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Coagulase-negative staphylococci as a cause of infections related to
intravascular prosthetic devices: limitations of present therapy

T. Schulin and A. Voss
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Coagulase-negative staphylococci (CNS) are an important cause of catheter-related bloodstream infections.

This review will shed light on the pathogenesis related to biofilm formation, and will discuss antimicrobial

susceptibility of CNS to older and newer antibiotics, as well as therapeutic options.
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INTRODUCTION

Over recent decades, coagulase-negative staphylococci (CNS)
have become a frequent cause of nosocomial catheter-related
bloodstream infections [1-3]. CNS, due to their ability to
produce biofilm, are especially likely to colonize and infect in-
dwelling vascular catheters and port systems. This colonization
can lead to bacteremia, which is an important complication in
patients cared for in hematology, hemodialysis, intensive care
and neonatal units where intravascular (IV) catheters are a crucial
part of their management. The increasing resistance of CNS to
antimicrobial agents [4,5] makes the treatment of catheter-
related infections increasingly difficult. An understanding of the
pathogenesis of CNS is an important consideration in selecting
the appropriate therapy. New drugs are essential to circumvent
existing resistance mechanisms, including biofilm formation, if
treatment of such infections is to be successful.

PATHOGENICITY

The pathogenic potential of CNS is generally thought to be low
[6-8]. Clinical observations have lead to the assumption that
most CNS isolated from the bloodstream are contaminants.
There are still no defined criteria that differentiate between
colonization and true bacteremia. In most instances, the clinical
picture and isolation of CNS from more than one set of blood
cultures may indicate true infection [9]. The pathogenicity of
CNS has been the subject of much investigation, in order to
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improve our understanding of CNS bloodstream infections

associated with IV catheter material.

BIOFILM FORMATION

Genes that influence biofilm formation and pathogenicity

The adherence to catheter material and the formation of
biofilm plays an important role in the pathogenesis of catheter-
related infections with CNS [10-12]. Two phases are involved
in biofilm formation. Initially, the bacteria rapidly adhere to
the foreign material, due to various factors such as the nature of
the polymer material and bacterial surface proteins [13—15].
Secondly, the bacteria produce over time an extracellular
matrix that consists mainly of teichoic acid and sugars. The
bacteria thereby become imbedded in the biofilm in the form
of multilayered cell clusters. Polysaccharide intercellular
adhesin (PIA), which is the gene product of the icaADBC
operon, has recently been described to play a crucial role in
biofilm formation [16,17]. This has furthermore been shown
in an in vivo IV catheter-associated infection model in rats
[14]. Within the biofilm the bacteria form tight microcolonies
and appear to be tolerant of or resistant to a variety of
antimicrobial agents, despite in vitro susceptibility by conven-
tional testing [18]. The molecular basis of polymer-associated
infections due to staphylococci has been reviewed recently
[19,20].

Ziehbuhr et al found that the ica gene locus was more often
present in CNS isolated from blood cultures than in mucosal
isolates and that these strains more often formed a multilayered
biofilm [21]. Genetic investigations revealed that the ica as well
as the mecA gene, conferring P-lactam resistance, were
detected significantly more often in infecting strains than in

contaminating strains [22].
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Influence of antibiotics on biofilm formation

Antibiotics can influence the mechanisms of adherence and of
slime production in CNS in different ways; various studies
have been undertaken to elucidate these effects. Rachid et al.
[23] investigated whether subinhibitory concentrations of
antibiotics influenced the expression of the icaADBC operon
in CNS. They found that sub-MIC levels of quinupristin/
dalfopristin or tetracycline enhanced expression, leading to
higher polysaccharide intracellular adhesin production; whereas
penicillin, oxacillin, clindamycin, gentamicin, ofloxacin, van-
comycin and teicoplanin had no influence and erythromycin led
to only a moderate increase in expression. In contrast, Wilcox et
al. [24] described that vancomycin and teicoplanin in sub-MIC
concentration enhanced adherence to polystyrene and silicon
rubber. Similar effects have been described by Dunne [25], who
showed biofilm enhancement by subinhibitory concentrations
of cefamandole and vancomycin in some but not all strains of
CNS. No enhancement was observed in concentrations at or
above the MIC. Interstrain variations were noted in all studies.

Subinhibitory levels of ciprofloxacin increased the expres-
sion of fibronectin-binding proteins in ciprofloxacin-resistant
Staphylococcus aureus [26], resulting in enhanced adherence to
catheter material. Although Staphylococcus epidermidis also
adheres to fibronectin [27], no such effect has been described
in this species so far.

ANTIBIOTIC SUSCEPTIBILITY
Influence of biofilms on antibacterial activity

Although most clinical isolates of CNS are highly susceptible
to vancomycin when tested in vitro as dispersed planktonic
bacteria, these organisms are resistant or tolerant to this agent
when embedded in a biofilm [28]. The physical barrier of the
biofilm matrix to penetration by the relatively large vanco-
mycin molecule had originally been proposed as a possible
mechanism, but subsequent studies have shown that high
vancomycin concentrations can be achieved in biofilms. The
combination of teicoplanin or vancomycin with rifampicin or
amikacin can increase activity on sessile bacteria. With these
combinations, sterilization of Vialon and polyvinylchloride
catheters was achieved in one study [29]. Despite rapid
diffusion and high levels of vancomycin and rifampin in the
CNS biofilm, bacteria were still viable after 72 h, with an
increased MIC and MBC to rifampin, but not to vancomycin
[30]. Hamilton-Miller et al. investigated the activity of
ciprofloxacin and quinupristin/dalfopristin against CNS in
biofilms and found that both agents were able to kill sessile
bacteria slowly [31]. Some studies propose that the slime of the
biofilm itself diminished the activity of glycopeptide anti-
biotics [32,33] and pefloxacin [34], thus leading to treatment

failure in some instances. Rifampicin activity was not
decreased, and for other antibiotics, only a moderate effect
was seen [34]. Biofilm eradication in vivo and in vitro was
studied in two isogenic CNS strains, which differed in their
ability to form biofilm. Using amikacin, levofloxacin,
rifampicin and teicoplanin, the slime-negative strain was
better eradicated than its slime-positive parent strain [18].
Routine sensitivity tests often fail to predict thera-
peutic success. In an in vivo model of device-related
infection, Widmer et al. [35] showed that the clinical outcome
could reliably be predicted by testing drug efficacy on
stationary and adherent micro-organisms, but not by minimal

inhibitory concentrations.

Influence of clarithromycin on biofilm

Clarithromycin is a macrolide antibiotic; most strains of
methicillin-resistant CNS (MR-CNS) are also resistant to
macrolides. Therefore, treatment of infections due to MR-
CNS with macrolides is not considered an option. However,
there is evidence that macrolides can influence biofilm
production of CNS. In a study from Japan [36] it was shown
that treatment of catheters colonized with CNS with
noninhibitory doses of clarithromycin resulted in the eradica-
tion of slime-like material. As a result, other antibiotics could
more easily reach the bacteria on the catheter surface. This
phenomenon has also been described for mucoid Pseudomonas
aeruginosa [37—40] and has led to new treatment options for

infections by this organism.

Methicillin-resistant coagulase-negative staphylococci

Staphylococcus epidermidis strains that are resistant to methicillin
are cross-resistant to all other B-lactam antibiotics, although
sometimes they appear to be susceptible in vitro. More than
80% of the strains isolated from nosocomial infection are
methicillin-resistant, in contrast to more than 80% being
susceptible to methicillin in community-acquired infections
[41,42]. It has been found that the mecA gene conferring
methicillin resistance is more often found in infecting than in
colonizing strains of CNS [22]. In another study mecA-
positive phase variants of S. epidermidis lacked mecA expression
and had a strongly reduced adherence capacity, thus offering
further evidence that the expression of methicillin resistance in
CNS has a possible influence on virulence factors [43].
Epidemiological studies of CNS isolated from bloodstream
infections in North America and Europe have shown
methicillin resistance to be detected in 60%-80% of strains,
respectively [44,45]. From 1996 through 1999, 70% of the S.
epidermidis strains and 90% of the Staphylococcus haemolyticus
strains isolated from bloodstream infections in Germany were

© 2001 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 7 (Suppl. 4), 1-7



also resistant to methicillin [46]. The correlation of methicillin
resistance in CNS and the influence on virulence is flawed by
the use of different breakpoints (NCCLS, 0.5 mg/L; BSCA,
2.0 mg/L) leading to reports of different methicillin resistance
percentages within the same strain collection, namely 70% vs.
40%, respectively [47].

Quinolone resistance

Resistance to fluoroquinolones, especially in MRSE, has
emerged over the last two decades. In part, this increase in
resistance is attributed to an increased use of ciprofloxacin in
treating critically ill patients [48]. Excretion of ciprofloxacin
into sweat may be an additional factor that promotes the
selection of drug-resistant skin bacteria including CNS
[49,50]. In 461 bloodstream isolates of MR-CNS studied in
Germany, 72.8% of S. epidermidis and all S. haemolyticus strains

were resistant to ciprofloxacin [46].

Vancomycin and teicoplanin resistance in CNS

The glycopeptide antibiotics vancomycin and teicoplanin are
often last-resort antibiotics used in the treatment of infections
caused by MR-CNS. However, resistance to these agents can
be produced in a step-wise manner in vitro [51-53], although
only in a small percentage of strains, and not to a high level of
resistance. Clinical strains of glycopeptide-resistant S. haemo-
lyticus were not reported until 1986 [54-58]. In one study [59],
362 clinical isolates of CNS were investigated; 23.2% were
intermediate and 1.7% resistant to teicoplanin, in contrast to less
than 0.3% for vancomycin (74% of teicoplanin-resistant strains
belonged to the species S. epidermidis, and 20% to S.
haemolyticus). In the UK, 6.5% of 769 isolates of CNS were
teicoplanin resistant, in contrast to only 0.5% of vancomycin-
resistant strains [47]. However, local prevalence varied, with
26% teicoplanin-resistant CNS in one of the centres. In a large
European study, 1594 CNS from bloodstream infections were
tested for their susceptibility to glycopeptides. None of the
isolates was resistant to vancomycin and 0.7% were resistant to
teicoplanin  [60]. Selection of resistant strains whilst on
treatment [61-64] has been described for S. haemolyticus [65]
and also for S. epidermidis [66]. In one study, teicoplanin-
intermediate or -resistant strains were found in 49.2% of patients
with CNS infection after receiving glycopeptide treatment [67].
Increased use of teicoplanin was correlated to an increase in
MIC:s for teicoplanin in CNS [68]. In contrast, Cercenado et al.
[69] noticed that teicoplanin-intermediate strains were exclu-
sively isolated from a patient with no prior teicoplanin
treatment. Recently, the emergence of glycopeptide resistance

in CNS has been extensively reviewed by Biavasco et al. [70].
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SUSCEPTIBILITY TO NEWER AGENTS IN VITRO AND IN VIVO
AND IN BIOFILM

Quinupristin/dalfopristin

Quinupristin/dalfopristin is a new semisynthetic injectable
streptogramin antibiotic with a high in vitro bactericidal activity
against Gram-positive bacteria, including multidrug-resistant
staphylococci [71,72]. In two German in vitro studies of 735
strains (141 isolates from clinical material and 594 CNS from
bloodstream infections) all isolates were susceptible to quinu-
pristin/dalfopristin showing an MICq, < 1 mg/L [46,73].
Similar results were reported from The Netherlands, where 36
CNS from endocarditis were inhibited by quinupristin/
dalfopristin concentrations <1 mg/L [74]. In 675 bacteremia
isolates from the SENTRY program [3], the MICy, for CNS to
quinupristin/dalfopristin - was 0.5 mg/L. The activity of
quinupristin/dalfopristin was also studied in biofilms; over a
course of 48 h, sessile bacteria were killed by 2/3 log,, CFU/
mlL, which is comparable with the activity of ciprofloxacin in
biofilm [31]. In another study, quinupristin/dalfopristin had a
greater bactericidal effect on CNS in biofilm than did fluc-
loxacillin, glycopeptides, erythromycin and ciprofloxacin [75].

Newer quinolones

The newer quinolones demonstrate higher activity against

Gram-positive  bacteria, including ciprofloxacin-resistant
strains [76]. However, they play only a secondary role in the

treatment of bloodstream infections caused by CNS.

Linezolid

Linezolid is the first member of a new class of antibiotics, the
oxazolidinones. These have an unique mode of action and are
highly active against a number of Gram-positive isolates,
including methicillin-and  methicillin/teicoplanin-resistant
CNS with MIC < 4 mg/L [47,72,73,77,78]. Measurements
of linezolid concentrations in staphylococcal biofilms pro-
duced endoluminally on dialysis catheters have been carried
out. Although linezolid concentrations in the biofilm were
lower than those for vancomycin, there was a 91% reduction
in biofilm-associated bacterial counts [79]. Linezolid has nearly
complete oral bioavailability, as well as favourable pharmaco-
kinetic and toxicity profiles, making this antibiotic an
attractive alternative in the treatment of multidrug-resistant
staphylococcal infections [80,81]. Also, linezolid has been
anecdotally effective in treating a patient suffering from a
foreign body infection with MR-CNS, where vancomycin
therapy had failed, further information is awaited with interest

before its role in such infections can be recommended [82].
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Agents under investigation

LY 333328 is a novel glycopeptide with a higher bactericidal
activity against organisms resistant to older glycopeptides. It is
active in vitro against CNS (MIC < 4 mg/L) [83-88],
including oxacillin/teicoplanin-resistant strains [89].

Evernimicin is an oligopeptide antibiotic with bacteriostatic
activity against a number of Gram-positive organisms [90-94].
MICs are generally lower than those for vancomycin.
The MIC of evernimicin was < 1 mg/L among 1427 CNS
tested [93].

Daptomycin (LY 146032) is a cyclic polypeptide belonging
to the peptolide class of antibiotics. It has a bactericidal effect
on Gram-positive pathogens similar to that of the glycopep-
tides. Among CNS, including methicillin-resistant strains, it is
more active than vancomycin, quinupristin/dalfopristin and
linezolid [72].

Glycyleyclin (GAR936) is a novel tetracycline analog that
demonstrates bacteriostatic activity against Gram-positive
organisms resistant to older compounds of this class [95].

No studies on the influence of biofilm-associated bacteria
have been undertaken to date. More studies are needed to

assess any potential role in the treatment of CNS infections.

THERAPY

The optimal management of intravenous catheter related
infections has not been established [96,97]. Furthermore, the
duration of therapy has not been well defined. In general, a 5-
7 day course of antibiotics should be sufficient in most cases of
infection caused by CNS. Patients with catheter-related
coagulase-negative staphylococcal bacteremia have been
treated successfully without catheter removal. However,
catheter retention can lead to a recurrence of bacteremia in
up to 20% of the cases [98].

In most cases of catheter-associated infection due to
staphylococci, the therapy of choice is currently a glycopep-
tide, on account of the high percentage of B-lactam-resistant
strains of CNS. The antistaphylococcal activity of rifampin is
higher that that of other compounds, and the combination of
glycopeptide/rifampin has been shown to improve the activity
of antibiotics on staphylococci embedded in biofilms [29].
However, in the light of increasing resistance to glycopeptides
among staphylococci as well as in enterococci, use of those
agents should be restricted. Souvenir et al. concluded that
nearly 50% of patients with positive blood-cultures for CNS
were treated unnecessarily [99]. The relatively poor action of
glycopeptides on CNS embedded in biofilms endorses the
search for more potent agents [100].

Linezolid, which is active against multidrug-resistant CNS
and can be given orally in a twice-daily dose, has been shown

to be effective in eliminating bacteria in catheter-related
biofilms. These advantages over the glycopeptides raise its
potential as a candidate for treating catheter-related staphylo-
coccal infections. However, further experience is necessary
which should also include defining the optimum duration
of therapy.
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