Existence of multiple nontrivial solutions for semilinear elliptic problems

A.R. El Amrouss*, F. Moradi, M. Moussaoui
University Mohamed I, Faculty of Sciences, Department of Mathematics, Oujda, Morocco

ARTICLE INFO

Article history:

Received 28 November 2007
Received in revised form 2 December 2008
Accepted 12 January 2009
Keywords:
Minimax method
Critical group
Morse theory
Multiple solutions

Abstract

The aim of this paper is to prove the existence of multiple nontrivial solutions to a semilinear elliptic problem at resonance. The proofs used here are based on combining the Morse theory and the minimax methods.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the Dirichlet problem

$$
\begin{align*}
& -\Delta u=g(x, u) \quad \text { in } \Omega \\
& u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{n} and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function with $g(x, 0)=0$. Given $0<\lambda_{1}<\lambda_{2}<\cdots \lambda_{k}<$ \cdots the sequence of eigenvalues of the problem

$$
\begin{aligned}
& -\Delta u=\lambda u \quad \text { in } \Omega \\
& u=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Let us denote by $G(x, s)$ the primitive $\int_{0}^{s} g(x, t) \mathrm{d} t$, and write

$$
\begin{array}{ll}
l_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{g(x, s)}{s}, & k_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{g(x, s)}{s}, \\
L_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{2 G(x, s)}{s^{2}}, & K_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{2 G(x, s)}{s^{2}} .
\end{array}
$$

We will decompose the space $H_{0}^{1}(\Omega)$ as $E=V \oplus E_{k} \oplus W$, where V is the subspace spanned by the λ_{j}-eigenfunctions with $j<k$, and $E_{j}=E\left(\lambda_{j}\right)$ is the eigenspace generated by the λ_{j}-eigenfunctions and W is the orthogonal complement of $V \oplus E_{k}$ in $H_{0}^{1}(\Omega)$ and we write for any $u \in H_{0}^{1}(\Omega)$ as the following $u=u^{-}+u^{k}+u^{+}$where $u^{-} \in V, u^{k} \in E_{k}$ and $u^{+} \in W$.

[^0]In [1], the solvability of (1.1) was ensured by Dolph when

$$
\lambda_{k}<v \leq l_{ \pm}(x) \leq k_{ \pm}(x) \leq \mu<\lambda_{k+1},
$$

where v and μ are constants. However, the case where $l_{ \pm}(x) \equiv \lambda_{k}$ or $k_{ \pm}(x) \equiv \lambda_{k+1}$ was considered in several works (see [2-14]).

In [15], Costa and Oliviera extended the result of [1], assuming the following conditions

$$
\begin{equation*}
\lambda_{k} \leq l_{ \pm}(x) \leq k_{ \pm}(x) \leq \lambda_{k+1} \quad \forall x \in \Omega \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{k} \preccurlyeq L_{ \pm}(x) \leq K_{ \pm}(x) \preccurlyeq \lambda_{k+1} . \tag{1.3}
\end{equation*}
$$

Here, the relation $a(x) \preccurlyeq b(x)$ indicates that $a(x) \leq b(x)$ on Ω, with strict inequality holding on a subset of positive measure.
More recently, in [16] the first author proved the existence of multiple nontrivial solutions in some situations of (1.2) and under more weaker conditions of (1.3).

In this paper, we will deal with the existence of multiple nontrivial solutions under the following assumptions:
(G0) There exist $C \geq 0, b_{0}(x) \in L^{\infty}(\Omega)$ such that

$$
\left|g^{\prime}(x, s)\right| \leq C|s|^{p}+b_{0}(x)
$$

for all $s \in \mathbb{R}$ and a.e $x \in \Omega$, with $p<\frac{4}{n-2}$ if $n \geq 3$ and no restriction if $n=1,2$.
(G1) There exist $a \geq 0, b(x) \in L^{2}(\Omega)$ and $0 \leq \alpha<1$ such that

$$
\begin{aligned}
& g(x, s) \geq \lambda_{k} s-a|s|^{\alpha}-b(x) \quad x \in \Omega, s \geq 0 \\
& g(x, s) \leq \lambda_{k} s+a|s|^{\alpha}-b(x) \quad x \in \Omega, s \leq 0
\end{aligned}
$$

and

$$
\limsup _{s \rightarrow \pm \infty} \frac{g(x, s)}{s}=k_{ \pm}(x) \leq k(x) \leq \lambda_{k+1}
$$

(G2) For every $z \in E\left(\lambda_{k+1}\right) \backslash\{0\}$

$$
\int_{z>0}\left(\lambda_{k+1}-K_{+}(x)\right) z^{2} \mathrm{~d} x+\int_{z<0}\left(\lambda_{k+1}-K_{-}(x)\right) z^{2} \mathrm{~d} x>0
$$

where $K_{ \pm}(x)=\lim \sup _{s \rightarrow \pm \infty} \frac{2 G(x, s)}{s^{2}}$.
(G3) $\frac{1}{\|u\|^{1+\alpha}} \int_{\Omega}\left(G(x, u(x))-\frac{\lambda_{k}}{2}(u(x))^{2}\right) \mathrm{d} x \rightarrow+\infty$, as $\|u\| \rightarrow \infty, u \in E\left(\lambda_{k}\right)$.
(G4) There is some $\beta>0$ such that

$$
\frac{\lambda_{m}}{2} t^{2} \leq G(x, t) \leq \frac{\lambda_{m+1}}{2} t^{2}
$$

for $|t| \leq \beta$, a.e $x \in \Omega, k>2$ and $2 \leq m<k$.
(G5) There is some $\beta>0$ such that

$$
\frac{\lambda_{k+1}}{2} t^{2} \leq G(x, t)
$$

for $|t| \leq \beta$, a.e $x \in \Omega$.
Now, we state the following results.
Theorem 1.1. Under the conditions (G0-G3), (G4) or (G5) with $k \geq 2$, there is $t_{1}>0$ such that $g\left(x, t_{1}\right)=0$. Then the problem (1.1) has at least four nontrivial solutions.

Theorem 1.2. Assume that (G0-G3) and (G5) are satisfied with $k=1$ and there is $t_{1}>0$ such that $g\left(x, t_{1}\right)=0$. Then the problem (1.1) has at least two nontrivial solutions.

The proof of our results are based on combining the Morse theory and the minimax methods.
The present paper is organized as follows. In Section 2, some technical lemmas are presented and proved. In Section 3, we give the proofs of our results.

In Section 4, we present an example where our results apply and are not covered by the results mentioned in [8,15-20].

2. Preliminaries

Let us consider the following functional defined on $H_{0}^{1}(\Omega)$ by

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int G(x, u) \mathrm{d} x
$$

where $H_{0}^{1}(\Omega)$ is the usual Sobolev space obtained through completion of $C_{c}^{\infty}(\Omega)$ with respect to the norm induced by the inner product

$$
\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v \mathrm{~d} x, \quad u, v \in H_{0}^{1}(\Omega)
$$

It is well known that under (G0) and (G1), Φ is well defined on $H_{0}^{1}(\Omega)$, weakly lower semi-continuous and $\Phi \in C^{2}\left(H_{0}^{1}, \mathbb{R}\right)$, with

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla u \nabla v \mathrm{~d} x-\int g(x, u) v \mathrm{~d} x, \quad \forall u, v \in H_{0}^{1}(\Omega)
$$

and,

$$
\Phi^{\prime \prime}(u) v \cdot w=\int \nabla v \nabla w \mathrm{~d} x-\int g^{\prime}(x, u) v w \mathrm{~d} x, \quad \forall u, v, w \in H_{0}^{1}(\Omega)
$$

Consequently, it is clear that the weak solutions of problem (1.1) are the critical points of the functional Φ.

2.1. A compactness condition

To apply minimax methods for finding critical points of Φ, we need to verify that Φ satisfies the Palais-Smale condition.
Definition. Let E be a real Banach space and $\Phi \in C^{1}(E, \mathbb{R})$.
(i) A sequence $\left(u_{n}\right)$ is said to be a (PS) sequence, if there is a sequence $\epsilon_{n} \rightarrow 0$, such that

$$
\begin{align*}
& \Phi\left(u_{n}\right) \rightarrow c \tag{2.1}\\
& \left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle \leq \epsilon_{n}\|v\| \quad \forall v \in H_{0}^{1} \tag{2.2}
\end{align*}
$$

(ii) A functional $\Phi \in C^{1}(E, \mathbb{R})$, is said to satisfy a (PS) condition, if every (PS) sequence $\left(u_{n}\right)$, possesses a convergent subsequence.

Now, we present some technical lemmas.
Lemma 2.1. Let $p \in C^{1}(\Omega \times \mathbb{R}, \mathbb{R})$ satisfy $p(x, t)=0$ for $t<0, x \in \Omega$ and

$$
\lambda_{k} \leq \liminf _{t \rightarrow \infty} \frac{p(x, t)}{t} \leq \limsup _{t \rightarrow \infty} \frac{p(x, t)}{t} \leq \lambda_{k+1}, \quad k \geq 2
$$

Then the functional $\Phi: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$, defined by

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int_{\Omega} P(x, u) \mathrm{d} x
$$

satisfies the (PS) condition, where $P(x, t)=\int_{0}^{t} p(x, s) \mathrm{d} s$.
Proof. Let $\left(u_{n}\right)_{n} \subset H_{0}^{1}(\Omega)$ be a (PS) sequence. It clearly suffices to show that $\left(u_{n}\right)_{n}$ remains bounded in H_{0}^{1} (Ω). Assume by contradiction. Defining $z_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, we have $\left\|z_{n}\right\|=1$ and, passing if necessary to a subsequence, we may assume that $z_{n} \rightharpoonup z$ weakly in $H_{0}^{1}(\Omega), z_{n} \rightarrow z$ strongly in $L^{2}(\Omega)$ and $z_{n}(x) \rightarrow z(x)$ a.e. in Ω. By (2.2), there is an $m \in L^{2}(\Omega)$ with $\lambda_{k} \leq m \leq \lambda_{k+1}$ such that

$$
\begin{equation*}
\frac{\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} \rightarrow 1-\int_{\Omega} m(x) z(x) \mathrm{d} x=0 \tag{2.3}
\end{equation*}
$$

Hence, z is a nontrivial solution of the problem

$$
\begin{aligned}
& -\Delta z=m(x) z^{+} \quad \text { in } \Omega \\
& z=0 \text { on } \partial \Omega
\end{aligned}
$$

where $z^{+}=\max \{z, 0\}$.
By the maximum principle and the unique continuation property, $z=z^{+} \geq 0$ and $m \equiv \lambda_{k}$ or $m \equiv \lambda_{k+1}$. Since $k \geq 2, z \equiv 0$, which contradicts (2.3). Hence $\left\|u_{n}\right\|$ is bounded. The proof is completed.

2.2. Critical groups

Let H be a Hilbert space and $\Phi \in C^{1}(H, \mathbb{R})$ satisfying the Palais-Smale condition. Set $\Phi^{c}=\{u \in H \mid \Phi(u) \leq$ c\} and denote by $H_{q}(X, Y)$ the q th relative singular homology group with a real coefficient. The critical groups of Φ at an
isolated critical point u with $\Phi(u)=c$ are defined by

$$
C_{q}(\Phi, u)=H_{q}\left(\Phi^{c} \cap U, \Phi^{c} \cap U \backslash\{u\}\right) ; \quad q \in \mathbb{Z}
$$

where U is a closed neighborhood of u.
Let $K=\left\{u \in H \mid \Phi^{\prime}(u)=0\right\}$ be the set of critical points of Φ and $a<\inf _{K} \Phi$. The critical groups of Φ at infinity are defined by

$$
C_{q}(\Phi, \infty)=H_{q}\left(H, \Phi^{a}\right) ; \quad q \in \mathbb{Z} .
$$

Proposition 2.1 ([21]). If u is a mountain pass point of Φ, then

$$
C_{q}(\Phi, u) \cong \delta_{q, 1} \mathbb{R}
$$

Proposition 2.2 ([22]). Assume that $H=H^{+} \oplus H^{-}$, Φ is bounded from below on H^{+}and $\Phi(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$ with $u \in H^{-}$. Then

$$
C_{\mu}(\Phi, \infty) \nsubseteq 0, \quad \text { with } \mu=\operatorname{dim} H^{-}<\infty .
$$

3. Proof of the main results

In this section we need some technical lemmas.
Lemma 3.1. Under the assumptions (G1-G2), there exists $\delta>0$ such that

$$
\varrho(u)=\|u\|^{2}-\int_{u>0} K_{+}(x) u^{2} \mathrm{~d} x-\int_{u<0} K_{-}(x) u^{2} \mathrm{~d} x \geq 2 \delta\|u\|^{2}
$$

for all $u \in W=\oplus_{j \geq k+1} E_{j}$.
Proof. By the assumption (G1), we have $K_{ \pm}(x) \leq \lambda_{k+1}$, then for all $u \in W$ we deduce

$$
\varrho(u) \geq\|u\|^{2}-\lambda_{k+1} \int_{\Omega} u^{2} \mathrm{~d} x \geq 0
$$

If $\varrho(u)=0$ then u is a λ_{k+1}-eigenfunction and

$$
\int_{u>0}\left(\lambda_{k+1}-K_{+}(x)\right) u^{2} \mathrm{~d} x+\int_{u<0}\left(\lambda_{k+1}-K_{-}(x)\right) u^{2} \mathrm{~d} x=0
$$

which implies, by (G2) that $u=0$. Let prove the lemma by contradiction. Suppose that there exists a sequence $\left(u_{n}\right)_{n} \subset$ W such that $\left\|u_{n}\right\|=1$ and $\varrho\left(u_{n}\right) \rightarrow 0$. The sequence $\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$, then, passing if necessary to a subsequence, we may assume that $u_{n} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega), u_{n} \rightarrow u$ strongly in $L^{2}(\Omega)$. Thus, we obtain

$$
\varrho(u) \leq \liminf \varrho\left(u_{n}\right)=0
$$

so $u_{n} \rightarrow 0$ in $L^{2}(\Omega)$. On the other hand,

$$
\varrho\left(u_{n}\right)=1-\int_{u>0} K_{+}(x) u_{n}^{2} \mathrm{~d} x-\int_{u<0} K_{-}(x) u_{n}^{2} \mathrm{~d} x \rightarrow 1, \quad \text { as } n \rightarrow+\infty
$$

which contradicts the fact that $\varrho\left(u_{n}\right) \rightarrow 0$. The proof of the lemma is complete.
Lemma 3.2. Under the assumptions (G0) and (G1), there exist $\beta, \gamma: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $c: \Omega \rightarrow \mathbb{R}$ such that:
(i) $\lambda_{k} \leq \beta(x, s) \leq\left(k(x)+\frac{\delta \lambda_{k+1}}{2}\right)$;
(ii) $c(x) \in L^{2}(\Omega)$ and $|\gamma(x, s)| \leq a|s|^{\alpha}+c(x)$;
(iii) $g(x, s)=\gamma(x, s)+s \beta(x, s)$ for all $(x, s) \in \Omega \times \mathbb{R}$, where δ is given by Lemma 3.1.

Proof. Using the assumptions (G0) and (G1), we conclude that there is $d(x) \in L^{2}(\Omega)$ such that

$$
g(x, s) \leq\left(k(x)+\delta \frac{\lambda_{k+1}}{2}\right) s+d(x), \quad x \in \Omega, s \geq 0
$$

and

$$
g(x, s) \geq\left(k(x)+\delta \frac{\lambda_{k+1}}{2}\right) s-d(x), \quad x \in \Omega, \quad s \leq 0
$$

Let us define

$$
\beta(x, s)= \begin{cases}\operatorname{Max}\left(\frac{g(x, s)-d(x)}{s}, \lambda_{k}\right) & s>0 \\ \lambda_{k} & s=0 \\ \operatorname{Max}\left(\frac{g(x, s)+d(x)}{s}, \lambda_{k}\right) & s<0\end{cases}
$$

and

$$
\gamma(x, s)=g(x, s)-\beta(x, s) s
$$

It is easy to see that β and γ satisfy properties (i), (ii) and (iii).
Lemma 3.3. Under the hypothesis (G0-G3), the functional Φ has the following properties:
(i) $\Phi(u) \rightarrow-\infty \quad u \in V \oplus E_{k}, \quad\|u\| \rightarrow+\infty$.
(ii) $\Phi(u) \rightarrow+\infty \quad u \in W, \quad\|u\| \rightarrow+\infty$.

Proof. (i) Let $u \in V \oplus E_{k}$ be written as $u=u^{-}+u^{k}$. Let us fix $m \in \mathbb{N}^{*}$ such that $\frac{1}{2^{m}}\left(\lambda_{k+1}-\lambda_{k}+\frac{\delta \lambda_{k+1}}{2}\right) \leq \frac{1}{4}\left(\lambda_{k}-\lambda_{k-1}\right)$. Let us define $f(x, s)=g(x, s)-\lambda_{k} s$ and $F(x, t)$ the primitive $\int_{0}^{t} f(x, s) \mathrm{d} s$, we have

$$
\begin{aligned}
\Phi(u) & =\frac{1}{2} \int\left|\nabla u^{-}\right|^{2} \mathrm{~d} x-\frac{\lambda_{k}}{2} \int\left|u^{-}\right|^{2} \mathrm{~d} x-\int F(x, u) \mathrm{d} x \\
& =q\left(u^{-}\right)-\int F\left(x, \frac{u^{k}}{2^{m+1}}\right) \mathrm{d} x+\int\left[F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u)\right] \mathrm{d} x
\end{aligned}
$$

where $q(u)=\frac{1}{2} \int|\nabla u|^{2} \mathrm{~d} x-\frac{\lambda_{k}}{2} \int|u|^{2} \mathrm{~d} x$. By Lemma 3.2 and the formula

$$
F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u)=\int_{0}^{1}\left(\frac{u^{k}}{2^{m+1}}-u\right) f\left(x, u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right) \mathrm{d} t
$$

we obtain

$$
\begin{aligned}
F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u)= & \left(\frac{u^{k}}{2^{m+1}}-u\right) \int_{0}^{1} \gamma\left(x, u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right) \mathrm{d} t \\
& +\left(\frac{u^{k}}{2^{m+1}}-u\right) \int_{0}^{1}\left(u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right) A(t) \mathrm{d} t \\
= & \left(\frac{u^{k}}{2^{m+1}}-u\right) \int_{0}^{1} \gamma\left(x, u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right) \mathrm{d} t \\
& +\left(\frac{u^{k}}{2^{m+1}}-u\right)^{2} \int_{0}^{1} t A(t) \mathrm{d} t+A\left(\frac{u^{k}}{2^{m+1}}-u\right) u
\end{aligned}
$$

where $A(t)=\beta\left(x, u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right)-\lambda_{k}$ and $A=\int_{0}^{1} A(t) \mathrm{d} t$.
While using (ii) of Lemma 3.2 we deduce

$$
\begin{aligned}
F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u) \leq & \left(\left|u^{k}\right|+\left|u^{-}\right|\right) \int_{0}^{1}\left(a\left|u+t\left(\frac{u^{k}}{2^{m+1}}-u\right)\right|^{\alpha}+c(x)\right) \mathrm{d} t \\
& +\left[\left(\frac{u^{k}}{2^{m+1}}-u\right)^{2}+u\left(\frac{u^{k}}{2^{m+1}}-u\right)\right] A
\end{aligned}
$$

Then, by assertion (i) of Lemma 3.2 and the following inequality

$$
\left(\frac{a}{2^{m+1}}-b\right)^{2}+\left(\frac{a}{2^{m+1}}-b\right) b \leq \frac{(b-a)^{2}}{2^{m}}
$$

we have

$$
F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u) \leq a\left(\left|u^{k}\right|+\left|u^{-}\right|\right) \int_{0}^{1}\left|(1-t) u+t \frac{u^{k}}{2^{m+1}}\right|^{\alpha} \mathrm{d} t
$$

$$
\begin{aligned}
& +\left(\left|u^{k}\right|+\left|u^{-}\right|\right)|c(x)|+\frac{1}{2^{m}}\left(u^{-}\right)^{2}\left(k(x)-\lambda_{k}+\delta \frac{\lambda_{k+1}}{2}\right) \\
\leq & 2 a\left(\left|u^{k}\right|+\left|u^{-}\right|\right)\left(\left|u^{k}\right|^{\alpha}+\left|u^{-}\right|^{\alpha}\right)+|c(x)|\left(\left|u^{k}\right|+\left|u^{-}\right|\right)+\frac{1}{4}\left(\lambda_{k}-\lambda_{k-1}\right)\left(u^{-}\right)^{2} .
\end{aligned}
$$

Hence, the Young and Holder inequalities give

$$
\int_{\Omega}\left[F\left(x, \frac{u^{k}}{2^{m+1}}\right)-F(x, u)\right] \mathrm{d} x \leq \frac{3}{8}\left(\lambda_{k}-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+C\left(\left\|u^{k}\right\|_{2}^{1+\alpha}+1\right)
$$

Consequently, it results that

$$
\Phi(u) \leq-\frac{1}{8}\left(\lambda_{k}-\lambda_{k-1}\right)\left\|u^{-}\right\|_{2}^{2}+\left\|u^{k}\right\|_{2}^{1+\alpha}\left(C-\frac{1}{\left\|u^{k}\right\|_{2}^{1+\alpha}} \int F\left(x, \frac{u^{k}}{2^{m+1}}\right) \mathrm{d} x\right)+C^{\prime}
$$

So by the assumption (G3), we have $\Phi(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$.
(ii) Let $u \in W$, by the definition of $K_{ \pm}(x)$ there exists a real $R>0$ such that

$$
G(x, s) \leq\left(K_{+}(x)+\delta \frac{\lambda_{k+1}}{2}\right) \frac{s^{2}}{2} \quad \text { for all } s \geq R
$$

and

$$
G(x, s) \leq\left(K_{-}(x)+\delta \frac{\lambda_{k+1}}{2}\right) \frac{s^{2}}{2} \quad \text { for all } s \leq-R
$$

Moreover by the condition (G0), there exists $e \in L^{1}(\Omega)$ such that for all $|s| \leq R$ we have

$$
|G(x, s)| \leq|e(x)|
$$

So we obtain

$$
\begin{aligned}
\Phi(u) & \geq \frac{1}{2} \int|\nabla u|^{2} \mathrm{~d} x-\int_{u \geq 0} G(x, u) \mathrm{d} x-\int_{u<0} G(x, u) \mathrm{d} x \\
& \geq \frac{1}{2} \int|\nabla u|^{2}-\int|e(x)| \mathrm{d} x-\delta \frac{\lambda_{k+1}}{4} \int|u|^{2}-\int_{u \geq 0} \frac{K_{+}(x)}{2} u^{2} \mathrm{~d} x-\int_{u<0} \frac{K_{-}(x)}{2} u^{2} \mathrm{~d} x .
\end{aligned}
$$

By using Lemma 3.1 and the fact $\lambda_{k+1} \int|u|^{2} \mathrm{~d} x \leq\|u\|^{2}$ we conclude that

$$
\Phi(u) \geq \frac{\delta}{2}\|u\|^{2}-\|e\|_{1} .
$$

Thus $\Phi(u) \rightarrow+\infty$ as $\|u\| \rightarrow+\infty$. The proof is completed.
Lemma 3.4. Under the hypothesis (G0-G3), (G4) or (G5), the functional Φ satisfies the (PS) condition.
Proof. Let $\left(u_{n}\right)_{n} \subset H_{0}^{1}(\Omega)$ be a (PS) sequence, i.e

$$
\begin{align*}
& \Phi\left(u_{n}\right) \rightarrow c \tag{3.1}\\
& \left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle \leq \epsilon_{n}\|v\| \quad \forall v \in H_{0}^{1}, \tag{3.2}
\end{align*}
$$

where $\epsilon_{n} \rightarrow 0$. It clearly suffices to show that $\left(u_{n}\right)_{n}$ remains bounded in $H_{0}^{1}(\Omega)$. Assume by contradiction that $\left\|u_{n}\right\|$ is not bounded. Defining $z_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, we have $\left\|z_{n}\right\|=1$ and, passing if necessary to a subsequence, we may assume that $z_{n} \rightharpoonup z$ weakly in $H_{0}^{1}(\Omega), z_{n} \rightarrow z$ strongly in $L^{2}(\Omega)$ and $z_{n}(x) \rightarrow z(x)$ a.e. in Ω. Let us consider the sequence $\left(\frac{g\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|}\right)$. It remains bounded in $L^{2}(\Omega)$, then for a subsequence, we have

$$
\frac{g\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|} \rightharpoonup \zeta \quad \text { in } L^{2}(\Omega)
$$

By the assumption (G1), ζ can be written as

$$
\zeta(x)=m(x) z(x)
$$

where $m \in L^{\infty}(\Omega)$ satisfies

$$
\lambda_{k} \leq m(x) \leq \lambda_{k+1} \quad \text { a.e. in } \Omega
$$

(see [15]). Dividing (3.2) by $\left\|u_{n}\right\|$ and going to the limit, we obtain

$$
\begin{equation*}
\int \nabla z \nabla v \mathrm{~d} x-\int m(x) z v \mathrm{~d} x=0 \quad \forall v \in H_{0}^{1}(\Omega) \tag{3.3}
\end{equation*}
$$

Taking $v=z$ in (3.3), we have

$$
\begin{equation*}
\int|\nabla z|^{2} \mathrm{~d} x=\int m(x)(z)^{2} \mathrm{~d} x \tag{3.4}
\end{equation*}
$$

On the other hand, replacing v by z_{n} in (3.2), dividing by $\left\|u_{n}\right\|$ and passing to the limit we deduce

$$
\begin{equation*}
1-\int m(x)(z)^{2} \mathrm{~d} x=0 \tag{3.5}
\end{equation*}
$$

By (3.4) and (3.5), it follows that $z \neq 0$, so z is a nontrivial solution of the problem

$$
\begin{align*}
& -\Delta z=m(x) z \quad \text { in } \Omega \\
& z=0 \quad \text { on } \partial \Omega . \tag{3.6}
\end{align*}
$$

We now distinguish three cases: (i) $\lambda_{k}<m(x)$ and $m(x)<\lambda_{k+1}$ on a subset of positive measure; (ii) $m(x) \equiv \lambda_{k}$; (iii) $m(x) \equiv \lambda_{k+1}$.

Case (i) By the strict monotonicity, we have $\lambda_{k}(m)<\lambda_{k}\left(\lambda_{k}\right)=1=\lambda_{k+1}\left(\lambda_{k+1}\right)<\lambda_{k+1}(m)$. This contradicts the fact that 1 is an eigenvalue of the problem (3.6).

Case (ii) $m(x) \equiv \lambda_{k}$, so z is a λ_{k}-eigenfunction. In this case we give the proof in two steps:
Step (1) We proves that there exist two positive constants A, B such that

$$
\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2} \leq A+B\left\|u_{n}^{k}\right\|^{1+\alpha}
$$

where $u_{n}=u_{n}^{-}+u_{n}^{k}+u_{n}^{+}$, with $u_{n}^{-} \in V, u_{n}^{k} \in E_{k}$ and $u_{n}^{+} \in W$. For $v=u_{n}^{+}-\left(u_{n}^{-}+u_{n}^{k}\right)$ in (3.2), we obtain

$$
\begin{equation*}
\left[\left\|u_{n}^{+}\right\|^{2}-\lambda_{k}\left\|u_{n}^{+}\right\|_{2}^{2}\right]-\left[\left\|u_{n}^{-}\right\|^{2}-\lambda_{k}\left\|u_{n}^{-}\right\|_{2}^{2}\right] \leq \int f\left(x, u_{n}\right) v \mathrm{~d} x+\|v\| . \tag{3.7}
\end{equation*}
$$

From the variational characterization of λ_{k}, there exists $\delta_{k}>0$ such that

$$
\left\|u_{n}^{+}\right\|^{2}-\lambda_{k}\left\|u_{n}^{+}\right\|_{2}^{2} \geq \delta_{k}\left\|u_{n}^{+}\right\|^{2} \quad \text { and } \quad\left\|u_{n}^{-}\right\|^{2}-\lambda_{k}\left\|u_{n}^{-}\right\|_{2}^{2} \leq-\delta_{k}\left\|u_{n}^{-}\right\|^{2},
$$

then

$$
\begin{equation*}
\left[\left\|u_{n}^{+}\right\|^{2}-\lambda_{k}\left\|u_{n}^{+}\right\|_{2}^{2}\right]-\left[\left\|u_{n}^{-}\right\|^{2}-\lambda_{k}\left\|u_{n}^{-}\right\|_{2}^{2}\right] \geq \delta_{k}\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2} . \tag{3.8}
\end{equation*}
$$

On the other hand, by Lemma 3.2

$$
\begin{align*}
\int f\left(x, u_{n}\right) v \mathrm{~d} x & =\int \beta^{\prime}\left(x, u_{n}\right)\left[\left(u_{n}^{+}\right)^{2}-\left(u_{n}^{-}+u_{n}^{k}\right)^{2}\right] \mathrm{d} x+\int \gamma\left(x, u_{n}\right) v \mathrm{~d} x \\
& \leq\left[\int \beta^{\prime}\left(x, u_{n}\right) \frac{\left(u_{n}^{+}\right)^{2}}{\left\|u_{n}^{+}\right\|^{2}} \mathrm{~d} x\right]\left\|u_{n}^{+}\right\|^{2}+\int \gamma\left(x, u_{n}\right) v \mathrm{~d} x \tag{3.9}
\end{align*}
$$

where $\beta^{\prime}(x, s)=\beta(x, s)-\lambda_{k}$. The sequence $\left(\beta^{\prime}\left(x, u_{n}\right)\right)_{n}$ remains bounded in $L^{\infty}(\Omega)$, then passing if necessary to a subsequence, $\beta^{\prime}\left(x, u_{n}\right) \rightarrow \beta$ in the weak* topology of $L^{\infty}(\Omega)$. It is clear that the $L^{\infty}(\Omega)$-function β satisfies

$$
\begin{equation*}
0 \leq \beta \leq k(x)-\lambda_{k}+\delta \frac{\lambda_{k+1}}{2} \tag{3.10}
\end{equation*}
$$

In what follows, we must show that $\beta=0$. Indeed, we have

$$
\begin{aligned}
\frac{\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} & =\left\|z_{n}\right\|^{2}-\lambda_{k}\left\|z_{n}\right\|_{2}^{2}-\int_{\left|u_{n}\right|>1} \frac{f\left(x, u_{n}\right)}{u_{n}} z_{n}^{2} \mathrm{~d} x-\int_{\left|u_{n}\right| \leq 1} f\left(x, u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x \\
& =2 q\left(z_{n}\right)-\int_{\left|u_{n}\right|>1} \beta^{\prime}\left(x, u_{n}\right) z_{n}^{2}-\int_{\left|u_{n}\right|>1} \frac{\gamma\left(x, u_{n}\right)}{u_{n}} z_{n}^{2}-\int_{\left|u_{n}\right| \leq 1} f\left(x, u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x .
\end{aligned}
$$

This converges to 0 according to (3.2). Moreover, since, $z_{n} \rightarrow z$ strongly in H_{0}^{1} and strongly in L^{2}

$$
\begin{equation*}
\left\|z_{n}\right\|^{2}-\lambda_{k}\left\|z_{n}\right\|_{2}^{2} \rightarrow\|z\|^{2}-\lambda_{k}\|z\|_{2}^{2}=0 . \tag{3.11}
\end{equation*}
$$

By (ii) of Lemma 3.2, we deduce

$$
\begin{aligned}
\int_{\left|u_{n}\right|>1}\left|\frac{\gamma\left(x, u_{n}\right)}{u_{n}}\right| z_{n}^{2} \mathrm{~d} x & \leq a \int\left|u_{n}\right|^{\alpha-1} z_{n}^{2} \mathrm{~d} x+\int \frac{|c(x)|\left|u_{n}\right|}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x \\
& \leq C_{1} \frac{\left\|u_{n}\right\|^{\alpha+1}}{\left\|u_{n}\right\|^{2}}+\frac{C_{2}}{\left\|u_{n}\right\|}
\end{aligned}
$$

where C_{1} and C_{2} are positive constants. So

$$
\begin{equation*}
\int_{\left|u_{n}\right|>1}\left|\frac{\gamma\left(x, u_{n}\right)}{u_{n}}\right| z_{n}^{2} \mathrm{~d} x \rightarrow 0 \quad \text { as }\left\|u_{n}\right\| \rightarrow \infty \tag{3.12}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\int_{\left|u_{n}\right| \leq 1} f\left(x, u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x \rightarrow 0 \quad \text { as }\left\|u_{n}\right\| \rightarrow \infty \tag{3.13}
\end{equation*}
$$

Thus, combining (3.11)-(3.13) we verify that

$$
\int \beta^{\prime}\left(x, u_{n}\right) z_{n}^{2} \mathrm{~d} x \rightarrow 0=\int \beta(x) z^{2} \mathrm{~d} x \quad \text { as }\left\|u_{n}\right\| \rightarrow \infty
$$

Finally, by the unique continuation property and $\beta \geq 0$, we deduce that $\beta \equiv 0$ a.e. in Ω.
Let us return to (3.9), in the first term on the right, the sequence $\left(\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|}\right)_{n}$ remains bounded in $H_{0}^{1}(\Omega)$, then $\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|} \rightarrow w$ in $L^{2}(\Omega)$. This implies that

$$
\begin{equation*}
\int \beta^{\prime}\left(x, u_{n}\right) \frac{\left(u_{n}^{+}\right)^{2}}{\left\|u_{n}^{+}\right\|^{2}} \mathrm{~d} x \leq \frac{\delta_{k}}{2} \tag{3.14}
\end{equation*}
$$

for rather large values of n. In the second term, by (ii) of Lemma 3.2, we have

$$
\begin{align*}
\int_{\left|u_{n}\right|>1} \gamma\left(x, u_{n}\right) v \mathrm{~d} x & \leq a \int\left|u_{n}^{+}+u_{n}^{-}+u_{n}^{k}\right|^{\alpha}\left[\left|u_{n}^{+}\right|+\left|u_{n}^{-}\right|+\left|u_{n}^{k}\right|\right]+C_{3}\left(\left\|u_{n}^{+}\right\|+\left\|u_{n}^{k}\right\|+\left\|u_{n}^{-}\right\|\right) \\
& \leq C_{4}\left(\left\|u_{n}^{+}\right\|^{\alpha+1}+\left\|u_{n}^{k}\right\|^{\alpha+1}+\left\|u_{n}^{-}\right\|^{\alpha+1}\right)+C_{3}\left(\left\|u_{n}^{+}\right\|+\left\|u_{n}^{k}\right\|+\left\|u_{n}^{-}\right\|\right) \tag{3.15}
\end{align*}
$$

where C_{3} and C_{4} are positive constants. Consequently, by (3.8), (3.9), (3.14) and (3.15), the inequality (3.7) becomes

$$
\delta_{k}\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2} \leq\|v\|+\frac{\delta_{k}}{2}\left\|u_{n}^{+}\right\|^{2}+C_{3}\left(\left\|u_{n}^{+}\right\|+\left\|u_{n}^{k}\right\|+\left\|u_{n}^{-}\right\|\right)+C_{4}\left(\left\|u_{n}^{+}\right\|^{\alpha+1}+\left\|u_{n}^{k}\right\|^{\alpha+1}+\left\|u_{n}^{-}\right\|^{\alpha+1}\right)
$$

When applying the Young inequality it becomes

$$
\delta_{k}\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2} \leq \frac{\delta_{k}}{2}\left\|u_{n}^{+}+u_{n}^{-}\right\|^{2}+\varepsilon\left\|u_{n}^{+}+u_{n}^{-}\right\|^{2}+C_{5}\left(\left\|u_{n}^{k}\right\|^{\alpha+1}+1\right)
$$

where C_{5} is a positive constant. For rather small values of ε, we obtain

$$
\begin{equation*}
\frac{\delta_{k}}{4}\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2} \leq C_{5}\left(\left\|u_{n}^{k}\right\|^{\alpha+1}+1\right) \tag{3.16}
\end{equation*}
$$

So we conclude that

$$
\left|\left\|u_{n}\right\|-\left\|u_{n}^{k}\right\|\right| \leq\left\|u_{n}^{-}+u_{n}^{+}\right\| \leq\left[C_{6}\left(\left\|u_{n}^{k}\right\|^{\alpha+1}+1\right)\right]^{\frac{1}{2}}
$$

where C_{6} is a positive constant. This implies that $\lim _{n \rightarrow+\infty} \frac{\left\|u_{n}^{k}\right\|}{\left\|u_{n}\right\|}=1$, and consequently $\left\|u_{n}^{k}\right\| \rightarrow \infty$ as $n \rightarrow+\infty$.
Step (2) To lead to a contradiction with (G3). By (2.3), there exists a constant A such that

$$
\begin{equation*}
\int F\left(x, \frac{u_{n}^{k}}{2}\right) \mathrm{d} x \leq A+\frac{1}{2}\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2}+\int\left[F\left(x, \frac{u_{n}^{k}}{2}\right)-F\left(x, u_{n}\right)\right] \mathrm{d} x . \tag{3.17}
\end{equation*}
$$

As in the proof of the Lemma 3.3, we obtain

$$
\int\left[F\left(x, \frac{u_{n}^{k}}{2}\right)-F\left(x, u_{n}\right)\right] \mathrm{d} x \leq\left(k(x)-\lambda_{k}+\delta \frac{\lambda_{k+1}}{2}\right)\left\|u_{n}^{-}+u_{n}^{+}\right\|^{2}+C_{7}\left(\left\|u_{n}^{k}\right\|^{\alpha+1}+1\right),
$$

with C_{7} is a positive constant, and (3.17) becomes

$$
\int F\left(x, \frac{u_{n}^{k}}{2}\right) \mathrm{d} x \leq C_{8}\left\|u_{n}^{k}\right\|^{\alpha+1}+C_{9}
$$

where C_{8} and C_{9} are positive constants. This gives that $\frac{1}{\left\|u_{n}^{k}\right\|^{\alpha+1}} \int F\left(x, \frac{u_{n}^{k}}{2}\right) \mathrm{d} x$ is bounded, which contradicts (G3).
Case (iii) $m(x) \equiv \lambda_{k+1}$. Since $z_{n} \rightarrow z$ in H_{0}^{1} and $\frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}} \rightarrow 0$ as $\left\|u_{n}\right\| \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int \frac{2 G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x=\int \frac{2 F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x+\lambda_{k}\left\|z_{n}\right\|_{2}^{2} \rightarrow\|z\|^{2} \tag{3.18}
\end{equation*}
$$

On the other hand, by Fatou's lemma, we have

$$
\begin{align*}
\lim \sup \int \frac{2 G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x & \leq \int \lim \sup \frac{2 G\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} z_{n}^{2}(x) \mathrm{d} x \\
& \leq \int_{z>0} \lim \sup \frac{2 G\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} z_{n}^{2}(x) \mathrm{d} x+\int_{z<0} \lim \sup \frac{2 G\left(x, u_{n}(x)\right)}{\left|u_{n}\right|^{2}} z_{n}^{2}(x) \mathrm{d} x \\
& \leq \int_{z>0} K_{+}(x) z^{2} \mathrm{~d} x+\int_{z<0} K_{-}(x) z^{2} \mathrm{~d} x . \tag{3.19}
\end{align*}
$$

Combining (3.18) and (3.19), it follows

$$
\|z\|^{2} \leq \int_{z>0} K_{+}(x) z^{2} \mathrm{~d} x+\int_{z<0} K_{-}(x) z^{2} \mathrm{~d} x
$$

Since $z \in E\left(\lambda_{k+1}\right)$, this implies:

$$
\int_{z>0}\left(\lambda_{k+1}-K_{+}(x)\right) z^{2} \mathrm{~d} x+\int_{z<0}\left(\lambda_{k+1}-K_{-}(x)\right) z^{2} \mathrm{~d} x \leq 0
$$

which contradicts (G2). This completes the proof of Lemma 3.4.
Lemma 3.5 ([16]). If (G4) is satisfied, then $C_{q}(\Phi, 0) \cong \delta_{q, d} \mathbb{R}$, where $d=\operatorname{dim} \oplus_{j \leq m} E_{j}$.
Lemma 3.6 ([16]). If g satisfies

$$
\frac{\lambda_{m}}{2} t^{2} \leq G(x, t)
$$

for $|t| \leq \beta$, a.e $x \in \Omega$, then $C_{q}(\Phi, 0)=0$ for $q<d=\operatorname{dim} \oplus_{i \leq m} E\left(\lambda_{i}\right)$.
Proof of Theorem 1.1. By Lemma 3.4, the functional Φ satisfies the (PS) condition. Since Φ is weakly lower semicontinuous and coercive on W, Φ is bounded from below on W. Moreover, by (i) of Lemma 3.3, Φ is anti-coercive on $V \oplus E_{k}$, thus by proposition 2.2, we conclude that

$$
C_{\mu}(\Phi, \infty) \not \equiv 0
$$

where $\mu=\operatorname{dim} V \oplus E_{k} \geq k$.
It follows from the Morse inequality that Φ has a critical point u_{0} with

$$
\begin{equation*}
C_{\mu}\left(\Phi, u_{0}\right) \not \equiv 0 \tag{3.20}
\end{equation*}
$$

Using the condition $g\left(x, t_{1}\right)=0$ for $t_{1}>0$, we define

$$
\tilde{g}(x, t)= \begin{cases}0 & \text { if } t<0 \\ g(x, t) & \text { if } t \in\left[0, t_{1}\right] \\ 0 & \text { if } t>t_{1}\end{cases}
$$

and $\tilde{G}(x, t)=\int_{0}^{t} \tilde{g}(x, s)$ ds. Consider the cut-off functional $\widetilde{\Phi}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ as

$$
\widetilde{\Phi}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int \widetilde{G}(x, u) \mathrm{d} x
$$

It is clear that $\tilde{G}(x, t)$ is bounded, so, $\widetilde{\Phi}$ is coercive and satisfies (PS). Hence, $\widetilde{\Phi}$ possesses a minimum u_{1}. By the L^{2}-regularity, $u_{1} \in C^{1}(\bar{\Omega})$ and by the maximum principle, we deduce that either $u_{1} \equiv 0$ or $0<u_{1}<t_{1}$ for all $x \in \Omega$. Choose $R_{0} \leq \min \left\{t_{1}, \beta\right\}$ and

$$
\varphi_{0}(x)=\frac{R_{0} \varphi_{1}(x)}{\max \left\{\varphi_{1}(x), x \in \Omega\right\}}
$$

where φ_{1} is the eigenfunction corresponding to λ_{1}. By (G4) or (G5) we obtain

$$
\begin{aligned}
\widetilde{\Phi}\left(\varphi_{0}\right) & =\frac{1}{2}\left\|\varphi_{0}\right\|^{2}-\int_{\left\{x / 0 \leq \varphi_{0}(x) \leq R_{0}\right\}} \widetilde{G}\left(x, \varphi_{0}\right) \mathrm{d} x \\
& \leq \frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right) \int\left(\varphi_{0}\right)^{2} \mathrm{~d} x<0 .
\end{aligned}
$$

Then,

$$
\widetilde{\Phi}\left(u_{1}\right) \leq \widetilde{\Phi}\left(\varphi_{0}\right)<0
$$

which implies that

$$
0<u_{1}<t_{1} \quad \text { and } \quad \Phi\left(u_{1}\right)=\widetilde{\Phi}\left(u_{1}\right)
$$

It is clear that there exist two constants α and β such that:

$$
0<\alpha \leq u_{1}(x) \leq \beta<t_{1} \quad \text { for all } x \in \Omega
$$

Let $\varepsilon=\inf \left(\frac{\alpha}{2}, \frac{t_{1}-\beta}{2}\right)$, for all $u \in B\left(u_{1}, \varepsilon\right)$, with the norm defined in $C_{0}^{1}(\Omega)$ being given by $\|u\|=\sup _{x \in \Omega}|u(x)|+\sup _{x \in \Omega}$ $\left|u^{\prime}(x)\right|$, we have:

$$
0<u(x)<t_{1} \quad \text { for all } x \in \Omega
$$

Then,

$$
\Phi\left(u_{1}\right) \leq \Phi(u) \quad \text { for all } u \in B\left(u_{1}, \varepsilon\right)
$$

so, u_{1} is a nontrivial local minimum of Φ in the $C_{0}^{1}(\Omega)$ topology. By standard arguments [23], we know that u_{1} is a local minimizer of Φ in $H_{0}^{1}(\Omega)$ topology and

$$
\begin{equation*}
C_{q}\left(\Phi, u_{1}\right) \cong \delta_{q, 0} \mathbb{R} \tag{3.21}
\end{equation*}
$$

Now, define the functionals $\Phi_{ \pm}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ as

$$
\Phi_{ \pm}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} \mathrm{~d} x-\int_{\Omega}\left[G\left(x, u_{1}+v^{ \pm}\right)-G\left(x, u_{1}\right)-g\left(x, u_{1}\right) v^{ \pm}\right] \mathrm{d} x
$$

where $v^{+}=\max \{v(x), 0\}, v^{-}=\min \{v(x), 0\}$. Then $\Phi_{ \pm} \in C^{2}$, we obtain

$$
\begin{equation*}
\Phi_{ \pm}(v)=\Phi\left(u_{1}+v^{ \pm}\right)-\Phi\left(u_{1}\right)+\frac{1}{2} \int_{\Omega}\left|\nabla v^{\mp}\right|^{2} \mathrm{~d} x \tag{3.22}
\end{equation*}
$$

Then, 0 is a strict minimum of $\Phi_{ \pm}$. By the condition (G1) and the fact $k \geq 2$, we prove that

$$
\Phi_{ \pm}\left(t \varphi_{1}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \pm \infty
$$

where φ_{1} is the first eigenfunction of $-\Delta$. Indeed, for $t>0$, we have

$$
\Phi_{+}\left(t \varphi_{1}\right) \leq \frac{t^{2}}{2}\left(\lambda_{1}-\lambda_{k}\right) \int \varphi_{1}^{2} \mathrm{~d} x+C_{1} t^{\alpha+1}+C_{2} t+C_{3}
$$

Since, $0 \leq \alpha<1$ and $\lambda_{1}-\lambda_{k}<0$ for all $k \geq 2$, it follows that

$$
\Phi_{+}\left(t \varphi_{1}\right) \rightarrow-\infty \quad \text { as } t \rightarrow+\infty
$$

By similar arguments, we obtain

$$
\Phi_{-}\left(t \varphi_{1}\right) \rightarrow-\infty \quad \text { as } t \rightarrow-\infty
$$

Then, we can find a t_{0} such that

$$
t_{0}>R \quad \text { with } \Phi_{ \pm}\left(\pm t \varphi_{1}\right) \leq 0
$$

Since $u=0$ is a strict local minimum of $\Phi_{ \pm}$, there exist a $\gamma>0$ and $R>0$ such that $\Phi_{ \pm} \geq \gamma$ on $\partial B_{R}(0)$. By Lemma 2.1, the functionals $\Phi_{ \pm}$satisfy the (PS) condition. So, the mountain pass lemma ensures that

$$
c=\inf _{h \in \Gamma} \max _{0 \leq t \leq 1} \Phi_{ \pm}(h(t))
$$

are critical values of $\Phi_{ \pm}$, where

$$
\Gamma=\left\{h \in C\left([0,1], H_{0}^{1}\right) / h(0)=0, h(1)= \pm t_{0} \varphi_{1}\right\}
$$

and $c \geq \gamma$. Then, we obtain a critical point v_{1} of Φ_{+}and a critical point v_{2} of Φ_{-}such that

$$
C_{1}\left(\Phi_{ \pm}, v_{i}\right) \not \equiv 0 \quad \text { for } i=1,2
$$

Since v_{1} and v_{2} are mountain pass points, we have

$$
\begin{equation*}
C_{q}\left(\Phi_{ \pm}, v_{i}\right) \cong \delta_{q, 1} \mathbb{R} \quad \text { for } i=1,2 \tag{3.23}
\end{equation*}
$$

Hence, v_{1} satisfies

$$
\begin{aligned}
& -\Delta v=g\left(x, u_{1}+v^{+}\right)-g\left(x, u_{1}\right) \quad \text { in } \Omega \\
& v=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

By the maximum principle, we deduce that v_{1} is a positive critical point of Φ_{+}. By a similar method, v_{2} is a negative critical point of Φ_{-}.

Hence, $u_{2}=u_{1}+v_{1}$ and $u_{3}=u_{1}+v_{2}$ are two solutions of (1.1), and $u_{3}<u_{1}<u_{2}$. According to the results given in [23], the critical groups of Φ at u_{2} and u_{3} are respectively

$$
\left.\begin{array}{l}
C_{q}\left(\Phi, u_{2}\right) \cong C_{q}\left(\Phi / C_{0}^{1}(\Omega), u_{2}\right) \cong C_{q}\left(\Phi_{ \pm} / C_{0}^{1}(\Omega), v_{1}\right) \cong C_{q}\left(\Phi_{ \pm}, v_{1}\right) \cong \delta_{q, 1} \mathbb{R} \\
C_{q}\left(\Phi, u_{3}\right) \cong C_{q}\left(\Phi / C_{0}^{1}(\Omega), u_{3}\right) \cong C_{q}\left(\Phi_{ \pm} / C_{0}^{1}(\Omega)\right. \tag{3.24}
\end{array}, v_{2}\right) \cong C_{q}\left(\Phi_{ \pm}, v_{2}\right) \cong \delta_{q, 1} \mathbb{R} .
$$

By (3.20), (3.21), (3.24), Lemma 3.5 and $2 \leq m<k$, we conclude that u_{0}, u_{1}, u_{2} and u_{3} are four nontrivial critical points of Φ. This completes the proof.
Proof of Theorem 1.2. According to the same arguments as in the proof of Theorem 1.1, involving the cut-off technique and the maximum principle, Φ has a local minimizer u_{1} with $0<u_{1}<t_{1}$.

On the other hand, using the condition (G5) with $k=1$ and Lemma 3.6 , we deduce that $C_{q}(\Phi, 0)=0$ for $q \leq 1$. Consequently, from (3.20) and (3.21) we conclude that Φ has at least two nontrivial solutions, one of which is positive. The proof is completed.

4. Example

Let $\gamma \in] 0, \delta\left[\right.$ with $\delta=\lambda_{k+1}-\lambda_{k}$ and let the sequences $a_{n}=2^{2 n}-\frac{1}{2^{3 n}}, b_{n}=2^{2 n}+\frac{1}{2^{3 n}}, c_{n}=2^{2 n+1}-\frac{1}{2^{3 n}}$ and $d_{n}=2^{2 n+1}+\frac{1}{2^{3 n}}$ for $n \geq 1$.

Let us define the odd function f on $\Omega \times \mathbb{R}^{+}$for all $x \in \Omega$ as the following

$$
f(x, s)=\left\{\begin{array}{l}
\left(\lambda_{m}+\left(\lambda_{m+1}-\lambda_{m}\right) \sin l(x)\right) s \quad \text { if } s \in[0,1], \\
A(x) s+B(x) \quad \text { if } s \in[1,2], \\
\delta s^{\frac{2}{3}} \quad \text { if } s \in\left[2, a_{1}\right] \cup\left({ }_{n \geq 1}\left[b_{n}, c_{n}\right] \cup\left[d_{n}, a_{n+1}\right]\right), \\
-\gamma 2^{n} \quad \text { if } s=2^{2 n} \quad \text { for all } n \geq 1, \\
\delta 2^{2 n+1} \quad \text { if } s=2^{2 n+1} \quad \text { for all } \quad n \geq 1, \\
C_{n} s+D_{n} \quad \text { if } s \in\left[a_{n}, 2^{2 n}\right], \quad n \geq 1, \\
E_{n} s+F_{n} \text { if } s \in\left[2^{2 n}, b_{n}\right], \quad n \geq 1, \\
G_{n} s+H_{n} \text { if } s \in\left[c_{n}, 2^{2 n+1}\right], \quad n \geq 1, \\
I_{n} s+J_{n} \quad \text { if } s \in\left[2^{2 n+1}, d_{n}\right], \quad n \geq 1,
\end{array}\right.
$$

where: $l: \bar{\Omega} \rightarrow\left[0, \frac{\pi}{2}\right]$ is C^{1} with $l(x)=0$ on Ω_{1} and $l(x)=\frac{\pi}{2}$ on Ω_{2}, where Ω_{1} and Ω_{2} are two subsets of Ω with positive measures,

$$
\begin{aligned}
& A(x)=\sqrt[3]{4} \delta-\lambda_{m}-\left(\lambda_{m+1}-\lambda_{m}\right) \sin l(x), \quad B(x)=2\left(\lambda_{m}+\left(\lambda_{m+1}-\lambda_{m}\right) \sin l(x)\right)-\delta \sqrt[3]{4}, \\
& C_{n}=-2^{3 n}\left(\gamma 2^{n}+\delta \sqrt[3]{a_{n}^{2}}\right), \quad D_{n}=2^{4 n}\left(\gamma a_{n}+2^{n} \delta \sqrt[3]{a_{n}^{2}}\right), \\
& E_{n}=2^{3 n}\left(\gamma 2^{n}+\delta \sqrt[3]{b_{n}^{2}}\right), \quad F_{n}=-2^{4 n}\left(\gamma b_{n}+2^{n} \delta \sqrt[3]{b_{n}^{2}}\right), \\
& G_{n}=2^{3 n} \delta\left(2^{2 n+1}-\sqrt[3]{c_{n}^{2}}\right), \quad H_{n}=\delta 2^{5 n+1}\left(\sqrt[3]{c_{n}^{2}}-c_{n}\right), \\
& I_{n}=-2^{3 n} \delta\left(2^{2 n+1}-\sqrt[3]{d_{n}^{2}}\right) \quad \text { and } \quad J_{n}=-\delta 2^{5 n+1}\left(\sqrt[3]{d_{n}^{2}}-d_{n}\right),
\end{aligned}
$$

Thus, the function f satisfies $\liminf _{|s| \rightarrow \infty} \frac{f(x, s)}{s}=0, \lim \sup _{|s| \rightarrow \infty} \frac{f(x, s)}{s}=\lambda_{k+1}-\lambda_{k}$ and $\liminf _{|s| \rightarrow \infty} \frac{f(x, s)}{\sqrt{|s|}}=-\gamma$.

A calculation of the primitive $F(x, s)$ gives that

$$
D(x)+\frac{3}{5} \sqrt[3]{|s|^{5}} \leq F(x, s) \leq C(x)+\frac{3}{5} \sqrt[3]{|s|^{5}}
$$

with C and D being two C^{1}-functions So, we conclude that $\lim _{|s| \rightarrow \infty} \frac{2 F(x, s)}{s^{2}}=0$ and $\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{|s| \sqrt{|s|}}=+\infty$ which imply the condition (G3).

Note that our results are not covered by the results mentioned in [8,15-20].

References

[1] C.L. Dolph, Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949) 289-307.
[2] S. Ahmad, A.C. Lazer, J.L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976) 933-944.
[3] S. Ahmad, Multiple nontrivial solutions of resonant and nonresonant asymptotically problems, Proc. Amer. Math. Soc. 96 (1986) 405-409.
[4] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. TMA 7 (1983) 981-1012.
[5] H. Berestycki, D.G. DeFigueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981) $91-120$.
[6] D.G. DeFigueiredo, J.P. Gossez, Conditions de non résonance pour certains problémes elliptiques semi-linéaires, C. R. Acad. Sci. Paris 302 (1986) 543-545.
[7] D.Del. Santo, P. Omari, Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations 108 (1994) 120-138.
[8] A.R. El Amrouss, M. Moussaoui, Resonance at two consecutive eigenvalues for semilinear elliptic problem: A variational approach, Ann. Sci. Math. Québec 23 (2) (1999) 157-171.
[9] E.M. Landesman, A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970) 609-623.
[10] S. Li, K. Perera, J. Su, Computation of critical groups in elliptic boundary value problems where the asymptotic limits may not exist, Proc. Roy. Soc. Edinburgh Sect. A. 131 (3) (2001) 721-732.
[11] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[12] M. Moussaoui, Questions d'existence dans les problèmes semi-lineaires elliptiques, Thèse, Univ. Bruxelles, 1991.
[13] P. Omari, F. Zanolin, Resonance at two consecutive eigenvalues for semilinear elliptic equations, Ann. Mat. Pura Appl. (1993) 181-198.
[14] E.A. de B.e Silva, Critical point theorems and applications to differential equations, Ph.D. Thesis, Univ. Wisconsin-Madison, 1988.
[15] D.G. Costa, A.S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Brasil. Mat. 19 (1988) 21-37.
[16] A.R. El Amrouss, Nontrivial solutions of semilinear equations at resonance, J. Math. Anal. Appl. 325 (2007) 19-35.
[17] A. Castro, A.C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Math. 18 (1977) 113-137.
[18] N. Hirano, T. Nishimura, Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearity, J. Math. Anal. Appl. 180 (1993) 566-586.
[19] S.Q. Liu, C.L. Tang, X.P. Wu, Multiplicity of nontrivial solutions of semilinear elliptic equations, J. Math. Anal. Appl. 249 (2000) $289-299$.
[20] S. Li, M. Willem, Multiple solution for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue, Nonlinear Differ. Equ. Appl. 5 (1998) 479-490.
[21] K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, Birkhauser, Boston, 1993.
[22] T. Bartsh, S.J. Li, Critical point theory for asymptotically quadratic functionals and applications with resonance, Nonlinear Anal. TMA 28 (1997) 419-441.
[23] K.C. Chang, H^{1} versus C ${ }^{1}$ local minimizers, C. R. Acad. Sci. Paris 319 (1994) 441-446.

[^0]: * Corresponding author.

 E-mail addresses: elamrouss@fso.ump.ma, elamrouss@hotmail.com (A.R. El Amrouss), foumoradi@yahoo.fr (F. Moradi), moussaoui@est.ump.ma (M. Moussaoui).

