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Abstract

We present a characterization of the nullspace and the rangespace of a Euclidean distance matrix (EDM)
D in terms of the vector of all ones, and in terms of the Gale subspace G(D) and the realization matrix P
corresponding to D. This characterization is then used to compute the characteristic polynomial of D. We
also present some results concerning EDMs generated by regular figures and EDMs generated by centrally
symmetric points.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An n × n matrix D = (dij ) is called a Euclidean distance matrix (EDM) if there exist points
p1, p2, . . . , pn in some Euclidean space �r such that

dij = ‖pi − pj‖2 for all i, j = 1, . . . , n,

where ‖‖ denotes the Euclidean norm. Let D be an EDM, the dimension of the affine span of
the points p1, . . . , pn that generate D is called the embedding dimension of D. If the points
p1, p2, . . . , pn that generate an EDM D lie on a hypersphere, then D is called a spherical EDM.
Otherwise, D is called non-spherical.
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Applications of EDMs include, among others, molecular conformation problems in chemistry
[2], multidimensional scaling in statistics [7], and wireless sensor network localization problems
[11].

Let Sn denote the set of symmetric real matrices of order n. We denote the nullspace and the
rangespace of a matrix A by N(A) and R(A) respectively. I denotes the identity matrix of order
n and e denotes the vector in �n of all ones. Finally, diag (A) denotes the vector consisting of the
diagonal entries of a matrix A.

2. Preliminaries

Let J := I − eeT/n denote the orthogonal projection on subspace M := {x ∈ �n : eTx = 0}.
It is well known [10] that a symmetric matrix D with zero diagonal is an EDM if and only if D is
negative semidefinite on M . As a result, EDMs have exactly one positive eigenvalue. Let SH =
{A ∈ Sn : diag (A) = 0}; and letSC = {A ∈ Sn : Ae = 0}. Following [3], letT : SH → SC

and K : SC → SH be the two linear maps defined by

T(D) :=−1

2
JDJ, (1)

K(B) :=diag (B)eT + e(diag (B))T − 2B. (2)

Then it immediately follows that T and K are mutually inverse between the two subspaces
SH , SC ; and that D is an EDM of embedding dimension r if and only if the matrix T(D) is
positive semidefinite of rank r [3].

Let D be a given EDM with embedding dimension r . Then the points p1, . . . , pn in �r that
generate D can be determined as follows. Since the matrix T(D) is positive semidefinite of
rank r , T(D) can be factorized as T(D) = PP T where P is an n × r matrix. Then, it can be
shown that the points p1, . . . , pn are given by the rows of P . The matrix P is called a realization
of D. Note that P Te = 0 since T(D)e = 0; i.e., the origin coincides with the centroid of the
points p1, . . . , pn. Also note that P is not unique. For the purposes of this paper, we will assume
in the sequel that P is given by

P = W�1/2, (3)

where � is the r × r diagonal matrix consisting of the positive eigenvalues ofT(D); and W is the
n × r matrix whose columns are an orthonormal set of the eigenvectors of T(D) corresponding
to these positive eigenvalues.

Let D be a given EDM of embedding dimension r generated by the points p1, . . . , pn in �r .
Then r � n − 1. Consider the (r + 1) × n matrix[

P T

eT

]
=

[
p1 p2 · · · pn

1 1 · · · 1

]
.

The Gale subspace corresponding to D, denoted by G(D), is defined by

G(D) := Nullspace of

[
P T

eT

]
. (4)

Note that this subspace is uniquely determined by D since for any P , P ′ such that T(D) =
PP T = P ′P ′T, we have N(P T) = N(P ′T) = N(T(D)). Let r̄ denote the dimension of G(D),
then r̄ = n − 1 − r where r is the embedding dimension of D. For r̄ � 1, let Z be the n × r̄

matrix, whose columns form a basis for G(D). Z is called a Gale matrix corresponding to D; and
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the ith row of Z, considered as a vector in �r̄ , is called a Gale transform of pi . Gale transform
is well known in the theory of polytopes [4].

The following lemma, first proved in [1], follows directly from (2).

Lemma 2.1. Let D be a given EDM matrix and let Z be a Gale matrix corresponding to D. Then

DZ = [α1e α2e · · · αr̄e],
where [α1 · · · αr̄ ] = (diagT(D))TZ.

Lemma 2.2. Let D /= 0 be an EDM. Then N(D) ⊆ G(D).

Proof. Let x ∈ N(D) and let B = T(D). Then since B is positive semidefinite and D is non-
negative, it follows from (1) that

0 � −2n2xTBx = eTDe(eTx)2 � 0.

Thus eTDe(eTx)2 = 0. Hence, eTx = 0 and Bx = 0 since D /= 0. The result follows since
N(B) = N(P T). �

Let D /= 0 be an EDM. Then many well-known results follow from Lemma 2.2. First, N(D) ⊂
N(T(D)), established in [12], follows directly sinceG(D) ⊂ N(T(D)). Second, the well-known
result r + 1 � rank D � r + 2, where r is the embedding dimension of D also follows from
Lemma 2.2 and (2).

Next we characterize the nullspace and the rangespace of an EDM D. This characterization
depends on whether D is a spherical EDM or not. We discuss, first, the case of spherical EDMs.

3. The case of spherical EDMs

The following characterization of spherical EDMs is well known.

Lemma 3.1. Let D /= 0 be a given n × n EDM with embedding dimension r and let Z be a Gale
matrix corresponding to D. Then the following statements are equivalent.

1. D is a spherical EDM.

2. Rank D = r + 1.

3. The matrix λeeT − D is positive semidefinite for some scalar λ.

4. r = n − 1 or DZ = 0.

The equivalence of statements 1 and 3 was shown in [9], the equivalence of statements 1, 2 and 3
was shown in [5,12], and the equivalence of statements 3 and 4 was shown in [1]. The equivalence
of statements 1 and 4 can be directly proved as follows. In [12] it is proven that an EDM D is
spherical iff there exists a vector a ∈ �r such that

Pa = 1

2
J diagT(D), (5)

where P is a realization of D, r is the embedding dimension of D and J is the orthogonal
projection on the subspace M = e⊥. In such a case, the points that generate D lie on a hypersphere
whose center is a and whose radius is equal to (aTa + eTDe/2n2)1/2. But (5) holds iff either
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r = n − 1, i.e., r̄ = 0, or J diagT(D) belongs to the nullspace of
[

ZT

eT

]
which is equivalent to

ZTdiagT(D) = 0. Hence, by Lemma 2.1, this is equivalent to DZ = 0.
Next we characterize the nullspace of D.

Theorem 3.1. Let D /= 0 be a spherical EDM. Then N(D) = G(D).

Proof. N(D) ⊆ G(D) follows from Lemma 2.2. But since D is a spherical EDM we also have
from Lemma 3.1 that G(D) ⊆ N(D). Hence the result follows. �

The following is an immediate corollary of Theorem 3.1 and the definition of G(D).

Corollary 3.1. Let D /= 0 be a spherical EDM and let P be a realization of D. Then R(D) =
R([P e]).

Note that for a spherical EDM D of embedding dimension r , dim N(D) = n − rank D =
n − 1 − r = r̄ = dim G(D) and dim R(D) = r + 1 = dim R([P e]).

Now it follows from (2) and the definition of P in (3) that P TDP = −2(P TP)2 = −2�2,
where � is the diagonal matrix consisting of the positive eigenvalues of T(D). Let Q =
[P�−1/2 e/

√
n]. Then the non-zero eigenvalues of D are the same as the eigenvalues of QTDQ.

But

QTDQ =
[ −2� 1√

n
�−1/2P TDe

1√
n
eTDP�−1/2 1

n
eTDe

]
. (6)

QTDQ as given in (6) is a bordered diagonal matrix. Thus, the characteristic polynomial of an
n × n spherical EDM D is given by

p(λ) = λn−r−1


(

λ − 1

n
eTDe

) r∏
i=1

(λ − ai) −
r∑

i=1

b2
i

r∏
j=1,j /=i

(λ − aj )


 , (7)

where r is the embedding dimension of D, ai and bi are the ith coordinates of the vectors
−2diag (P TP) = −2 diag �, and 1√

n
(P TP)−1/2P TDe respectively. Recall that the character-

istic polynomial of −2T(D) is λn−r
∏r

i=1(λ − ai). Three remarks are in order here. First, the
coefficient of λn−1 in (7) is zero since trace D = 0. Second, if bi0 = 0 for some i0, 1 � i0 � r , then
ai0 is an eigenvalue of D. Third, if bi /= 0 for all i = 1, . . . , r and if µ is an eigenvalue of T(D)

with multiplicity k then −2µ is an eigenvalue of D with multiplicity k − 1. This follows since
(7) in this case has the factor (λ + 2µ)k−1. More results concerning the characteristic polynomial
of D are given in the next two theorems.

Theorem 3.2. Let D /= 0 be an n × n spherical EDM of embedding dimension r. Then the r

negative eigenvalues of D are precisely the eigenvalues of −2T(D) if and only if the positive
eigenvalue of D is equal to eTDe/n.

Proof. Suppose that the r negative eigenvalues of D are precisely the eigenvalues of −2T(D).
Then from trace D = 0 and (1), it follows that the positive eigenvalue of D = 2 trace T(D) =
eTDe/n.
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On the other hand suppose that the positive eigenvalue of D = eTDe/n. Then it follows from
(7) that bi = 0 for all i = 1, . . . , r . Hence, the result follows. �

Following Hayden and Tarazaga [6], we say that a spherical EDM D is generated by a regular
figure if the points that generate D lie on a hypersphere centered at the origin.1 Recall that
since P Te = 0, the centroid of the points p1, . . . , pn also coincides with the origin. The set of
spherical EDMs generated by regular figures is characterized as the subset of EDMs having e as
an eigenvector. The “only if” part of the following result was first obtained in [6].

Theorem 3.3. Let D /= 0 be an n × n spherical EDM with embedding dimension r. Then D is
generated by a regular figure if and only if the r negative eigenvalues of D are precisely the
eigenvalues of −2T(D).

Proof. Assume that D /= 0 is a spherical EDM generated by a regular figure. Then P TDe = 0
since e is an eigenvector of D. Hence, bi = 0 for all i = 1, . . . , r . Thus, the r negative eigenvalues
of D are exactly the eigenvalues of −2T(D).

On the other hand assume that the r negative eigenvalues of a spherical EDM D are exactly
the eigenvalues of −2T(D). Then the positive eigenvalue of D is equal to 1

n
eTDe. Hence,

bi = 0 for all i = 1, . . . , r . Thus, P TDe = 0 which implies that De = αe for some scalar α since
N(D) = G(D). Hence, the result follows. �

4. The case of non-spherical EDMs

Let D be a non-spherical EDM of embedding dimension r . Then it follows from Lemma 3.1
that r � n − 2 and rank D = r + 2. The next theorem presents a characterization of the nullspace
of D.

Theorem 4.1. Let D be a non-spherical EDM of embedding dimension r and let 〈x〉 denote the
subspace generated by vector x. Then N(D) ⊕ 〈x〉 = G(D), where x is the unique vector such

that

{
Dx = e if r = n − 2,

Dx = e, x ⊥ N(D) if r � n − 3.

Proof. Let D be a non-spherical EDM with embedding dimension r and let Z be a Gale matrix
corresponding to D. Thus it follows from Lemma 2.1 and Lemma 3.1 that DZ = [α1e α2e · · ·
αr̄e] /= 0. If r = n − 2 then rank D = n and r̄ = 1. Thus, N(D) is trivial and Z is n × 1. Hence,
α1 /= 0 and x = Z/α1. Now suppose that r � n − 3, i.e., r̄ � 2 then without loss of generality
assume that α1 /= 0. Let y = Z.1/α1 where Z.1 denotes the first column of Z. Then Dy = e. Now
define the non-singular r̄ × r̄ matrix

Q =




α−1
1 −α2 −α3 · · · −αr̄

0 α1 0 · · · 0
0 0 α1 · · · 0

0 0
. . . · · · 0

0 0 0 · · · α1


 .

1 Some authors refer to such EDMs as EDMs of strength 1 [8,9].
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Then obviously ZQ = [y Z] is a Gale matrix where Z is n × (r̄ − 1), and D[y Z] = [e 0].
Thus R(Z) ⊆ N(D). But rank D = r + 2 since D is non-spherical. Hence dim N(D) = r̄ − 1.

Therefore, R(Z) = N(D). Now let x = (I − Z(Z
T
Z)−1Z

T
)y. Hence Dx = e and xTZ = 0.

Thus the result follows. �

The following corollary is immediate.

Corollary 4.1. Let D be a non-spherical EDM and let P be a realization of D. Then R(D) =
R([P e x]), where x is as defined in Theorem 4.1.

Note that for a non-spherical EDM D of embedding dimension r , dim N(D) = n − 2 − r =
r̄ − 1 = dim G(D) − 1 and dim R(D) = r + 2 = dim R([P e x]). Also note that whether
an EDM D is spherical or not the matrix [P e] is in the rangespace of D. The fact that e is in
the rangespace of D was first observed by Gower in [5].

Let Q = [P�−1/2 e/
√

n x/(xTx)1/2] where P is as defined in (3). Then the non-zero
eigenvalues of D are the same as the eigenvalues of QTDQ. But

QTDQ =



−2� 1√
n
�−1/2P TDe 0

1√
n
eTDP�−1/2 1

n
eTDe

√
n/xTx

0
√

n/xTx 0


 . (8)

Thus, the characteristic polynomial of an n × n non-spherical EDM D is given by

p(λ) = λn−r−2


(

λ

(
λ − 1

n
eTDe

)
− n

xTx

) r∏
i=1

(λ − ai) − λ

r∑
i=1

b2
i

r∏
j=1,j /=i

(λ − aj )


 ,

(9)

where r is the embedding dimension of D, ai and bi are as defined in (7) i.e., ai and bi are the
ith coordinates of the vectors −2diag P TP = −2diag � and 1√

n
(P TP)−1/2P TDe respectively,

and x is as defined in Theorem 4.1.
Note that similar to the case of spherical EDMs, the coefficient of λn−1 in (9) is zero. Also,

if bi0 = 0 for some i0, 1 � i0 � r , then ai0 is an eigenvalue of D. Furthermore, the following
theorem follows easily from (9). We say that an EDM D is centrally symmetric if the realization

matrix P corresponding to D can be written, possibly by relabeling the points pis, as P =
[

P1
P2
P3

]
,

where P2 = −P1 and P3 is either vacuous or the zero matrix.

Theorem 4.2. Let D be a non-spherical centrally symmetric EDM of embedding dimension r.

Then r of the negative eigenvalues of D are equal to the eigenvalues of −2T(D), the r + 1th

negative eigenvalue of D = eTDe
2n

−
√

(eTDe)2

4n2 + n
xTx

, and the positive eigenvalue of D = eTDe
2n

+√
(eTDe)2

4n2 + n
xTx

, where x is as defined in Theorem 4.1.

Proof. Let D be a non-spherical centrally symmetric EDM generated by points p1, . . . , pn.
Then, P TDe = nP TdiagT(D) = n

∑n
i=1 ‖pi‖2pi = 0. Hence, bi = 0 for all i = 1, . . . , r and
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the result follows since in this case, p(λ) reduces to λn−r−2(λ(λ − 1
n
eTDe) − n

xTx
)
∏r

i=1(λ −
ai). �
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