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Recently, a linearly scaling method for the calculation of the elec-

tronic structure based on the Korringa–Kohn–Rostoker Green func-

tion method has been proposed. The method uses the transpose

free quasiminimal residualmethod (TFQMR) to solve linear systems

with multiple right hand sides. These linear systems depend on the

energy-level under consideration and the convergence rate deteri-

orates for some of these energy points. While traditional precondi-

tioners like ILU are fairly useful for the problem, the computation

of the preconditioner itself is often relatively hard to parallelize. To

overcome these difficulties, we develop a new preconditioner that

exploits the strong structureof theunderlying systems. The resulting

preconditioner is block-circulant and thus easy to compute, invert

and parallelize. The resulting method yields a dramatic speedup of

the computation compared to the unpreconditioned solver, espe-

cially for critical energy levels.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The time-independent many-electron Schrödinger equation is given for N electrons by

ĤΨ =
⎡
⎣− �

2m

N∑
i=1

∇2
i +

N∑ ∑
i<j

U(ri, rj) +
N∑

i=1

vext(ri)

⎤
⎦ Ψ = EΨ . (1)
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Here,

U(ri, rj) = e2

‖ri − rj‖2

is the electron–electron interaction and vext an external potential, e.g., the electrostatic potential of

the nuclei. The solution of the Schrödinger equation (1) yields the electron structure that is of great

importance in theoretical chemistry as well as solid-state physics.

The problemwith (1)—the highly nontrivial and computationally demanding task of evaluating the

many-electron wavefunction Ψ—is avoided in Hohenberg–Kohn–Sham density functional theory by

using the one-electron density n(r) as the fundamental variable. This reduces the effort dramatically,

as thewavefunctions depend on 3N variables, whereas a density n(r) depends on three variables, only.

Application of the Hohenberg–Kohn theorem yields: (i) the ground state density uniquely determines

the external potential and thus, via (1), wavefunctions and all physical observables of the system; (ii)

that the ground state energy E0 and the ground state density n0(r) can be obtained from a variational

principlewhichonly involves thedensity; and (iii) a universal functional F[n(r)] exists (universal in the

sense that it does not depend on vext) such that the ground state energy and density can be obtained by

E0 = min
n

E[n(r)] = min
n

F[n(r)] +
∫
R3

n(r)vext(r)dr .

Although F[n(r)] can be formally defined usingmany-electronwavefunctions, its explicit dependence

on n(r) is not known. In the Kohn–Sham scheme it is written as

F[n(r)] = Ts[n(r)] + U[n(r)] + Exc[n(r)] ,
where the exchange–correlation functional Exc must be approximated, U is the classical electrostatic

energy of the charge distribution n(r), and Ts is the kinetic energy of the effective Kohn–Sham system,

which describes a non-interacting electron system (Eq. (1) with e2 = 0) in an external potential

veff chosen such that the Kohn–Sham system has the same density as the real system with electron–

electron interaction. The density n(r) in the Kohn–Sham system is given by

n(r) =
N∑

i=1

|ϕi(r)|2,

where the ϕi are theN wavefunctions corresponding to the lowest eigenvalues εi of the single-particle
Schrödinger equation

Ĥsϕ(r) =
[
− �

2

2m
∇2

r + veff(r)

]
ϕi(r) = εiϕi(r).

Thus, for calculating the ground state density the solution of this eigenvalue problem is required.

2. KKR method and resulting linear system

In the Korringa–Kohn–Rostoker (KKR) Green functionmethod the density is calculated by a contour

integral in the complex E plane as

n(r) = − 2

π
Im

⎛
⎜⎝

EF∫
−∞

G(r, r; E)dE
⎞
⎟⎠ , (2)

where the energy dependent independent-particle Kohn–Sham Green function G(r, r; E) is defined

as the solution of the equation
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− �

2

2m
�2

r + veff(r) − E

]
G(r, r′; E) = −δ(r − r′) ,

G(r, r′; E) ‖r‖2→∞−→ 0.

This can be equivalently written as

G(r, r′; E) = Gr(r, r′; E)Ê +
∫
R3

Gr(r, r′′; E)[veff(r′′) − vr(r′′)]G(r′′, r′; E)dr′′. (3)

Here, vr is a reference system for which the Green function Gr is known. The integral is discretized by

dividing the domain into non-overlapping space-filling cells around atomic positions Rn, where n is

the multi-index of the cell. Within a cell the so-called multiple-scattering representation is used, i.e.,

G(r + Rn, r
′ + Rn′ ; E) = δn,n′Gn

s (r, r
′; E) + ∑

L,L′
RnL (r; E)Gn,n′

L,L′ (E)Rn
′

L′ (r
′; E), (4)

where the L’s represent the so-called angular-momentum indices l and m, Gn
s (r, r

′; E) are the single-

scatteringGreen functions, andRnL (r; E) arewavefunctions. The latter twoonlydependon veff(r) inside
the cell n. Now, the discretization of (3) can be written as the matrix equation

G
n,n′
L,L′ (E) = (Gr)

n,n′
L,L′ (E) + ∑

n′′,L′′,L′′′
(Gr)

n,n′′
L,L′′ (E)�tn

′′
L′′,L′′′(E)G

n′′,n′
L′′′,L′ (E).

The matrix is of dimension n = Natoms(lmax + 1)2, where Natoms is the number of atoms and lmax is

the highest angular-momentum. Usually lmax = 3 is sufficient. The matrix �tn
′′

L′′,L′′′(E) depends on the

difference veff(r) − vr(r) inside the cell n′′, only. In the following, we denote the different matrices as

G
n,n′
L,L′ (E)︸ ︷︷ ︸
=:G

= (Gr)
n,n′
L,L′ (E)︸ ︷︷ ︸

=:Gr

+ ∑
n′′,L′′,L′′′

(Gr)
n,n′′
L,L′′ (E) �tn

′′
L′′,L′′′(E)︸ ︷︷ ︸
=:T

G
n′′,n′
L′′′,L′ (E),

obtaining

G = Gr + GrTG.

We have

G = Gr + GrTG

⇔ (I − GrT)G = Gr = −(I − GrT)T−1 + T−1

⇔ G = −T−1 + (I − GrT)−1T−1

= −T−1 + T−1(T−1 − Gr︸ ︷︷ ︸
=:M

)−1T−1.

To compute G we are interested in the inverse of M. Setting X = M−1 and using the identity

TMX = T ,

together with the definition ofM, gives

T(T−1 − Gr)X = T ⇔ (I − TGr)X = T . (5)

Thus, the computation of the ground state density can be carried out by numerical integration over

the solutions of the matrix equation for different energies E. The solution of (5) requires solving n

linear systems. In [1] the authors propose the use of the transpose free quasi minimal residual method

(TFQMR) [2] for that purpose. However, it turns out that the number of iterations necessary to solve
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Fig. 1. Structure and spyplot of the associated matrix of a Ni–Pd alloy. (a) Structure of the system. (b) Spyplot of the matrix.

the system becomes larger as the energy appearing in the numerical integration of (2) approaches the

critical energy EF .

In fact, the matrices in (5) typically possess a great deal of structure. In many applications in solid

state physics periodic systems are studied. In contrast to perfect crystals, where the whole system is

described by one reference box of a certain geometry, systems are studied where the crystal system is

perturbed by introducing different atoms in the crystal, by slightly moving the atoms away from their

optimal positions, or by a combination of both. In these cases, the systems consist of nx × ny × nz
cells, where, depending on the geometry in each cell a certain number of atoms is located. In Fig. 1(a)

the geometry of a nickel–palladium alloy with slightly perturbed atomic positions is depicted. This

system has a face-centered cubic (FCC) geometry and is thus broken up into 4 × 4 × 4 cells, each

cell contains 4 atoms, and, as lmax = 3 in the sums in (4), 16 terms have to be taken into account.

Hence, the blocks inside thematrix are of size 64×64. For the actual computation, periodic boundary

conditions are imposed and matrix elements (Gr)
n,n′′
L,L′′ between atoms inside of cells that are beyond

a specified cut-off parameter are neglected, which introduces a negligible approximation error due to

the exponential decay of the entries of Gr with distance ‖Rn − Rn′ ‖2. The result is a block system that

has a sparsity pattern typical of stencil-based codes on structured 3D grids, c.f., the matrix depicted

in Fig. 1(b), further on, the cost of a matrix-multiplication is proportional to the system size, i.e., the

number of atoms.

Our aim is to construct a preconditioner that can be evaluated efficiently and that exploits the

structure of the matrix. One option would be to use a physics-based preconditioner, i.e., the solution

of a similar perfect crystal. As in this case the similar system had to be supplied as additional user

input, we choose an algebraic approach that automatically embeds information from the system into

the preconditioner matrix. A block-circulant matrix is well-suited for that purpose and the resulting

preconditioner is similar to the physics-based approach mentioned before and could be interpreted

as the sought-for physical system.

3. Block-circulant preconditioner

The preconditioner we use for this system is amultilevel block-circulant matrix. Therefore, we first

briefly review the definitions and properties of circulant matrices. A more detailed introduction can

be found, e.g., in [3] or in [4].
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3.1. Circulant matrices

Definition 3.1 (circulant matrix). A circulant matrix C ∈ C
N×N is of the form

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cN−1

cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The generating symbol f of C is the 2π-periodic function given by

f : R → C,

x 	→ f (x) =

N/2�∑

j=−
N/2�
cj mod Ne

ιjx.

Circulant matrices are a special class of Toeplitz matrices forming amatrix algebra. They are tightly

connected to their generating symbol and to the Fourier matrix FN given by

(FN)j,k = e2πι jk
N ,

as stated by the following theorem:

Theorem 3.2. Let C ∈ C
N×N be a circulant matrix and let f be its generating symbol, then the following

holds true:

(a) The eigenvalue λj , j = 0, . . . ,N − 1, of C is given by λ = f (j 2π
N

).
(b) The eigenvector vj of C is given by the column F(:, j) of the Fourier matrix.

Theorem 3.2 states that for any circulant matrix C ∈ C
N×N we have

C FN = FNdiag(λ1, . . . , λN),

i.e., FN diagonalizes C. Due to this fact, circulant matrices can easily be inverted using the FFT. Let us

now turn to the case where the “elements” of the circulant matrices can themselves bematrix-valued.

The result is a block-matrix with circulant structure as given by the following definition.

Definition 3.3 (Block-circulant matrix). A block-circulant matrix CB ∈ C
(bN)×(bN) is a matrix of the

form

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C0 C1 · · · CN−1

CN−1 C0 · · · CN−2

...
...

. . .
...

C1 C2 · · · C0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the Cj are in C
b×b. The generating symbol of a block-circulant matrix is a 2π-periodic function

f given by
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fB : R → C
b×b,

x 	→ fB(x) =

N/2�∑

j=−
N/2�
Cj mod Ne

ιjx.

A block-circulant matrix is block-diagonalized by FN ⊗ Ib, where Ib is the b × b-identity.

The concept of circulantmatrices can be extended to higher dimensions. If a block-circulant matrix

has circulant blocks, the matrix is a called a BCCB-matrix or a 2-level circulant matrix. This motivates

the recursive definition of d-level circulant matrices.

Definition 3.4 (d-level circulant matrices). Let C2 ∈ C
(N1·N2)×(N1·N2) be a block-circulant matrix with

blocks C2,j , j = 0, . . . ,N1 −1, on the diagonals. If the C2,j blocks are circulant with generating symbol

f2,j : R → C, then C2 is a 2-level circulant matrix. Its generating symbol f2 is given by

f2 : R
2 → C,

(x, y) 	→ f2(x, y) =

N/2�∑

j=−
N1/2�
f2,(j mod N)(y)e

ιjx.

For d > 2 we call a block-circulant matrix Cd ∈ C
(
∏d

k=1Nk)×(
∏d

k=1Nk) with blocks Cj , j = 0, . . . ,N1 − 1,

d-level circulant, if the blocks are d−1-level circulant. In all cases, a block-matrixwith d-level circulant

structure is called a d-level block-circulant matrix.

A2-level circulantmatrixofdimension (mn)×(mn),wheren is the sizeof theblocks, is diagonalized

by the matrix Fm ⊗ Fn, with an analogous extension to higher levels.

3.2. Block-circulant preconditioners

The properties of circulant matrices allow us to define a preconditioner that can be inverted ef-

ficiently using the FFT. The idea goes back to the work of Chan and Chan [5], who define point- and

block-circulant preconditioners for elliptic PDEs. Our approach combines the two ideas.

Definition 3.5 (Block-circulant preconditioner). Let A ∈ C
N×N be an arbitrarymatrix, where N = n · b,

n, b ∈ N. The block-circulant preconditioner C ∈ C
N×N of A is the block-circulant matrix given by its

blocks

Mj = 1

n

n−1∑
k=0

Ak,(k+j) mod n,

where Al,m = A(l · b + 1 : (l + 1) · b,m · b + 1 : (m + 1) · b) is a b × b-block of A.

Thus, the block-circulant preconditioner is an average of the diagonal blocks of A. This definition

can be extended to the d-level case.

3.3. Application to the KKR Green function method

In a system of nx × ny × nz cells with Nc atoms per cell, the matrices T , Gr and X are of dimension

N×N, whereN = nxnynzb, with b = NC(lmax +1)2. Thus, thematrices consist of (nxnynz)× (nxnynz)
blocks of size b × b. In the following, let

A = I − TGr,
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Fig. 2. Magnitude of the system matrix and of the difference of the system matrix and the preconditioner of a Ni–Pd alloy. (a)

Magnitude of the system matrix A. (b) Magnitude of the difference |M − A|.

and denote the b × b block (i, j, k), (i′, j′, k′), i, i′ = 0, . . . ,m − 1, j, j′ = 0, . . . , n − 1, k, k′ =
0, . . . , o − 1 of a matrix B by B(i,j,k),(i′,j′,k′).

Under the assumption that the blocks do vary, but not by very much, we next construct a 3-level

block-circulant preconditioner M, with blocks

(M)(i,j,k),(i′,j′,k′) = M(i′−i) mod m,(j′−j) mod n,(k′−k) mod o.

In analogy to Definition 3.5, the blocks are given by

Mi,j,k = 1

m · n · o
m−1∑
i′=0

n−1∑
j′=0

o−1∑
k′=0

A(i′,j′,k′),((i′+i) mod m,(j′+j) mod n,(k′+k) mod o). (6)

AsM is block-diagonalizedbyFm⊗Fn⊗Fo⊗Ib, it caneasilybe invertedusing3DFFTandsolved involving

only b× b-blocks. The block solves can be improved further by precomputing the LU-decompositions

of the blocks and using, for example, optimized BLAS2 routines for the actual application of the pre-

conditioner. The result is a preconditioner that scales like O(b3mno log(min{m, n, o})).

4. Numerical results

We implemented the construction of the preconditioner as outlined in the previous section inMAT-

LAB, so the elapsed timesmight heavily depend onMATLAB. Allmatrices are stored as sparsematrices,

so we expect the matrix-vector multiplication to be optimal, i.e., O(b3mno). The inverses of the diag-

onal blocks are precomputed before the actual application and the application of the preconditioner

is implemented as a 3D FFT, followed by a multiplication by the block diagonal matrix, and finally an

inverse 3D FFT.

To verify the quality of our preconditioner,wefirst computed themagnitude of the differenceM−A.

The result is depicted in Fig. 2(b), as a reference the magnitude of A is given in Fig. 2(a).

Obviously thepreconditionermatrix is very similar to theoriginalmatrix inaFrobenius-normsense.

Of course, this is not a proof that the preconditioner is efficient, but it suggests that the construction

yields a good approximation to the matrix.

Next, we show the eigenvalues of A andM, as well as those ofM−1A, in Fig. 3(a) and (b).Obviously,

the eigenvalues of both matrices are very close to each other, an observation that is underlined by

the fact that the eigenvalues of the preconditioner applied to the original matrix nicely cluster around

1, with a few outliers larger than 1 in magnitude. This indicates that the proposed preconditioner

will be very effective. Finally, the preconditioner has been tested with the MATLAB supplied GMRES

and TFQMR routines. Note that the number of iterations implies different numbers of matrix-vector

multiplications, as GMRES needs one matrix-vector multiplication per iteration, while TFQMR uses

two.
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Fig. 3. Eigenvalues of the system matrix A, the preconditioner M and the preconditioned system matrix M−1A of a Ni–Pd alloy.

(a) Eigenvalues of A and M. (b) Eigenvalues of M−1A.

We consider three different systems here. The first is a palladium system, where the atoms are

displaced slightly from the regular FCC-grid. The second system is a nickel–palladium alloy, where

the atoms are located on the regular FCC-grid, but some palladium atoms are replaced by nickel

atoms. Thirdly, we consider a combination of both cases, i.e., a nickel–palladium alloy, where some

of the palladium atoms are replaced by nickel atoms within the structure and the atoms are slightly

moved away from the regular positions. In all cases four cells are taken into account in each direction,

i.e., nx = ny = nz = 4, and, as the geometry is face-centered cubic, there are four atoms per

cell, albeit the exact positions and kinds of the atoms inside of the boxes are distorted. The cut-off

parameter in the multiple-scattering representation was set to lmax = 3, resulting in a matrix size of

N = 4096. The timings were measured on a machine with a Core 2 Quad Q9650 clocked at 3.00 GHz,

running MATLAB 7.10. In all cases the setup of the preconditioner, i.e., the computation of (6), takes

about 2s.

The results for the first case, using GMRES(20) and TFQMR as solvers, can be found in Fig. 4. The

results are obtained for different energies E that are needed during the numerical evaluation of the in-

tegral (2).While the iteration count of the unpreconditioned solvers depends heavily on the energy, the

number of iterations for the preconditioned solvers only mildly depends on the energy. Furthermore,

the time needed for the solution is dramatically reduced, although one forward and one backward 3D

FFT and a multiplication with the blockdiagonal matrix are needed for the application of the precon-

ditioner. Because a matrix equation has to be solved, i.e., as many right hand sides as the number of

unknowns, even the lowest energies benefit from using the preconditioner, as the setup of the precon-

ditioner is relatively inexpensive, and even these systems are solvedmuch faster by the preconditioned

solver.

The results are similar for the case of a nickel–palladium alloy, where some of the palladium atoms

are replaced by nickel atoms. In this case the atoms are still at the optimal FCC grid points, that is, the

locations are not perturbed for either type of atom. The iteration counts and timings are reported in

Fig. 5. The third case, combining a perturbation of both the type and location of atoms, is reported in

Fig. 6.

Overall, the time needed for the solution of the linear system is reduced by a factor between 2.68

and 3.33 in the case that GMRES(20) is used for energy 12. For TFQMR, the factor is between 2.23

and and 2.88. For the critical energy the savings are much bigger: If GMRES(20) is used the reduction

factor is between 81.72 and 115.94, and for TFQMR the factor is between 25.10 and 32.18. In all cases,

TFQMR outperforms restarted GMRES, independently of whether preconditioning is used or not. As

noted before, the setup time for the preconditioner is about 2s and it can be neglected, at least in
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Fig. 4. Number of iterations and timings for the palladium systemwith slightly perturbed atomic positions. (a) Number of iterations.

(b) Timings.
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Fig. 5. Number of iterations and timings for the nickel–palladium system with regular atomic positions. (a) Number of iterations.

(b) Timings.

the critical energy case. In the case of non-critical energies preconditioning still helps even for lower

energies because of the many different right hand sides that have to be solved in the application.

We also did some comparisons of our preconditioner to other preconditioners, e.g.,the incomplete

LU factorization [6]. In Fig. 7 the results of a comparison of our preconditioner to the ILU using a drop

tolerance of 10−2 in the third case can be found. The setup of the MATLAB-supplied ILU takes a little

more than 5s on our test machine, so it is higher than the time needed to build the block-circulant

preconditioner. Additionally, the number of iterations needed to solve the systempreconditionedwith

the ILU is slightly higher, and the time needed to solve the system is much higher than in the case of

the block-circulant preconditioner. Finally, the performance of ILU shows a larger dependence on the

energy level, so the developed preconditioner outperforms it.
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Fig. 6. Number of iterations and timings for the nickel–palladium system with slightly perturbed atomic positions. (a) Number of

iterations. (b) Timings.
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Fig. 7. Number of iterations and timings for the developed preconditioner and the ILU with a drop tolerance of 10−2 applied to the

nickel–palladium system with slightly perturbed atomic positions. (a) Number of iterations. (b) Timings.

5. Conclusion

For the application studied in this paper, a constant-block preconditioner is very well suited. The

systems only vary slightly from the ideal case, so the approximate inverse is close enough to the

original inverse. As the boundary conditions in the application are periodic, the averaged version can

be efficiently solved using the FFT, for which optimized versions exist that yield high performance

on different computer architectures. The numerical results show that the approach yields a huge

performance gain. Our preconditioner has been integrated into the production code KKRnano of the

Peter Grünberg Institut at the Forschungszentrum Jülich. Currently, we are working on substantiating

the numerical results presented here by theoretical analysis.
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