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1. Introduction

We consider the Dirichlet problem

—Au=g(x,u) in$
u=0 onads, (1.1)

where £2 is a bounded domainin R* and g : £2 x R — Risa C!-function with g(x,0) = 0.Given 0 < A1 < Ay < --- A <
- - - the sequence of eigenvalues of the problem

—Au=Au in$2,
u=0 onos.

Let us denote by G(x, s) the primitive fos g(x, t) dt, and write

X, S . X, S
Lo = minfe% . koo = limsup £
s—>+o00 S s—>+o0 N
.. 2G(x,8) . 2G(x, s)
L+ (x) = liminf ———, Ki(x) = limsup ———.
s— =400 52 s—>+00 52

We will decompose the space H(} (£2) asE =V @ Ex & W, where V is the subspace spanned by the A;-eigenfunctions with
j<kandE =E (kj) is the eigenspace generated by the A;-eigenfunctions and W is the orthogonal complement of V @ Ej
in H; (£2) and we write for any u € H}(£2) as the following u = u~ + u* + u* where u= € V,u* € Ex andu® e W.
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In [1], the solvability of (1.1) was ensured by Dolph when
AM<U =) S ke(X) < < Agya,
where v and p are constants. However, the case where I1(x) = Ay or kp(x) = A1 was considered in several works
(Se?n[ %151 ]Z%]C)'osta and Oliviera extended the result of [1], assuming the following conditions
M <L) <ki(X) < Agp1 Vx e £, (1.2)
and
Ak < Le(x) < KL(X) < Akt (1.3)

Here, the relation a(x) < b(x) indicates that a(x) < b(x) on §2, with strict inequality holding on a subset of positive measure.
More recently, in [16] the first author proved the existence of multiple nontrivial solutions in some situations of (1.2)
and under more weaker conditions of (1.3).
In this paper, we will deal with the existence of multiple nontrivial solutions under the following assumptions:

(GO) There exist C > 0, bg (x) € L* (£2) such that
lg'(x, $)| < ClslP + by (x)
forall s e Randa.ex € £2,with p < % if n > 3 and no restrictionifn = 1, 2.
(G1) There exist a > 0, b (x) € L? (£2) and 0 < & < 1 such that
gXx, ) >Ms—als|*—bx) xe£,s>0,
g(x, ) <Ms+als|*—bx) xe€£,s=<0,
and

i g(x,s)
im sup
s—+o0 N

= ki) < k(X) < Arg1.
(G2) Forevery z € E(A1)\ {0}

/ (hiepr — Ky (%)) 2%dx + f (hir1 — K- (%)) 2°dx > 0
z>0

z<0
where K. (x) = lim sup,_, .o 252
(G3) W [0 (Glx, u(x)) — 2 (u(x))*)dx — +00, as [|ul| = oo, u € E(Ap).
(G4) There is some 8 > 0 such that

A A
7’”t2 <G(x t) < Zmtle2

for|t| < B,aexe 2, k>2and2 <m < k.
(G5) There is some 8 > 0 such that

A
%tz <Gt

for |t] < B,aex € 2.

Now, we state the following results.

Theorem 1.1. Under the conditions (GO-G3), (G4) or (G5) with k > 2, there is t; > 0 such that g (x,t;) = 0. Then the
problem (1.1) has at least four nontrivial solutions.

Theorem 1.2. Assume that (G0-G3) and (G5) are satisfied with k = 1 and there is t; > 0 such that g (x, t;) = 0. Then the
problem (1.1) has at least two nontrivial solutions.

The proof of our results are based on combining the Morse theory and the minimax methods.

The present paper is organized as follows. In Section 2, some technical lemmas are presented and proved. In Section 3,
we give the proofs of our results.

In Section 4, we present an example where our results apply and are not covered by the results mentioned in [8,15-20].

2. Preliminaries

Let us consider the following functional defined on H(} (£2) by

d(u) = %/ |Vu|2dx—/G(x, u)dx
2
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where H(} (£2) is the usual Sobolev space obtained through completion of C°(£2) with respect to the norm induced by the
inner product

(u, v) =/ VuVudx, u,v e Hj(R2).
2

It is well known that under (G0) and (G1) @ is well defined on H} (£2), weakly lower semi-continuous and ¢ € C? (Hg, R),
with

(D' (u),v) = / VuVudx — /g(x, wvdx, Yu,v e H&(Q),
o)
and,
" (W)v.w = / VoVwdx — /g/(x, wowdx, Yu,v,w € Hy(£2).
Consequently, it is clear that the weak solutions of problem (1.1) are the critical points of the functional &.

2.1. A compactness condition
To apply minimax methods for finding critical points of @, we need to verify that @ satisfies the Palais-Smale condition.
Definition. Let E be a real Banach space and & € C!(E, R).
(i) A sequence (u,) is said to be a (PS) sequence, if there is a sequence €, — 0, such that
D(u,) > ¢ (2.1)
(@' (un), v) < €nllv]l Vv € Hp. (2.2)

(i) A functional @ € C'(E, R), is said to satisfy a (PS) condition, if every (PS) sequence (u,), possesses a convergent
subsequence.

Now, we present some technical lemmas.

Lemma 2.1. Let p € C' (2 x R, R) satisfy p(x,t) =0 fort < 0,x € £2 and

X, t . X, t
A < liminfM < lim sup M < Aky1, k=>2.
t—00 t—00 t

Then the functional @ : H(} (£2) — R, defined by

1
<D(u):f/ |Vu|2dx—/ P (x, u) dx,
2 k2] 2

satisfies the (PS) condition, where P (x, t) = fot p (x,s)ds.

Proof. Let (u,), C H(} (£2) be a (PS) sequence. It clearly suffices to show that (u,), remains bounded in H& (£2). Assume by
contradiction. Defining z, = ”Zﬁ we have ||z,|| = 1and, passing if necessary to a subsequence, we may assume thatz, — z

weakly in H) (£2), z, — z strongly in [*(£2) and z,(x) — z(x) a.e.in £2. By (2.2), there isanm € [*(£2) with A, < m < A4
such that
@' (uy), u
W—)l—/m(x)z(x)dx:o. (2.3)
llunll 2

Hence, z is a nontrivial solution of the problem
—Az=m(x)z" ing,
z=0 onds,

where z* = max {z, 0} .
By the maximum principle and the unique continuation property,z = z* > 0and m = A, orm = Ayyq. Since
k > 2,z = 0, which contradicts (2.3). Hence ||u,|| is bounded. The proof is completed. O

2.2. Critical groups

Let H be a Hilbert space and @ € C!(H, R) satisfying the Palais-Smale condition. Set ®° = {u € H | ®(u) <
c} and denote by Hq(X, Y) the gth relative singular homology group with a real coefficient. The critical groups of @ at an
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isolated critical point u with & (u) = c are defined by
C(®,u) =Hy(@°NU, 2 NU\{u}); qeZ

where U is a closed neighborhood of u.
Let K = {u € H | &'(u) = 0} be the set of critical points of @ and a < infy @. The critical groups of @ at infinity are
defined by

Cq(@, 00) = Hy(H, @%); q € Z.

Proposition 2.1 ([21]). If u is a mountain pass point of &, then
Co(P, u) = §41R.

Proposition 2.2 ([22]). Assume that H = H™ @ H~ , @ is bounded from below on H* and @ (u) — —oo as |ju| — oo
with u € H™. Then

Cu(®,00) 20, withpy =dimH™ < oo.

3. Proof of the main results

In this section we need some technical lemmas.

Lemma 3.1. Under the assumptions (G1-G2), there exists § > 0 such that

o) = ||u||2—/ Ky (x)uzdx—/ K_ (x) u*dx > 268]|u||®.
u>0 u<0

forallu e W = @jzr41 Ei.

Proof. By the assumption (G1), we have Ky (X) < Ay41, then for allu € W we deduce

0 = [ulP — At / 2dx > 0,
2

If o (u) = O then u is a Ay q-eigenfunction and

f (i1 — Ky (0)) uPdx + / (M1 — K- () udx =0
u>0

u<0

which implies, by (G2) that u = 0. Let prove the lemma by contradiction. Suppose that there exists a sequence (u,), C
W such that |ju,]] = 1and o (u,) — 0. The sequence (uy), is bounded in H(} (£2), then, passing if necessary to a
subsequence, we may assume that u, — u weakly in H(} (2), u, — ustrongly in L?(£2). Thus, we obtain

o (u) <liminfo (u,) =0
so u, — 01in L?(£2). On the other hand,

o) =1— / Ki (x) uﬁdx — / K_ (x) uﬁdx — 1, asn— +oo,
u>0 u<0
which contradicts the fact that ¢ (u,) — 0. The proof of the lemma is complete. [

Lemma 3.2. Under the assumptions (GO) and (G1), there exist 8,y : 2 X R — R and c : 2 — R such that:

(i) A < B(x,5) < (k(x) + ‘”‘kTH)

(ii) c (%) € [*(£2) and |y (x,)| < als|” +c (x);
(iii) g (x,5) = v (x,5) +sB (x, s) forall (x,s) € 2 x R, where § is given by Lemma 3.1.

Proof. Using the assumptions (GO) and (G1), we conclude that there is d(x) € L? (£2) such that

A
g(x,s) < (k(x) +8%>s+ d(x), xe€Q,s>0,

and

Akr1
g(x,s) > I<(x)+87 s—dx), xe£2, s<O0.
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Let us define

o [EXS) — d(x),kk

Ma s>0
S
B(x,8) = M s=0
, d
Max(g(xs)—’_(x)’)\'k) s<0
S

and

Y (x,5) =gx,5) — B(x,9)s.
It is easy to see that § and y satisfy properties (i), (ii) and (iii). O

Lemma 3.3. Under the hypothesis (GO-G3), the functional @ has the following properties:

(i du) - —c0 ueV®@E, |ul|— +oo.
(ii) ® (u) > 400 ueWwW, |u| —> +oo.

1119

Proof. (i) Letu € V & Ey be writtenas u = u~ + u¥. Let us fix m € IN* such that (Ak+1 — A+ M’%) < 3 (i — Aymr).

Let us define f (x,s) = g (x,s) — A,sand F (x, t) the primitive fotf (x, s) ds, we have

P u) = %/IVu‘|2dx—%/|u‘|2dx—/F(x,u)dx
_ u’< uk
q(u )—/F(x,W)dx—i—/[F(x,W)—F(x,u)}dx,

where q (1) = 1 [ |Vul*dx — 2 [ |u|? dx. By Lemma 3.2 and the formula

uk 1 le uk
F (x, 2m+1> —F&,u = / (2m+1 — u)f (x, u+t <2m+1 — u)) de,
0

we obtain

uk uk 1 uk
F(X,W>—F(x,u)=<2m+l—u)/(; y(x,u—l—t(zmﬂ—u)
uk 1 uk
(=0 [ (e (1))
uk 1 uk
= <2m+1 —u)/(; y(x,u—i—t(szrl —u))dt
uk 2 uk
+ <2m+1—u) /(; M(t)dt—i—A(szrl —u) u,

where A(t) = 8 (x, u+t (Znﬁ’% - u)) —M¢and A= folA (t) dt.
While using (ii) of Lemma 3.2 we deduce
uk
u+tt om+1 u

uk 1
P 5o ) ~F o < (] + ) [ (a
uk > uk
+ |:<2m+1 —u) +u(2m+1 —u>i|A.

Then, by assertion (i) of Lemma 3.2 and the following inequality

(o) (o= 45

2m+l 2m+1 2m

o

+c (x)> dt

we have

uk 0 1
F(x, W) —F(x,u) < a(|u |+‘u’|)/(;

o

de

uk

2m+1

1—-tu+t
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1 A
+ (Ju*] + Ju™]) le@)| + o (u’)2 (k(x) e+ 5"“)
1
< 20 (|u] + fu[) ([ o+ Ju|) + leeol (] + Ju[) + 5 Gue= hien) (7).
Hence, the Young and Holder inequalities give

k
/[F(x, %) F(x, u)]dx<<xk—xk D12 4 € (st + 1),
2

Consequently, it results that

P (u) < A — A (¢ ! F w0 g
W = —*( = heen) lu 15 4 et —W X om1 ) 9

So by the assumption (G3), we have @ (u) — —oo as |[u|]| = oo.
(ii) Let u € W, by the definition of K. (x) there exists a real R > 0 such that

2
G(x,s) < (Iq(x) + (Sﬂ) % foralls > R,

and

2
S
G(x,s) < (K x) + 68 "“) 5 foralls< -k

Moreover by the condition (G0), there exists e € L' (£2) such that for all |s| < R we have

IG(x,9)| < le(®)].

%/qulzdx—/ G(x,u)dx—f G (x, u) dx

>0

1/|Vu|2—/|e(x)|c1 —5—"“/| E / K+(x)u2dx—/ K@ 2.
2 2 u<0 2

By using Lemma 3.1 and the fact A1 [ [ul® dx < [|u]|* we conclude that

So we obtain

D (u)

v

v

3 2
@ (u) = EIIUII — lells.
Thus @ (1) — 400 as||u|| = +o0. The proof is completed. O

Lemma 3.4. Under the hypothesis (GO-G3), (G4) or (G5), the functional @ satisfies the (PS) condition.

Proof. Let (u,), C H(} (£2) be a (PS) sequence, i.e
D(u,) —> ¢ (3.1)
(P (un), v) < &llv]l Vv € Hy, (3.2)

where €, — 0. It clearly suffices to show that (u,), remains bounded in H, 1 (§£2). Assume by contradiction that [|uy| is
not bounded. Defining z, = ”u - we have ||z,|| = 1 and, passing if necessary to a subsequence, we may assume that
z, — z weakly in H} (£2), z, — z strongly in L?(£2) and z,(x) — z(x) a.e. in L. Let us consider the sequence (W)
It remains bounded in L? (£2), then for a subsequence, we have
g(x, up (x))
lluall

By the assumption (G1), ¢ can be written as

¢(x) = mx)z(x)

where m € L (§2) satisfies

—~ ¢ inl*(Q).

Ak <m(X) < A1 ae.in £2,
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(see [15]). Dividing (3.2) by ||u,|| and going to the limit, we obtain
vade - /m(x)zvdx =0 YveH)(R). (3.3)

Taking v = z in (3.3), we have

f |Vz|?dx = /m(x) (2)? dx. (34)

On the other hand, replacing v by z, in (3.2), dividing by ||u,|| and passing to the limit we deduce

1— f m(x) (z)%dx = 0. (3.5)
By (3.4) and (3.5), it follows that z # 0, so z is a nontrivial solution of the problem

—Az=m(x)z in$

3.6
z=0 onods2. (36)

We now distinguish three cases: (i) Ay < m(x) and m(x) < A1 on a subset of positive measure; (i) m(x) = Xy; (iii)
m(x) = Agyr.

Case (i) By the strict monotonicity, we have i, (m) < Ay (Ax) = 1 = Agpq (Ak1) < Appr (m). This contradicts the fact
that 1 is an eigenvalue of the problem (3.6).

Case (ii) m(x) = Ay, so z is a A,-eigenfunction. In this case we give the proof in two steps:

Step (1) We proves that there exist two positive constants A, B such that

- +12 k 1+
lu, +u, [I© <A+ Blluyll ™.

where u, = u; +uf + u, with u; € V, u¥ € Erand u € W.For v = u} — (u; + uf) in(3.2), we obtain

[ 1P = Aallegt 15] = [lug 12 = Aellug 15] < /f (X, ) vdx + [v]]. (3.7)
From the variational characterization of Ay, there exists §; > 0 such that
I 1P = Aelluf (153 = Slluf 17 and Jluy 11 = Aellug 115 < —8elluy 117,
then
(e 12 = Aellwf 15] = [y 1P = Aellug 15] = Silluy, + w1 (38)
On the other hand, by Lemma 3.2

/f (%, up) vdx = /ﬁ/ (%, uy) [(u,f)2 — (uy + u’;)z] dx + / v (X, Uuy) vdx

()’ 2
< / B (co ) e + / Y (%, 1) vdx, (39)

where 8’ (x,s) = B (x,s) — At. The sequence (,3’ (x, ”"))n remains bounded in L* (§2), then passing if necessary to a
subsequence, B’ (x, u;) — B in the weak* topology of L (£2). It is clear that the L* (£2)-function 8 satisfies

Akt1
-5
In what follows, we must show that 8 = 0. Indeed, we have

(D' (up), uy) f(x, up) u
R =zl — Mllzall — / zrdx — / f @ up) ——dx
Jup|<1

l[unll? ugl>1  Un l[unll?

0<B<kkXx —A+34 (3.10)

’ (X7 un) un
— - [ peaz- [ TR [ peou)
[un|>1 lup|<1 ”un”

lun|>1 Up

This converges to 0 according to (3.2). Moreover, since, z, — z strongly in H(} and strongly in L?

IZall* = Aellzalls = 11217 = Aelizll3 = 0. (3.11)
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By (ii) of Lemma 3.2, we deduce

X, u _ c(X)||u
/ Y (X, Un) z,fdxsa/|un|‘“z,fdx+ lcCo| |un
lup|>1 Up

l[unll?
llun [+ L G
lunll? llunll

where C; and C, are positive constants. So

1

X, U
/ y & un) zidx — 0 as ||uy|| — oo.
|lup|>1 Un

(3.12)
It is easy to see that
Up
/ f(x,uy) 2clx—> 0 as|uy|| — oo.
lup|<1 ”un”

Thus, combining (3.11)-(3.13) we verify that

(3.13)
/ﬂ/ (x, up) z2dx — 0 = //3 (x) Z2dx  as ||u,|| — oo.
Finally, by the unique continuation property and § > 0, we deduce that 8 = 0 a.e.in £2.
+ +
Let us return to (3.9), in the first term on the right, the sequence ( ”51 0 ) remains bounded in H(} (£2), then ||Zlu — win
n n n
L? (£2). This implies that
2
(uy) Sk
B (x,up) ——dx < — (3.14)
/ T T 2
for rather large values of n. In the second term, by (ii) of Lemma 3.2, we have
/ y (X, up) vdx < af |+ ] [fr |+ [y | 4 k] ]+ G (I 1+ Nl =+ llu; 1)
Jup|>1
< Ca (Il 1T+ Mgl flug 19747) 4+ G (a1l =+ Nugll =+ g 1) (3.15)
where C; and C,4 are positive constants. Consequently, by (3.8), (3.9), (3.14) and (3.15), the inequality (3.7) becomes

_ Sy _ _
Sellu, +uf|? < vl + E{IIU,TII2 + Cs (luf Il gl =+l 1)+ Ca (g 1977 g 197+ fuy [14F7)
When applying the Young inequality it becomes

_ Sk _ _
Selluy, +ufll® < Ellu,.+ +uy 1P 4 elluf +uy 1P 4 G (Jlug ™" + 1)
where Cs is a positive constant. For rather small values of ¢, we obtain

k _ o
L +uf 12 < G (uf*t +1).

So we conclude that

(3.16)
k - + k +1 3
[lunll = Nugll] < lluy +uf Il < [Co (lugh*™" + 1)]?
k
where g is a positive constant. This implies that limp,—, ;~ ”Z:” = 1, and consequently ||uﬁ|| — ooasn — +oo.
Step (2) To lead to a contradiction with (G3). By (2.3), there exists a constant A such that
uk 1 uk
/F (x, 3”> dx <A+ Sl + ut|? +/ [F <x, 5") —F(x, un)] dx. (3.17)
As in the proof of the Lemma 3.3, we obtain
k
u A
/ [F (x, 2“) —F(x, un)] dx < (k (x) — Ay + 8251

> ) luy + w1 + G (gl + 1),
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with (; is a positive constant, and (3.17) becomes

uk
/F (x, 3"> dx < Gglluk[|*™ + G

k
where Cg and Cy are positive constants. This gives that W f F (x, "7’5) dx is bounded, which contradicts (G3).
n

D (un)
llun 2

Case (iii) m(x) = Ag41. Since z, — z in Hy and

2G (%, up (%)) 2F (x, up (%))
/ P dx = / P
llunll llunll

On the other hand, by Fatou’s lemma, we have

lim sup] de < /lim sup Mzz (x) dx

— 0as ||uy|]] = oo, we obtain

dx + Allzall; — llz]1%. (3.18)

2 2 n
[l ]| Uyl
2G (%, u, (x . 2G (%, u, (x
< / lim sup (7;());% () dx + / lim sup (7;())2,3 (x) dx
z>0 [up| z<0 Ut |
< / Ky (x) Z2dx + / K_ (x) z%dx. (3.19)
z>0 z<0

Combining (3.18) and (3.19), it follows

l2ll? < f Ky (x) 22dx + / K_ () 2dx.
z>0 z<0

Since z € E (Ayy1), this implies:

f (A1 — Ki (%)) 2%dx + f (A1 — K (%)) 2%dx < 0,
z>0

z<0

which contradicts (G2). This completes the proof of Lemma 3.4. O
Lemma 3.5 ([16]). If (G4) is satisfied, then Cy(®, 0) = 8, 4R, where d = dim ®j<n, E;.
Lemma 3.6 ([16]). If g satisfies

%’”tz <G(xt)

for |t] < B, aex e 2, then Cy(®,0) =0 for g < d = dim i<y E (1)).

Proof of Theorem 1.1. By Lemma 3.4, the functional @ satisfies the (PS) condition. Since @& is weakly lower semi-
continuous and coercive on W, @ is bounded from below on W. Moreover, by (i) of Lemma 3.3, @ is anti-coercive on
V & Ey, thus by proposition 2.2, we conclude that

Cu(@,00) 220

where u = dimV & E; > k.
It follows from the Morse inequality that @ has a critical point uy with

C[L(®5 uO) Z 0. (320)
Using the condition g(x, t;) = 0 for t; > 0, we define
0 ift <0
gx, 1) =g, t) ift [0, 1]
0 ift > t]

and G(x, t) = fot Z(x, s) ds. Consider the cut-off functional & : H} (2) - Ras
~ 1 ~
D) =-— / |Vul>dx — /G(x, u)dx.
2Je

It is clear that E(x, t) is bounded, so, @ is coercive and satisfies (PS). Hence, @ possesses a minimum u4. By the [?-regularity,
u; € C! (.Q) and by the maximum principle, we deduce that either u; = Oor 0 < u; < t;y forall x € £2. Choose
Ro < min {t;, 8} and

Rop1 (%)
max {¢; (x),x € 2}’

®o (X) =
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where ¢, is the eigenfunction corresponding to 11. By (G4) or (G5) we obtain

1 ~
;mW—/ Gix. go)dx
{x/0<po(x)<Ro}

1
<3 (M — A2) / (9o)* dx < 0.

@ (¢0)

A

Then,
@ (u1) < P (po) <0
which implies that
O<u; <t; and @ (uq) :5(u1).
It is clear that there exist two constants « and 8 such that:
O<a=<u;(x) <B <t forallx e 2.
Lete = inf(%, %) for allu € B (uy, &), with the norm defined in C(} (£2) being given by ||u]| = supyco [u (X)| + SUPyeo
|u (x)], we have:
0<u(x) <t; forall x e £2.
Then,
@ (uy) <@ (u) forallu e B(uy,e¢).

so, Uy is a nontrivial local minimum of & in the C(} (£2) topology. By standard arguments [23], we know that u; is a local
minimizer of @ in H, (£2) topology and

Co(@, 1y) = 5y 0R. (3.21)

Now, define the functionals &, : H; (2) — Ras
1
Dy (v) = 5[ |Vv|?dx —f [Gx, uy + vF) — Glx, up) — g(x, u)v™] dx
2 2
where v+ = max {v(x), 0}, v~ = min {v(x), 0}. Then @&, € C2, we obtain

@y (v) = & (ug +vF) — @ (ug) + %/ |VuT|2dx. (3.22)
2

Then, 0 is a strict minimum of &_.. By the condition (G1) and the fact k > 2, we prove that
D4 (tp) > —00 ast — +oo,

where ¢ is the first eigenfunction of —A. Indeed, for t > 0, we have

2 2 a+1
Dy (tg1) < 5()»1 — ) | @idx+ Cit* T 4+ Gt + G,

Since,0 < o < 1and A; — A, < Oforall k > 2, it follows that
@, (tg1) > —o0 ast — +oo.

By similar arguments, we obtain
D_ (tp1) > —o0 as t — —oo.

Then, we can find a t; such that
to > R with @4 (t¢g,) <O0.

Since u = 0 is a strict local minimum of &, there exista y > 0and R > 0 such that @, > y on dBg (0). By Lemma 2.1,
the functionals @ satisfy the (PS) condition. So, the mountain pass lemma ensures that

¢ = inf max & (h(t))

hel’ 0<t<1
are critical values of @, where

I ={hec([0,1],Hy) /h(0) =0,h(1) = top }
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and ¢ > y. Then, we obtain a critical point v, of @, and a critical point v, of @_ such that

Ci(Dy,v) 20 fori=1,2.
Since v and v, are mountain pass points, we have

Cy(Dx,vi) = 854R fori=1,2. (3.23)
Hence, v, satisfies

—Av=gkx u; +v") —gk u) in 2,
v=0 onds2.

By the maximum principle, we deduce that v, is a positive critical point of @ . By a similar method, v, is a negative critical
point of @_.

Hence, u, = u; + vy and us = uy + v, are two solutions of (1.1), and u3 < u; < u,. According to the results given
in [23], the critical groups of @ at u, and u3 are respectively

C(@, up) = Cy(@ /C&(Q)! Up) = Cy(Dx /C(}(Q)v v1) = C(Pz, v1) = §g1R,
Cq(¢! uz) = Cq((p /COI(Q)’ uz) = Cq((p:l: /C(}(Q)s V) = Cq((pj:» V) = 8q,1]R-

By (3.20), (3.21), (3.24), Lemma 3.5 and 2 < m < k, we conclude that ug, uq, tu; and u3 are four nontrivial critical points of
@. This completes the proof. O

(3.24)

Proof of Theorem 1.2. According to the same arguments as in the proof of Theorem 1.1, involving the cut-off technique and
the maximum principle, @ has a local minimizer u; with 0 < u; < t;.

On the other hand, using the condition (G5) with k = 1 and Lemma 3.6, we deduce that (;(®,0) = Oforq < 1.
Consequently, from (3.20) and (3.21) we conclude that & has at least two nontrivial solutions, one of which is positive. The
proof is completed. O

4. Example

Let y €]0, 8[ with 8 = Aryq — Ag and let the sequences a, = 22" — 2% b, = 22" + 2% cp, = 221 _ 2% and
d, =221 4 2% for n > 1.
Let us define the odd function fon £2 x R* forall x € £ as the following
(Am + (Amy1 — Am) sinl(x))s ifs € [0, 1],
A(x)s+B(x) ifsell,?2],
85% ifse[2,a;]U <ng] [bn, cp] U [dy, an+1]> ,
—yp2" ifs=2%" for all n > 1,
fx,s) = 622" ifs=2"""" forall n=>1,
Cos+Dy ifs € [a,,2°"], n=>1,
Exs+F, ifse 2 by], n>1,
Gus + Hy ifs € [cn, 22”“], n>1,
ILis+], ifse [22”“, dn], n>1,

where: [ : 2 — [0, 5] is C' withI(x) = 0 on £2; and I(x) = % on £2,, where £2; and £2, are two subsets of £2 with positive
measures,

A(X) = V85 — A — g1 — ) SINLX), B (x) = 2 (hn + (omy1 — Am) Sinl(x)) — 5v/4,

= 2% <y2" + 5\3@) ., Dp=2" (ya,, + 2“53/@) :
E, = 2°%" (yz” + 85/%) , F, = —2% (ybn + 2"8\3/b>3> ,
G, = 23n8 <22n+1 _ 3 Cﬁ) , H, = 525n+1 (3 Cg _ Cn> ,

In — _23118 (22n+1 _ \?/%) and _]n — _82511—0—1 < 3 d% _ dn) ,

f&x.s)

N

G

=

fxs) = )‘k-H — A and lim infm_)oo ff;"—? = —y.

N

Thus, the function f satisfies lim infjs— o =0, limsupy_, o



1126 A.R. El Amrouss et al. / Computers and Mathematics with Applications 57 (2009) 1115-1126
A calculation of the primitive F (x, s) gives that

3 3
DY+ < JIsI® < F(x,5) < C(x) + 53/ Is|°,

with C and D being two C'-functions So, we conclude that limyyj_ oo 24 = 0 and limjgj—.oc £%% = o0 which imply the

. Is|+/Isl
condition (G3).
Note that our results are not covered by the results mentioned in [8,15-20].
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