) for intertwining operators.

Lemma 3.10 [3]. Let Vp be a D-graded extension and IeX, W and T be irreducible
Vp-modules. Letx® and W° be irreducible VO-submodules ok and W, respectively.
Denote by(,'}) y,, the space of/p-intertwining operators of typ& x W — T'. Then by
a restriction we obtain the following injection

T T
b 51,20~ 1(, € .
<X W>VD (22) > 1, D)l yogwo <x0 WO)VO

Remark 3.11. By the lemma above, we can prove that for any subg®Bwg D, Vp /g =
EBI‘.ZE' v!'+E isaD/E-graded simple current extensionWf if Vp, is aD-graded simple

current extension of°, whereD = ULZ{E'(H + E) denotes a coset decomposition/of
with respect taf.
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We prove that the injection becomes an isomorphism in the case wiéhcontains
a tensor product VOAL(cjn,,0) ® -+ ® L(cm,,0), Vp is a D-graded simple current
extensionv? and all of X, W andT are D-stable.

Lemma 3.12 [17, Lemma 5.3].Assume that/? contains a sub-VOA isomorphic to a
tensor productL(c;,,0) ® --- ® L(cm,, 0) of unitary Virasoro VOAs sharing the same
Virasoro vector. Assume thatp is a D-graded simple current extension vf. Let X,

W and T be D-stable irreducibleVp-modules and lex®, w0 and 7° be irreducible
V0-submodules ok, W and T, respectively. For any %-intertwining operator/ (-, z) of
typeX? x WO — 10, there exists &p-intertwining operator/ (-, z) of typeX x W — T
such that/ (- » Dlxogwo =1(-, 2).

Proof. The idea of the proofis almost the same as that of [17, Lemma 5.7]. By assumption,
we haveD-graded decompositions = P, ., X*, W =P, ,cp W* andT =P, .p T
suchthatallk®, W andT?, « € D, are irreduciblé’°-submodules. By [12, Theorems 3.2
and 3.5] there exis¥ %-intertwining operatorg®-0(., z) and1%%(-, z) of type X* x W9 —

T and X% x W* — T¢, respectively such that

10t 170(¥ (u*, 20)x%, z2)w’)| ol ¥ (u, 2) 1700, z2)ul)  (3.4)

20=21— ZZ

and
lel(t ,Y(u“,zl)lo’o(xo,zz)wo) L21< IO“(xO, zz)Y(u“,zl)wO> (3.5)

because allv® are simple current’®-modules, whera:* € V¢, x% € X9, w® e WO,

t* e T*, andzl‘zlf(m,zz) denotes the formal power expansion of an analytic function
f(z1, z2) inthe domairzy| > |z2| (cf. [8]). Then, again by [12, Theorems 3.2 and 3.5], we
can findV%-intertwining operatorg®# (-, z) of type X x W# — T**# such that

e, ¥ (u, ) 1% (2, z2)w?) = e, 1P (¥ (4, 20) ", z2)w”) (3.6)

z0=21—22"

We claim that/ (x?, z)w? := 1%P(x%, z)wP defines aVp-intertwining operator of type
X x W — T. We only need to show the associativity and the commutativiti(ofz). Let
v e VB andw? € W”. Then we have

G 2217 (1 08,20, )|
— Y, )Y ()10 (6, )

= 134t Y (¥ (1, 2a)0” 23 17 (x. z2)w” )
= ioadt*, 1P (Y (¥ (u®, za)oP 20)x% z)w? )|

= 1561 t*, I“+/3’V(Y(u°‘, ZG)Y(U’B, zO)xO, z2)w”>|

20=23—122

14=21—133

26=21—22,20=23—22’
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and hence we obtain the following associativity:

(t*, Y(u“, zl)lﬂ’y(xﬂ, zz)uﬂ’) = (t*, [etBY (Y(ua, zO)xﬂ, zz)wy)| (3.7)

720=21—22"

Next we prove the commutativity af# (-, z). We have

o™ 17 (¥ (v, 20)x%, 22) ¥ (u, z2)w®) .,
(v, 23) 1% (x°, 22) ¥ (u”, z2)w°)
= i3, Y (0P, 23) Y (u®, 22) 190(x°, z2)w?)
(u, 21) )19, z2)wf)
)1%0(x®, z2)u)]

1)jw

(
u®, z1)Y (V% z3
) i4=21—23

°)
20=23712,24=21—Z3

= it 1P O(Y (¥ (u*, 2a) P, 20)x°, z2)w
Y (v

_L25< Ioz+/30( (u®,
= daadf”, ¥ (4, 22) 1PO(
Thus, we get the following:

(.Y (u”, zl)Iﬁ'O(xﬁ, zz)w0> = (%, 1P (xP, 22) ¥ (u®, z1)w0>. (3.8)

) Zo)xo* Zz)w0>‘zo=zsfz2,zs=11fzz

z5)
(v, 20)x% 22)uO), ...

Then

G, Y (e, 20) 1P (2P, 22) Y (v, 23)w)
=l Y (. 22) Y (07, 29) 170 (xP z2) )
= Godt* Y (Y (™, z0)v” 2a) 170 22)ul)
)Y (¥ (%, 20)v”, z3)uwl)|, .
)Y (u, 22) ¥ (v, z5)w’)

and hence we arrive at the following commutativity:

A
‘230<t* 1’ Hy( » 22
‘213<t* 1’ Hy( » 22

(t*, Y(uo‘, zl)Iﬁ’V (xﬁ, zz)uﬂ’) = (t*, [Pty (xﬁ, zz)Y(ua, zl)wy>. (3.9
This completes the proof of Lemma 3.120

In the rest of this section, we study a relation between automorphisni aind
its extensions. Let be an automorphism of © and denote byV*)° the o-conjugate
VO-module of V¥ for a € D. If there exists aD-graded extensiorVp = @,.p V¢
of VO, then we can construct anothé-graded extensiorV;, = @,.p(V¥)® in the
following way. By definition, there exist linear isomorphismgs: V¢ — (V*)° such that
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Yy (a, 2)pa = @aYve(oa,z) forall a e V0. Fora € v andb € V#, define the vertex
operation inV}, = @, p(V*)’ by

Yy: (9ua, 2)9pb := @utpYvp(a, 2)b.

Since YVb(-,z)|(Va)ax(Vﬁ)a is a VO-intertwining operator of typgV®)? x (VF)? —
(vetBye (v, YV[/)(-, z)) also forms aD-graded extension of °. Moreover, if Vp is a
D-graded simple current extension &P, then so isV/,. We call V}, the o-conjugate
of Vp. Itis clear from its construction thatp andV/;, are isomorphic as VOAs even if
{(V* |« e D}yand{(V¥)’ | « € D} are distinct sets of inequivaleii®-modules. Therefore,
we introduce the following definition.

Definition 3.13. Two D-graded simple current extensioly = @, V*« and VD =
D,cp V* are said to bequivalentif there exists a VOA-isomorphisi : Vp — Vp such
that® (V%) = Ve foralla € D.

The following is clear from its definition.

Lemma 3.14. Let o be an automorphism df°. Let Vp be a D-graded extension of ©
and letV;, be theo-conjugate ofVp. Then theVp and v}, form equivalentD-graded
extensions of/©.

The following assertion will be needed later.

Lemma 3.15. Suppose tha¥p is a D-graded extension o¥°. For an automorphism
o € Aut(V9), assume that there is an automorphigron Vp such that (V0 = v and
¥|y0 =0o. Then as sets of inequivalent irreducibl®-modules{¥ ~1V* | « € D} and
{(V¥)? | « € D} are the same.

Proof. DenoteYy, (-, 2)lyogy« bY Y4 (-, z). By definition, we can take linear isomor-
phismsg, : V¢ — (V)7 such thatY(yeyo (a, 2)¢e = ¢a Yo (oa, z) for all a € V0. Define
W, WV (V)7 by W, =@y 0 Wy-1y«. Then fora € VO we have

Yy (a, )W = Yo (a,2)@e¥ =@ Yo(0a, )W = @u Yo (Wa, 2)¥

va¥ Yy, (a,Dlg-1ye =W Yv,(a, 2)ly-1ye.

Therefore Y, is aVO—isomorphisms. Hence, we get the assertion.

4. Vertex operator algebrawith two Miyamoto involutions generating S3

In this section we study a VOA on whic$g acts. First, we construct it from a lattice
VOA. More precisely, we will find it in an extension of an affine VOA. Then we show that
there exists a unique VOA structure on it. All irreducible modules are classified. At last,
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we prove that they are generated by two conformal vectors with central ché&tgad the
full automorphism group is isomorphic §. Namely, it is the VOA of involution typeti,
in the sense of Miyamoto [24].

4.1. Construction

LetAS =Zal @ Za? @ - -- @ Za® with (o, /) = 28; ; and setl := A3U (y + A3) with
y i= sat+ 3a?+ 1%+ 1a’. ThenL is an even lattice so that we can construct a VA
associated t@.. We have an isomorphisiry = s@V L ~{L(1,0%e L1, D% ®
£L(1,0). By (2.6) and the fusion rules (2.3) and (2 5) we can show the following.

Lemma 4.1. We have the following inclusions

L(1,0% > L(3,0)® L(15,0) ® L(3,0),
L£1,1)% > L(3,0)® L({5.0) ® L3, 3).
Therefore,V; contains a sub-VOA isomorphic to
LGB 0ORLALO®LADBLEB, LA DR LA,O0).

Lemma 4.2. We have the following decompositions

L£(3,00® L(1,0)® L(1,0)
~{L(20eLE. 0
®{L(5.0®L(3.3)9L(5.3)®L(7. 7)
o{L(5.00L({ F)eL(EIeL(F.])
L£3,3)®L(1,1)®L(1,0)
~{L(5.0®L(7.5)
oLt 0eL(
®{L(5.0) & L(5.

®L(S %) ®LE52)
®L(%,39)) ® L5 9,

Hence,£(3,0) ® £(1,00) ® £(1,0) b L(3,3) ® L(1,1) ® L(1,0) (and V1) contains a
sub-VOAU isomorphic to

LEZ.0® LS, 0 LEZ.0® L. 5
® ®
LE3I®LE5 |o| LEIoLSE.0 |. (4.1)

® ®
LE 5HeLE D LE.5HeoLE D
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Remark 4.3. Note that the sub-VOA/ has exactly the same form as stated in Theorem
5.6(4) of [24]. In the following context, we will show that our VOA is actually the same
as VA(e, f) in [24].

Remark 4.4. By the lemma above, we note that$, 0) @ L($, 5) is a sub-VOA ofU,
which completes the proof of Theorem 2.4.

We can also defin& in the following way. Fori =1, 2, ..., 5, set:

.1 J
H :=o i+ +al 1,

E/ ;ze“1+...+e“'/’

F/ ::e_a1+---+€_aj,
joo_ 1L (
2(j+2

o =0+ %(a'(fi)) 1— QL

g j j j J J
2HLyH' + E(_y)F? + F_y 7).

Then H/, E/ and F/ generate a simple affine sub-VOA(j,0) and o', 1< i < 4,
generate simple Virasoro sub-VOASc;, 0) in V. Furthermore, we have an orthogonal
decomposition of the Virasoro vectary, of V, into a sum of mutually commutative
Virasoro vectors as

oy, =l + 0 + 0 + o + 25
Then we may defin& to be as follows:

1 2 5
U= {v evy |a)(l)v =WV = !2(1)11 :0}.

Set
€= 1_16((0‘4 - ‘)‘5)(—1))2IL - %(eaL“S + e’“4+“5),

1
vy = (9F4 _ 8F5) 4F3 _ 3F4) (O)e?(“l+a2+a3+a4)

(*l)(
_ 1(9H4 _ 8H5) F4 (4F3 _ 3F4) %(Oll+(12+0(3+054)
2 -1 7O 0°

1

2

4 \2 3 4 Leolia?ra3ta?

(—1)(F(0)) (4F°—3F )(0)62(0[ FottaTra), (4.2)
Then we can show that bothandv; are contained iz ande(ye = 2e, ez)e = ;1111,
a)(31)vi = 2v;, andwf vi = 3v; fori =0, 1. Thereforeg generates a sub-VOA isomorphic

to L(3,0) in U andv;, i =0, 1, are highest weight vectors fow®) ® (o*) ~ L(£,0) ®
L(5,0) with highest weight3, 4). Since the weight 2 subspacesfis 4-dimensional, we



286 S. Sakuma, H. Yamauchi / Journal of Algebra 267 (2003) 272-297

note thaiw?, w?, vo, andvy spanUs. In the next subsection we will show that they generate
U as a VOA.

4.2. Structures

By Lemma 4.2, we know that there exists a structure of a VOA in (4.1). Here we
will prove that there exists a unique VOA structure on it. By (41I)contains a tensor
product of two extensions of the unitary Virasoro VOR&0) = L(2,0) & L(Z,3) and
N(O) = L(%, 0)® L(%, 5) (see Sections 2.4-5). Since bdt(0) andN (0) are rationalJ/
is completely reducible asW# (0) ® N (0)-module. Thereford/ as aW (0) ® N (0)-module
is isomorphic to

U~wONOeWw?d) aNE) e w(3)?2e N2

whereg;, §; = £. Recall that botH¥ (0) and N (0) have the canonical involutiorg and
o2, respectively. Then they can be lifted to involutiong®§0) ® N (0) and we still denote
them byo; andoy, respectively. By our constructioly, has aZp-gradingU = U+ @ U~
with

Ut CLBO®LLO®LAOCV,s and
U CLBIDLALD®LALOCY, 4. (4.3)

We note that the decomposition above defines a natural extension of an invalwion
on W(0) ® N(0) to that onU, which we will also denote byio,. Therefore, by
Lemma 3.15, we haveW ()1 ® N(3)51)712 = W(%)*2 ® N(4)2 and hence; = —¢1
andé&; = —&1. Since we may rename the signs of the irreduci¥(@)-modules oft+-type
(cf. Remark 2.2), we may assume that=&;.

Theorem 4.5. A VOAU contains a sub-VOAV (0) ® N(0). As aW (0) ® N(0)-module U
is isomorphic to

WO NO®W(3) aNE)  ew(3) oN(3) (4.4)

after fixing suitable choice of--type ofN(%)i. Therefore,U is a simple VOA and
generated by its weiglt subspace as a VOA.

Proof. The decomposition is already shown. Sindeis a sub-VOA of V;, we have
Y(x,z)y # 0 for all x, y € U. Then by fusion rules fow (0) ® N(0)-modules,U is a
Zz-simple current extension ¥ (0) ® N (0). Therefore[/ is a simple VOA. So we should
show thatl/; generated/. SinceU- contains the Virasoro vectots® andw® and highest
weight vectors ofW (3)* ® N(4)*, U, generates whole ol (3)* ® N(§)*. SinceV,,

is simple, for any non-zero vectorse W (%)* ® N($)* andv e W($)~ ® N($)~ we
haveY (u, z)v # 0 in U (cf. [3]). Therefore, by the fusion rules in Theorems 2.3 and 2.6,
W(%)jE ® N(3)* generaté¥ (0) ® N(0) in U. Hence U, generates whole df. O
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By Lemma 3.14, we note that there exists the followiiagsimple current extension of
W(0) ® N(0).

U=wOeNOeW?3) eanNE) ewE) onE) . (4.5)

Since U and U’ are o1-conjugate extensions of each others, they are equivalent
Zz-simple current extensions & (0) ® N (0). Thus, we get the following.

Theorem 4.6. The followingZs-simple current extensions @f (0) ® N (0) are equivalent
WO eNOeWw(3) eNE) ew$) anE)"

Hence, there is a uniqugs-graded VOA structure i@4.1).
4.3. Modules

Let U be theZs-graded VOA as in (4.1). In this subsection we will classify all
irreducibleU/-modules. Se = U%® U@ U2 with U° = W(0) @ N(0), Ut = W(5)T ®
N@TandUu2=w& @ N@)~.
Lemma 4.7. Every irreduciblelU -modules isZ3-stable.
Proof. Let M be an irreduciblé/-module. Take an irreducible°-submoduleP of M.
By Lemma 3.6, botiU! - P and U2 - P are non-zero irreducible’®-submodules of\f.
It follows from the fusion rules fot’° = W (0) ® N (0)-modules that’ - P 2 U/ - P as
U%-modules ifi  jmod3. ThereforeM = P & (U! - P) & (U2 - P) and henceV has

aZz-grading under the action @f. This completes the proof.O

By this lemma and Proposition 3.8, tH&%-module structure of each irreducible
U-module completely determines it&-module structure.

Lemma 4.8. Let M be an irreducibleU-module. Then, as # (0) ® N(0)-module,M is
isomorphic to one of the following

WO eNOeW?R)  eNE) ew(?) aN(E),
woenNF)ew3) enE) T ew(E) enNE)
woeN3Z)ew3) enNE) ew() eN(x) .
wiR)enOew(E)TeNE)Tew(k) onNE),
W) eNF) oWk eNE) ew(E) oN ()
W) eN(F) e W(k) eN() eW(k) eN (%)
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Proof. Let M be an irreducibld/-module andP® an irreduciblet/%-submodule of\/.
ThenM = PO@ P1 @ P2 with P1 = U x PO and P2 = U2 x PO. The vertex operators
Yu(-,z) on M give U%%intertwining operators of typ&’ x P/ — Pi*J for i, j € Za.

The powers of; in an intertwining operator of typ&’ x P/ — Pt/ are contained in
—hyi — hpi +hpivj + Z, wherehx denotes the top weight of@°-moduleX. Since the
powers ofz in Y (-, z) belong toZ, by considering top weights we arrive at the candidates
above. O

Theorem 4.9. All irreducible U-modules are given by the listed in Lem#h&. In other
words, there exist structures bf-modules in them.

Proof. We already know that if there exidf-module structures in the candidates in
Lemma 4.8, then they must be unique by Proposition 3.8. So we only need to show that
they are actually/-modules. Recall thall ® £(5, 0) is a sub-VOA of a VOA
T=LB0O®LAL0ORLA DD LB,IHIRLA LD ®L(A,O0).
Itis shown in [19] that
LB,2)QLAL08 LGB D®LAID
is an irreducibleC(3,0) ® £(1,0) ©£(3,3) ® L(1, 1)-module. Hence,

LB,2RLL0O®LL0PLAEBD®LAD®LAO0

is an irreduciblel’-module. Then by using (2.6), we get the following decompositions:

LB.0O®LALD)®LALO)®LEB.3®LA L ®LAO)
~ (WO eNOaW(?) eNE) ew () oN(E)}®L50
e {woeNSewd) eanNE) ew(d) oN(L) 1®LEG2)
e(woeni)ewd) en) ewE) en (i) el
LB2QLALORLAL®LED®LA L ®LAO)

IO K

~ (W@ oNOeW(E) N e W(E) eN (@) 9L
B WE NG eW(E) oNE) eWE) eNd) 1oL
s W@ NI ewE) oN) ew(d) eV |9 Le.4.

Therefore, all candidates in Lemma 4.8 &renodules. O

Theorem 4.10. U is rational.
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Proof. Let M be an admissiblé/-module. Take an irreducibl&®-submoduleP. By

Lemma 3.6, bott/1 - P andU? - P are non-trivial irreduciblé/°-submodule off. Since
U -P2U/-Pifi#jmod3,P+ UL -P)+U?%-P)=P& U P)®d(U? P)isan

irreducibleU -submodule off. Hence, every irreduciblé®-submodule o/ is contained
in an irreduciblel/-submodule. Thug/ is a completely reducibl&-module. O

4.4. Conformal vectors

In this subsection we study the Griess algebr@/ofRecalle, vg, v1 € Uz defined by
(4.2). Set

. 105

a)::a)3+a), a:=?(a)—e),

32
bi=g (=503 + 7wt —4e),  ci=ku,
where the scalak € R is determined by the conditiofe, c¢) = 3°/21. Then{e, a, b, ¢} is
a set of basis of/,. By direct calculations one can show that the multiplications and inner
products in the Griess algebra@fare given as follows:

=0 b= 1b _1

ema =y, e = 57 e = 160,

105 3?.5.7 31-105
a@pa = 7(1, amb = Tb, agyc = Tc’

3 3 32.23 3 31 23
bab = 2—1564‘70, bayc = WC’ cpc= ﬁ’e—i— ﬁa—i— fb’

3%.5.7 37 35
(a,a):w, <b,b):ﬁ, (c,c):ﬁ,

Hence, we note that the Griess algebra of our V@As isomorphic to that of VAe, f)
with (e, ) = 13/210 in [24]. Therefore, by tracing calculations in [24] we can find the
following conformal vectors with central chargg2lin Us.

13 , 13
f.:Ee—i—a—i—b—i—c, f .=§e+a+b—c.
And by a calculation we get

105 9 9 7, . 105 9 7. 9,
eyf = —Sgotget g+ e =-—Zgotget S+l

105 7 9 9 13
f(l)f/ = —?w+¥e+¥f+§f/, (e, f):(e, f/>:<f’f/>:ﬁ)'
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Using these equalities, we can show that the Griess algébris generated by two
conformal vectorg and f. SincelU> generate®/ as a VOA by Theorem 4.%] is generated
by two conformal vectors and f. Thus

Theorem 4.11. U is generated by two conformal vecterand f with central chargel/2
such that(e, f) = 13/219.

Now we can classify all conformal vectors . First, we seek all conformal vectors
with central charge 2. It is shown in [22] that there exists a one-to-one correspondence
between the set of conformal vectors with central charigel/ and the set of idempotents
with squared length/8 in U,. So we should determine all idempotents with squared length
1/16 in U,. Let X = aw + Be + yf + §f' be a conformal vector with central charge
1/2. Then we should solve the equatidis/2)(1)(X/2) = (X/2) and(X, X) = 1/16. By
direct calculations, the solutions @f, 8, y, §) are(0, 1,0, 0), (0,0, 1,0) and(0, 0,0, 1).
Therefore,

Theorem 4.12. There are exactly three conformal vectors with central chdrgin U,
namelye, f, and f’.

The rest of conformal vectors can be obtained in the following way. We should seek
all idempotents and their squared length$/in Since we have a set of basis, ¢, f, '}
of U, and all multiplications and inner products are known, we can get them by direct
calculations. After some computations, we reach that the possible central charggs,are 1
81/70, 5835, 4/5 and §7. In the following,(«, B8, v, 8) denotesxw + Be + y f + 8f.

(1) Central charge/2:(0,1,0,0), (0,0,1,0),(0,0,0,1).

(2) Central charge 8%0:(1,-1,0,0), (1,0,—-1,0),(1,0,0, -1).

(3) Central charge 585: (1,0, 0, 0).

(4) Central charge fMb: (14/9,—-32/27,—32/27,—32/27), (—7/18,14/27,32/27,
32/27), (=7/18,32/27,14/27,32/27), (—7/18,32/27,32/27, 14/27).

(5) Central charge A&: (—5/9,32/27,32/27,32/27), (25/18,—14/27,—32/27,
—32/27), (25/18, —32/27, —14/27, —32/27), (25/18, —32/27, —32/27, —14/27).

4.5. Automorphisms

Let V be any VOA ande € V a rational conformal vector with central chargg21
Thene defines an involution, of a VOA V, which is so-called the Miyamoto involution
(cf. [22]). By Theorem 4.12[J has three conformal vectoes f, and f’. Sincee™ # e
nor f and f™ # f nor e, we must have™ = f% = f’. Therefore,t,tst, = te =
T, = TfT.Ty and so(rerf)3 = 1. Itis clear that both, andz are non-trivial involutions
acting onU and . # ty. Hencer, and ty generateSz in Aut(U). We prove that
(Te, Tp) = AUL(U).

Theorem 4.13. Aut(U) = (7., 7).
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Proof. Let g € Aut(U). SinceU is generated by and f, the action ofg on U is
completely determined by its actions erand f. By Theorem 4.12, the set of conformal
vectors with central charge/2in U is {e, f, f'}, so that we get an injection from Aif)

to S3. Since(z,, t7) acts onfe, f, f'} asSz, we obtain AutU) = (z,, 7). O

Remark 4.14. We note that bothw® and »* are Sz-invariant so that the orthogonal
decompositiom = »® + w* is thecharacteristicdecomposition of» in U.

Summarizing everything, we have already shown thad generated by two conformal
vectorse and f whose inner product ige, f) = 13/210 and its automorphism group is
generated by two involutiong, and r with (Tel'f)3 = 1. Hence, we conclude that our
VOA U is the same as V&, f) in [24] and gives a positive solution for Theorem 5.6(4)
of [24].

Theorem 4.15. As a (0®) ® (w*)-module,U ™%} = L(§,00 ® L(5,0) ® L(£,3) ®
L(5,5). Itis a rational VOA.

Proof. Since we may identifflU as VA(e, f) in [24], we can use the results obtained
in [24]. It is shown in [24] that(w®) ® (0% = L(£.0) ® L(5.0) is a proper sub-VOA
of U ™), SinceU has both aZ,-grading (4.3) and &3-grading (4.4), all irreducible
L(2,0) ® L(5,0)-submodules but(£,0) ® L(5,0) and L(§,3) ® L(5,5) cannot be
contained inU %7}, Hence,U "-f) must be as stated. The rationality &f™ /) will
immediately follow from results in [17]. O

4.6. Fusion rules

Here we determine all fusion rules for irreducilbfemodules. We will denote the fusion
product of irreducible/ -modulesM® andM2 by M1 Xy M2. SetU = U@ U@ U2 with
Ul=w(©0) ®N©0), Ul =W ()" ®N(FT andU? = W(3)~ ® N($)~. Recall the list
of all irreducibleU-modules shown in Theorem 4.9. We note that all of then¥arstable
and each irreduciblé/-module contains one and only one of the following irreducible
U%-modules:

Wh) ®@N®k), h=0% k=03,

~lo

Therefore, seen d3$%-modules, all irreduciblé/-modules have the shapes
U(%(W(h) ® N(k))

=WmeN®K & {U'B(Wh e NK)| e U’ Z(Wn e Nk))

with 1 = 0,2 andk = 0, 3, 5. SinceU X0 (W(h) ® N(k)) denotes a’/°-module in
general, we denote an irreducible-module of the shap& X0 (W(h) ® N(k)) with
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h=0, % andk =0, % % by IndZOW(h) ® N (k) to emphasize that it is &@-module. Using
this notation, the fusion products for irreducitifemodules can be computed as follows:

Theorem 4.16. All fusion rules for irreducibleU-modules are given by the following
formula

_ ( Indf)o W (h3) ® N (ks) )
© Ind”s W (h1) ® N (k1) Ind?,W(h2) ® N (k2) v

_ UK (W (h3) ® N(k3))
— dim¢ ( uo ) , (4.6)
Uo

W(h1) @ N(k1) W (h2) ® N(k2)
wherehy, ho, hs € {0, £} andky, k2, k3 € {0, 1, 3).

Proof. Since all irreduciblé/-modules aréZ3-graded, the assertion immediately follows
from Lemmas 3.10 and 3.12.0

5. Application to the moonshine VOA

In this section, we work over the real number fi®dWe make it a rule to denote the
complexificationC ®g A of a vector spacd overR by CA. Recall the construction of our
VOA U in Section 4.1. In it, we only used a formula (2.6), which was shown by Goddard
et al. by using a character formula in [11]. Therefore, we can congifesten if we work
overR. To avoid confusions, we denote the real formloby Ugr. We also note that the
calculations on the Griess algebraldg in Section 4.4 is still correct even if we work
overR.

Definition 5.1. A VOA V overR is said to bef moonshine typié it admits a weight space
decompositioV = @2 ; V, with Vo = R1 andV; = 0 and it possesses a positive definite
invariant bilinear form-, -) such that1, 1) = 1.

Assume that a VOAV of moonshine type contains two distinct rational conformal
vectorse and f with central charge /2. In [24], Miyamoto studied a vertex algebra
VA(e, f) generated by and f in the case where their Miyamoto involutionsandz s
generatess. In this subsection, we shall complete the classification ofeVA) in [24] in
the case where the inner produet f) is 13/21°.

Theorem 5.2 [24]. Under the assumption above, the inner prodictf) is either1/28 or
13/219, When the inner product is equal 18/21°, a vertex algebra/A (e, f) generated
by e and f forms a sub-VOA irV. Denote byA (e, f)*) the eigen spaces fat, with
eigenvaluestl, respectively. The Griess algebvéa (e, f)» is of dimensiort and we can
choose a basi¥A (e, f)(zt”) =Rw? L Row?* L Rv0 and VA (e, f)® ) = Ro! such that
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w® + »* is the Virasoro vector o¥/A (e, 1) and the multiplications and inner products in
VA (e, f)2 are given as follows

oho’ =207 epo'=0,  oip’=50 o=t
vhoy =20 oip®=50  ofut=gt

vyl = g0’ + Yol = P00 wput= ot

@ o) =2  (.oh=3 = =1 = eloh=L

The complexificatioftVA (e, f) has aZs-grading CVA (e, f) = X°@® X1 @ X2 and as
CVA (0®, 0*) > L(g,0) ® L($, 0)-modules, they are isomorphic to one of the following

i x°={r(f. 0oL IleL($0. x'=L(E 3 oLE3)
X*=1(85) ®L(3);

i) x°=1(3,0e{L($.0eL’5} x'=LE)HeL’ 9"
X*=1(3,3)®L(§3)

(i) X°=L(3,00L(50eL@E3)eL(5s), x'={LE)erL’ I
X2={L(3.5)®L(3.3)}

W) X°={r(.0eL@EI|e(L$.0eL’.5). x=LE)) oL’ 9"
X2=1(35) ®L(3.9)"

In the aboveM ~ indicates aZy-conjugate module af/ .
We will prove the following.

Theorem 5.3. With reference to Theorerh.2, only the case(iv) occurs. Therefore,
CVA (e, f) isisomorphic taU = CUR constructed in Sectiofh

Proof. The symmetric grougs = (., 77) on three letters has three irreducible represen-
tationsWo = Cw®, W1 = Cw! andW» = Cw? @ Cw3, whereW is a trivial modulez, and

s act onw?! as a scalar-1, andz, acts onw? andw? as scalars respectively 1 and..

By the quantum Galois theorem (cf. [5,13]), we can decomfid#(e, f) as follows:

CVA(e, f) =CVA(e, /)™ @ Wo® M1 @ W1 ® My ® Wa,

where M1 and M» are inequivalent irreducibl€VA (e, f){%%/’-modules. In the proof

of Theorem 5.2 in [24], Miyamoto found that only the following two cases could be
occur: CVA (e, f){% ™) = CVA(w?, w*) or CVA(e, f){% ) D CVA(w?, w* and the
former corresponds to the case (i)—(iii) and the latter does the case (iv). We assume
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that CVA (e, )™ ™) = CVA (0% 0*) ~ L(£,0) ® L(§,0). In this case, seen as a
CVA (&®, »*)-module,M* is isomorphic to:L(2, 3) ® L(&,0) in the case (i)L(£.0) ®
L(§,5) inthe case (ii) and.(2, 3) ® L(§, 5) in the case (jii), ands? as aCVA («°, w*)-
module is isomorphic td.(2, %) ® L(, 3) in each case. Therefor€VA (e, )~ has
the following shapes:

CVA (e, )T

L(23)eL(5.0)@uwtaL(Z 3)®L(S 3)®w® inthe case (i),
={L(EZ0)®L(S.5)eweL( 3)®L(S 5)®w® inthe case (i),
L(Z3)oLS.5)@uweL(3.3)®L(5 3)®w? inthe case (ii).

We show that dinTVA (e, f)ge’) = 3. SinceCVA (e, f)(zfe’) = Cv! andv? is a highest
weight vector with highest weight§, 5), o%,v* and oy v! are linearly independent
vectors in CVA (e, f)(sfe ). We claim that{w (O)U a)(o)v ,v(O) 1} is a set of linearly
independent vectors irCVA(e,f)(;e’). Set x1 = a)(o) , x2 = w?O) vl, and x3 =
v v?. Using the commutator formula.), byl =350 (7 )(a(,)b)(ern iy, an invariant

property(agmb®, b?) = (b*, a(_n12)b?) for a € CVA(e, f)2, and an identityao)b) m) =

lac1y, bon—1)] — (a1yb) m-1), We can calculate aliv’, x7), 1<i, j < 3. For example, we
3 3 _ 0 1 0. 1.

compute(x®, x°) = (v(o)v V)V )

<U?0)U U(O)U > ( ! U(2)”(0>U ) ( g [ng)vU?O)]Ul>
( ((U(O)U )(2) "‘2(”?1)”0)(1) + (”?2)”0)(0))”1>

(v, ([vy, ooy ] + (”?1)”0)(1))’)1)

= %(vl, w(31)v )+ 194<v w?l)vl> %)(vl,v?l)vl>
— 113
= 3L

By a similar way, we can compute alk’, x/), 1 <i,j < 3, and it is a routine work
to check that détx’, x/))1<; j<3 # 0. Since VAe, f) = VA(e, f)<fe+> J_VA(e f)Fe),
the non-singularity of a matrix(x’, x/))1<, j<3 implies thatx!, x2 andx3 are Ilnearly

independent. Therefore, diGVA (e, f)(’“_) 3. One can also see that

2._.0 3
Vo= v(o)vl — g(w(o) + a)?o))vl
is a non-zero highest weight vector fb(%‘, 0O® L(%, 0) with highest weight3, 0). Thus,

the possibility ofCVA (e, f) is only the case (i). We next show that diWA (e, £)&* ™
=12. Set
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1 3 1 2 3 3.1 3 3 4 1 4 3 3 4 1
Y= 0l Yy =0cy@ors Yy =0y Yy =00®0*0v
5 3 4 1 6 3 4 4 1 7 4 1 8 4 4 1
Y= 0@t Y =00@0%0Y Yy =0t Yy =0c)y®v
9 3 2 10 3 3 .2 11 4 2 12 0 1
Y=ot Yo =00®0v yo=oeyvs M

By a similar method used in computations @f , x/), we can calculate ally’, y/),
1<i,j <12, based on the informations of the Griess algebra ofeV&) and it is

also a routine work to show that dét’, y/)1<;, ,<12) # 0. Thereforey’, 1 <i < 12,

are linearly independent vectors @VA (e, f)(fe . On the other hand, the dimension of

the weight 5 subspace of the case (i) is 11, which is a contradiction. Therefore, we have
CVA (e, )™} O CVA (w®, w*), and hence only the case (iv) occurs. We can also write
down the highest weight vector explicitly. Set

s % 3 20 , 4 4 )1
= 2 Folo 20000l v +34 3“’( 2~ @0 )

5 3 3\ 4 1 4 4\ 3 1
+ 5332 (200 1) — 9o 00) W0 + g 32 (8l_1) — @ ®i0) o)

5 1 3 3 3 28 4 2 0 1
T2, 13<3 -1 5“)(0)“)(0))” T g2V TVt

Then one can verify that® is a non-zero highest weight vector fbtg, 0) ® L($, 0) with
highest weight0, 5) by checking that

(CVA (e, /)7, wipv%) = (CVA (e, )57, iy v®) =0

fors =3,4 and(v?fz)vl, v3) = 1405/3". SinceCVA (e, ) andCUg have unique VOA-
structuresCVA (e, f)~CUr=U. O

Remark 5.4. In the proof above, we note that ait’, x/), 1<, j < 3 and all(y?, y9),
1< p,q <12, are completely determined by the Griess algebra akVA). Therefore,
the existence of the case (iv) immediately implies the uniquene8¥Afe, f).

By the theorem above, we can find an applicatio@db the moonshine VOA. Let/]fg
be the moonshine VOA [9] ovéR. It is well known that the full automorphism group of the
moonshine VOA is the Monsté¥l, the largest sporadic finite simple group (cf. [9]). Since
V]fg is (of course) a VOA of moonshine type, its weight two subspace forms a commutative
algebra, called the monstrous Griess algebra. As shown in [2] and in [22], there is a one-
to-one correspondence between the 2A-involutions of the Monster and conformal vectors
with central charge 12 in (Vﬂg)z. Hence, there is a pale, f} of conformal vectors with
central charge 2 in Vﬂé such thatr, vy defines a 3A-triality ofVI. It is shown in [2] that
the inner producte, f) of such a pair is equal to ¥3°. Therefore, the complexification
of the moonshine VOACVH; contains a sub-VOA isomorphic td by Theorem 5.3. As
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expected in [14,20,23], we can understand the 3A-triality of the Monster through the
Zs-symmetry of the fusion algebra for the 3-state Potts mmjél 0)® L(‘g‘, 3).

Theorem 5.5. There exists a sub-VOA isomorphicltfoin the complexificated moonshine
VOACV;. Therefore,CV;. contains both th@-state Potts modelL(2,0) & L(2,3) and

the tricritical 3-state Potts moddl(%, 0 L(%, 5) and we can define 3A-triality of the
Monster by theZs-symmetries of the fusion algebras for these models.
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