
Artificial Intelligence 95 (1997) 357-407

Artificial
Intelligence

The cornrnon order-theoretic structure
of version spaces and ATMSs

Carl A. Gunter a,*, Teow-Hin Ngair b, Devika Subramanianc
a Department of Computer Science, University of Pennsylvania, 200 South 33rd Street,

Philadelphia, PA 19103-6389, USA
h National University of Singapore, Singapore

c Rice UniversiQ, Houston, TX. USA

Received August 1996

Abstract

We demonstrate how order-theoretic abstractions can be useful in identifying, formalizing, and

exploiting relationships between seemingly dissimilar AI algorithms that perform computations

on partially-ordered sets. In particular, we show how the order-theoretic concept of an anti-chain
can be used to provide an efficient representation for such sets when they satisfy certain special

properties. We use anti-chains to identify and analyze the basic operations and representation

optimizations in the version space learning algorithm and the assumption-based truth maintenance
system (ATMS). Our analysis allows us to (1) extend the known theory of admissibility of
concept spaces for incremental version space merging, and (2) develop new, simpler label-update
algorithms for ATMSs with DNF assumption formulas. @ 1997 Published by Elsevier Science
B.V.

Keywords: Version spaces; ATMS; Concept learning; Truth maintenance; Label update algorithms;
Anti-chains; Partial orders; Admissibility

1. Introduction

This paper shows how the order-theoretic concept of an anti-chain provides a useful
abstraction for the representation of partial information. The primary contribution is the

isolation of a collection of eight primitive operations on anti-chains and a demonstra-

tion of how these operations can be used in some circumstances where the efficient
representation of partial information is a key concern. We call this set of operations

* Corresponding author. Email: gunter@cis.upenn.edu.

0004-3702/97/$17.00 @ 1997 Published by Elsevier Science B.V. All rights reserved.
PII SOOO4-3702(97)00033-7

3.18 C.A. Gunter et al. /Art@cial Intelligence 95 (1997) 357-407

the anti-chain algebra. The description and basic properties of the operations are given

in Section 2; the remainder of the paper is devoted to applications of the anti-chain
algebra. The discovery of a useful algebra of expressions can be a powerful technique.

For example, Codd’s introduction of an algebra of relations aided the development of

practical and semantically clear database query languages. While it is ambitious to think

that an anti-chain algebra will do for knowledge representation what Codd’s relational
algebra did for query languages, significant insights can be obtained from recognizing

when anti-chains are a good representation.

To show how the anti-chain algebra can be useful in expressing representations for

partial information, we examine two well-known approaches to manipulating and refining

partial information. The first of these, the version space (VS) algorithm, is used for

inductive learning based on forming concept descriptions from examples. This is the

topic of Section 3. The second, assumption-based truth maintenance system (ATMS)

algorithm, records dependencies between propositions by maintaining all of the support

sets for a proposition. Our discussion of ATMSs is broken into two parts: Section 4

studies the “basic” ATMS, which uses Horn clauses for its base of facts, while Section 5

studies the “extended” ATM& which extends the basic ATMS by permitting the use of
facts in disjunctive normal form in addition to Horn clauses. Although only a cursory

knowledge of the VS, ATMS, and extended ATMS representations is required to see that

the ideas they embody have many things in common, appropriate mathematical structures
are needed to obtain an account of this commonality that is rigorous enough to show

how the methods can share notations, facts supporting correctness proofs, optimizations,
and even code modules. We show that the anti-chain algebra achieves this. An appendix

describing interfaces for modules implementing our anti-chain algebra is provided at the
end of the paper. Such modules provide an ability to share software between algorithms

based on the anti-chain algebra.
Each of the three treatments of partial information representation techniques follows

a similar pattern. First we provide a mathematical description of the problem to be
solved using ordered structures: each of the techniques is based on an order-theoretic
notion of information refinement. In particular, the algorithms all employ a common

approach to optimization based on the use of operations on anti-chains. The essence

of each approach is then described in terms of the anti-chain algebra and rendered in
pseudo-code using the anti-chain interfaces. Once this description is given we explore
correctness and optimization issues for the algorithms using the basic properties of
the anti-chain algebra. For the VS and extended ATMS algorithms we conclude with

generalizations of known correctness criteria and algorithms. In particular, we extend
results of Hirsh [7] and Mellish 181 on the admissibility of the VS algorithm and

provide a generalization and simplification of de Kleer’s choose construct [3] for the
extended ATMS.

2. Representing sets as anti-chains

One way to represent a set is to maintain a list of its elements. Given an ordering for
set elements, this can be optimized by maintaining the elements of a set in a structure

C.A. Gunter et al./Art@cial Intelligence 95 (1997) 357-407 359

like a balanced tree. In special circumstances a set can be maintained more indirectly
as a predicate that tests set membership. This has the advantage of greater flexibility

(such as the ability to represent infinite sets of elements), but it may be so general

that it is impossible to implement basic operations efficiently. In this section we analyze
the primitive operations for a representation that can compromise between these two

approaches when the sets being represented are known to have certain order-theoretic

closure properties.
To begin the discussion with an illustrative example, suppose we must maintain sets

of strings of digits, supporting operations like testing whether a particular string is in a

set and binary operations like taking the union or intersection of two such sets. We can
order digit strings by the prefix order (for example, 01 is a prefix of 012 and 013 but

not of 001) and represent them as balanced trees of strings, but it may become costly
to maintain large sets in this way. We could introduce a logic capable of expressing

properties of strings and then use predicates to represent sets; the efficiency of this

approach will depend on the kinds of predicates we expect to use and how expensive

it will be to test them. However, there are circumstances where something like a list

of elements can be used (even to represent infinite sets), but where it is not essential
to include all elements in order to represent the whole set. Suppose we know a special

fact about the sets of strings that interest us: that they are pre$~ closed. In other words,

if s E S for one of the sets S, and s is a prefix of s’. then s’ E S too. In this case we

do not need to maintain a tree of all of the elements in S because the presence of some

can be inferred from that of others. For instance, if 01 E S, then 012 and 013 are also
in S. In particular, we can represent S as a set of strings S’ having the property that

no two strings in S’ are prefixes of one another and every element of S has an element
of S’ as one of its prefixes. This provides a compact representation for sets which are
infinite, although only sets that have finitely many distinct prefixes could be represented

in this way. To determine of a string s whether it is in S, one simply checks whether it

has any of the elements of S’ as a prefix.
Even if checking membership is no problem, the representation will be useless if it

is not possible to carry out other basic operations with it. For example, given sets S

and T represented by prefixes from S’ and T’, how does one represent a set like S U T?

This could be done by testing membership in S or T, but we can represent this test by

using S’ U T’. This can be optimized by removing elements u E S’ U T’ if there is an
element u’ E S’ U T’ such that U’ is a proper prefix of U. The situation is a little more

complicated for the intersection operation, but S n T can also be calculated in terms of
S’, T’.

2.1. Upper sets and lower sets

Let us now turn to identifying the idea underlying the representation employed in the

above example. A poset is a set P together with a binary relation 5 that is reflexive

(X 5 x), antisymmetric (X 5 y and y 5 x implies x = y), and transitive (X 5 y and
y 3 z implies x 3 z.). A set S C P is said to be downward closed or lower if x E S
and y 5 x implies that y E S. Given a set S C P, there is a smallest downward-closed
subset of P that contains S which is denoted by

360 C.A. Gunier et ul. /Art@cial Intelligence 95 (1997) 357-407

A lower set

Fig. 1. A lower subset of &-r(P), where P = {A, B, C}. Note that x 5 y denotes x > y

An example is pictured in Fig. 1. It is easy to see that S is downward-closed if, and
only if, S = 1 S. Dually, S is said to be upward closed or upper if

It will save us some extra parentheses later if we assume that the unary operations of
downward and upward closure bind more strongly than various set-theoretic operations.

For example, ISn lT is the same as (1s) n (LT).

Notation 1. For a set S, the collection of all subsets of S is denoted Pwr(S). The

collection of finite subsets of S is denoted FinPwr(S) .

Let us begin by assuming that the poset in question is finite and consider a specific

example. Let L: be a language of propositional atoms with a distinguished atom I

representing falsehood. We focus on a distinguished finite subset A C: C which we call
assumptions. Let E = Pwr(d) be the collection of subsets of A; elements of I are

called environments. Environments form a poset under the ordering < taking x < y if,

and only if, x 5 y. Environments will arise later when we discuss the ATMS algorithms;
as an intuition about their meaning, an environment is a set of assumptions whose truth
would allow one to derive a given conclusion. We will be interested in representing
upward-closed sets of environments and operations on these sets. For example, if A =
{A, B, C, D}, then the set of all environments that contain the atom A or both of the

atoms C, D is

S = {{A, B, C, D}, {A, B, C}, {A, CD}, {A, B, D},

{A, B), {A,C), {A, D), {A), {CD}, {B, C, D)}.

We need only keep the smallest elements S’ of S (the minimal elements), and from
these we can test whether an environment x is in S by testing whether x is a superset
of some X’ E S’. Now, the set of minimal elements of S is

S’ = {{A}, {C, D}}

CA. Gunter et d/Artificial Intelligence 95 (1997) 357-407 361

A CD

Fig. 2. Representing an upper subset of Pwr(P) by its lower boundary, where P = {A, E, C, D}.

under the subset ordering (for instance, {A} 5 {A, B}) . A picture of this is given in

Fig. 2. This is what we will call a boundary representation of S because it indirectly

represents S via the boundary of the set, which, in this case, is the lower boundary

or set of minimal elements. In other cases we will be working with downward-closed

sets, and these can be represented with their maximal elements, which form their upper

boundary. And, in the case of version spaces, we will be representing a subset of a poset

in terms of both an upper and a lower boundary.
Returning now to the abstract development, let us say that an element x E S C P is

maximal in S if, for every y E S, x 3 y implies y = X. It is said to be minimal in S if

y E S and y 5 x implies y = x. Let us denote by max(S) and min(S) the respective
sets of maximal and minimal elements of S. In a finite poset, lower and upper sets can

be represented by their upper and lower boundaries:

Lemma 2. Let P be a finite poset and suppose S 2 P.
(1) IfS is a lowerset, then S= Jmax(S).
(2) If S is an upper set, then S = Tmin(S).

A generalization of this result will be needed later when we consider similar repre-

sentations in an infinite poset:

Lemma 3. Let P be a poset and suppose S’ is a j%ite subset of P. Then:
(1) IS’ = lmax(S’),
(2) TS’ = rmin(S>.

To see that Lemma 3 is a generalization of Lemma 2, just note that a lower subset S
of a finite poset is finite and 1 S = S. The proof of Lemma 3 is illustrative of issues that
arise in the representation of infinite sets using finite boundaries.

Proof. Let us consider (1)) the proof of (2) is similar. It is clear that 1 max(S’) & J, S’.
So take x E 1 S’. Is there some y E max(S’) such that x 3 y? Let us suppose, on the
contrary, that there is no such y. Then it must be the case that x is not itself maximal

362 CA. Gunter et d/Artificial Intelligence 95 (1997) 357-407

in S’, and therefore there is some element XI Z x such that x i: XI. Assuming that
we have built a chain of elements x = xa 5 xi 1 . . 5 X, such that each xi E S’ and
xi # x,i for distinct i, j < n, we can always extend the chain with an additional element

of S’ that is not in (x0,. . . , x,,} because otherwise we would be forced to conclude
that x, is maximal and x 3 x,. But this implies that S’ is infinite, contradicting our

assumption otherwise. 0

2.2. Anti-chains

What kinds of subsets of a poset can be the boundaries of its upper and lower subsets?

Definition 4. Let P, 5 be a poset. A subset S c P is an anti-chain if it contains no
comparable pair of distinct elements, that is, if x, y E S and x 3 y, then x = y. We use

the notation Anti(P) for the set of anti-chains over P.

Lemma 5. Let P be a finite poset.

(1) The upward-closure operation S H r S is a bijection (that is, one-to-one and
onto mapping) between anti-chains and upward-closed subsets of P.

(2) The downward-closure operation S c--t 1 S is a bijection between anti-chains and

downward-closed subsets of P.

The lemma can be proved by demonstrating that min and max are inverses for upward
closure and downward closure respectively.

2.3. Computing basic operations on posets using anti-chains

The significance of the relationship described by Lemma 5 comes from the possi-

bility of representing operations that we would like to perform on upward-closed and

downward-closed sets indirectly in terms of operations on anti-chains. Let S - T be the
set of elements in S that are not in T. Aside from testing set membership, here are

operations that will interest us:

l Difference: T (S - T) where S and T are both upper sets and I(S - T) where S and
T are both lower sets.

l Union: S U T where S and T are both upper sets or both lower sets.
l Heterogeneous intersection: 1 (U n L) and T (U II L) where U is an upper set and

L is a lower set.
l Homogeneous intersection: S n T where S and T are both upper sets or both lower

sets.
A few notes on the form of these operations may clarify some apparent lack of

uniformity. It is easy to check that the union and intersection of a pair of upper sets
is again an upper set. A similar preservation property holds for lower sets. However,
S - T may not be an upper set even if S and T are, so it is essential to modify
the upward-set difference operation by taking the upward closure T(S - T) of their

ordinary set-theoretic difference. A similar consideration holds for heterogeneous inter-
sections.

C.A. Gunter et al./Artijicial Intelligence 95 (1997) 357-407 363

Fig. 3. The lower difference S’ -’ T’ of anti-chains S’ and T’ representing the lower sets S and T is the upper

boundary R’ of the region R in the figure.

Our goal is to describe each of these mathematical operations in terms of the anti-

chains by which they will be represented computationally. The description can be given
mathematically so long as it is clear how the collections in question can be computed
efficiently from the given description.

Let us begin with the operation j, (S - T) where S and T are lower sets represented

by anti-chains S’ and T’ where S = J. S’ and T = J, T’. We want the anti-chain R’ such

that I R’ = 1 (S - T). This set R’ can be shown to be the set of those elements x E S’
such that there is no y E T’ such that x 5 y. This collection is easy to calculate: one

simply takes each element of T’ in turn and removes all of the elements of S’ that
it dominates - when all of the elements of T’ have been treated in this way, we are

done. Now, we want to describe this as a binary operation on anti-chains. It will be

helpful to remember that this operation is intended to represent the downward closure
of a difference operation but is not itself the difference of the representing anti-chains,

so we need to denote it with a different symbol. We therefore write

S’ -’ T’ = {x E S’) Vy E T’. x $ y}

where the superscript 1 is intended as a reminder that lower sets are being manipulated

(via their representation as anti-chains). The desired property is:

I(S’-‘T’)=J(lS’-LT’).

Fig. 3 provides a picture of the desired result. It is also possible to show that, if we

define

S’ -I’ T’ = {x E S’ 1 ‘v’y E T’. x 2 y}

where we write x 2 y to mean that y 5 x, then

T(S’-“T’)=T(T,S’-TT’).

The union of two sets is easy to represent in these terms. If S’,T’ are anti-chains, then
1 S’ U 1 T’ = 1 (S’ UT’) . Unfortunately, S’ UT’ may not be an anti-chain, so it is essential
to take maxima:

364 C.A. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407

Fig. 4. The lower union of anti-chains S’ and T’ representing the lower sets S and 7’ is the dark region R

with boundary R’ shown in the figure.

pYJGziq
Fig. 4 pictures the desired result. Similarly, we define

1 S’U’T’=min(S’UT’) 1

and we have

J(S’u’T’) =J,S’uI.T’,

t(,S’u”T’) =tS’uIT’.

Now, if U is an upper set and L is a lower set, then we wish to calculate (upper or

lower set generated by) the intersection of U and L in terms of their boundaries. We
define

U’ *l L’ = {x E L’ 1 3y E U’. y 3 x}

and

&Y*‘L’) =y$mJL').

We deliberately avoid using the intersection symbol n here for heterogeneous intersec-
tion because it will be used for homogeneous intersection. The upper heterogeneous
intersection has a similar representation:

u’ *U L’ = {y E U’) 3x E L’. y j x)

which satisfies

T(U’*“L’) =t(tu’nlL’).

Fig. 5 provides a picture.

(1)

Actually, it was not essential to include heterogeneous intersection in our collection
of anti-chain operations; it can be defined in terms of the difference operation:

C.A. Gunter et al. /Artijicial Intelligence 9.5 (1997) 357-407 365

U’ U’

Fig. 5. The lower and upper heterogeneous intersection of anti-chains CJ’ and L’ representing the upper set Ii
and the lower set L respectively. U’ *’ L’ is the thick upper boundary RI, while (I’ e” L’ is the thick lower

boundary Ru.

Proposition 6. Let P be a poset and suppose that S’ and T’ are anti-chains in P, then
(1) S’*‘T’=S’-‘(S’-IT’), and
(2) S’*lT’=S’-’ (S’-,‘T’).

Proof. We prove the first equation; the proof of the second is similar. Let x be an element

of P and let us consider what it means for it to be the case that x E S’ -I (S’ -l T’).
By definition, this means that x E S’, but

Vz E (S’ -I T’). x 2 z. (2)

Since S’ is an anti-chain, x $ z is equivalent to x # z, so the formula in (2) just

means that x 6 S’ -’ T’. By definition, this is the case if, and only if, there is some

y E T’ such that x 3 y. But this, together with the fact that x E S’ is just the definition
of x E S’ 9’ T’. 0

The operations U” and U” can also be defined in terms of difference operations, given

the usual set union and intersection operations:

Proposition 7. Let P be a poset and suppose that S’ and T’ are anti-chains in P, then
(1) S’U’T’=(S’-‘T’)U(S’nT’)U(T’-‘S’),and
(2) s’V’T’=(S’J’T’)U(S’nT’)U(T’J’S’).

Proof. We prove (I), the proof of (2) is similar.

Suppose x E S’ U’ T’. There are two cases: x E S’ or x E T’. Let us consider the

first, the second is similar. Now, either there is an y c: T’ such that x 3 y or there is no
such y. If there is one, then the fact that x is maximal in S’ U T’ implies x = y. Thus
x E S’ f? T’. If, on the other hand, there is no such y. then x E S’ -’ T’ by the definition
of -I. Thus C holds between the sets on the left and right sides of 1.

Suppose x E (S’ -’ T’) U (S’ n T’) U (T’ -’ S’). There are three possibilities. If
x E S’ -l T’ and there is an element y E S’ UT’ such that x 5 y, then, by the definition
of the lower difference operation, y cannot be an element of T’. If it is a member of S’,
then x = y because S’ is an anti-chain. Thus x E max(S’ U T’). The second possibility

366 C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407

is x E S’ n T’. Suppose there is some y E S’ U T’ such that x 3 y. If y E S’, then the
fact that S’ is an anti-chain means x = y; a similar fact holds if y E T’. Thus x must be

maximal in S’ UT’. The third case, x E T’ -I S’, has a proof similar to the first case. 0

2.4. Computing homogeneous intersections on lattices

Of the eight basic operations we set out to describe, we have now covered six:

lower and upper difference (-I and -“‘), lower and upper union (U’ and U’), and

the heterogeneous lower and upper intersection (*I and *‘). This leaves the two most

difficult and most interesting operations: homogeneous lower and upper intersection.
Let us focus on homogeneous upper intersection; the issues with homogeneous lower
intersection will be dual. Suppose we want to compute the intersection of upper sets S

and T from their representations as anti-chains S’ and T’ where S = r S’ and T = t T’.

Taking the intersection S’ f? T’ is clearly incorrect. To see why, consider a poset P with

three elements {a, b, c} where the only order relationships are b 3 a and c 3 a. If

S = {a, b} and T = {a, c}, then S’ = {b} and T’ = {c}. While S n T = {a}, we have
S’ n T’ = 0. In this case, the value of S’ fl” T’ clearly needs to be {a} rather than 0. The

question, therefore, is how this is calculated.
Let us consider how the intersection of upper sets should be calculated for the

particular example of the poset Pwr(A) of environments under the subset ordering,
where A is a finite set of propositional atoms. If we are given upper sets S and T of
Pwr(A), then an element x in S f’ T is an element of both S and T, so, if S’ and T’

are the minimal elements of these sets, then it is a superset of some y E S’ and some

z E T’. This is equivalent to saying that it is a superset of y U z. Hence

S n T = {x 1 x 2 y u z for some y E S’ and z E T’}.

But it is clear that the minimal elements of this collection (relative to the subset

ordering) will all be sets of the form y U z where y E S’ and z E T’. So the desired
operation is given by

S’ 0’ T’ = min{y U z / y t S’ and z E T’} (3)

To calculate the minimal elements of a finite collection R of environments is not a

problem; for each element x E R, compare it to each of the other elements of R

removing those that are supersets and removing x itself if there is another element of R

that is a subset of x.
Rather than show that the equation in (3) gives us the desired property, let us look at

the problem more abstractly so that the equation can be applied to other posets besides

Pwr(A).

Definition 8. A poset P, 5 is said to be a lattice if it satisfies the following conditions:

l There is an element I such that _L 3 x for each x E P.

l There is an element T such that x 5 T for each x E P.
l For each pair of elements x, y E P, there is an element x A y called the meet of x

and y such that, x A y 5 x and x A y 5 y and, for any z E P, if z 5 x and z 5 y,
then z 5 x A y.

C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 361

l For each pair of elements x, y E P, there is an element x V y called the join of x

and y such that, x 3 x V y and y 5 x A y and, for any z E P, if z ?Z x and z ? y,

then z ? x V y.

This is not the place for a lengthy discussion of the properties of lattices, but it is

important to note that the elements I, T and the operations A, V are uniquely determined
by the properties ascribed to them by the definition. Other basic properties of lattices

can be found in a source like [11.

Example 9. The poset Pwr(A), C of environments is a lattice where I = 8 and T = A.

The meet is x A y = x n y and the join is x V y = x U y.

Let us now consider how to calculate intersections of lower and upper subsets of

lattices in terms of anti-chains. Let P be a lattice. For anti-chains S’,T’ of P, define

S’ n’ T’ = max{x A y 1 x E S’ and y E T’} (for lattices)

and

1 S’ W T’ = min{x V y 1 x E S’ and y E T’} / (for lattices)

It can be shown that the following equations are satisfied:

J(S’n’T’) =iS’nLT’,

T(S’fY’T’) =TS’nTT’.

A generalization of these facts will be proved in the next section when we consider the

case in which P fails to be a lattice (Lemma 19 to be precise).

2.5. Using pairs of anti-chains to represent convex spaces

One of the key ideas exploited in this work is the representation of another kind of

subset of a poset called a convex space. Formally:

Definition 10. Let P, 5 be a poset. A subset C C P is said to be a convex space if, for

each x, y, z E P, the conditions x 5 y 5 z and x, z E C imply that y E C.

This is the order-theoretic analog of convexity in the plane, where a region C is
defined to be convex if the elements on a line between any two points in C are also

contained in C. Convex spaces can be described in a variety of ways.

Lemma 11. Let P be a poset and suppose that Ul, U2 are upper sets and Li , L2 are
lower sets of P. Each of the following subsets of P is a convex space:

6 nLl UI - Ll LI -u1 Ll -L2 u, - v2.

368 C.A. Gunter et al. /Art@ial Intelligence 95 (1997) 357-407

L’
I LnU

Fig. 6. Representation of convex spaces using pairs of anti-chains.

Fig. 6 pictures four of these combinations. Two of these will concern us in this paper:

a convex space can be represented as
l the intersection of an upper set and a lower set, or
l the difference of two upper sets.

In cases where upper and lower sets can be represented by anti-chains, it follows that
convex spaces can be represented by pairs of anti-chains. For the representation of a
convex space as the intersection of an upper set with a lower set, we have the following

fact.

Definition 12. Let P, 5 be a poset and suppose U, L C P. Define

B(Cr, L) = {z E P 1 x 5 z 3 y for some x E U and z E L.}

Lemma 13. Let P, 3 be a finite poset and suppose C 2 P. Then C is a convex space
if, and only if,

C = B(min(C),max(C)).

In other words, a convex space in a finite poset can be represented by its sets of
maximal and minimal elements - a pair of anti-chains. The result is not true of posets in

general, however. For instance, the collection of rational numbers q such that 0 < q < 1
is a convex space, but it has no maximal or minimal element. A small generalization of

C.A. Gunter et al./Artificial Intelligence 95 (1997) 357-407 369

the lemma would be to allow P to be any poset and restrict C to finite. However, we
will also be interested in situations where C is infinite.

3. Version spaces

Let us now consider how the anti-chain operations we have described are related to

the version space algorithm of Mitchell [lo], The results add new insights to the ideas
of Hirsh [71 and Mellish [81, which generalize Mitchell’s original construction.

For our purposes a concept space is a set of sets P such that 8 E P and UP E P

where

iYP={aIaEnforsomexEP}.

The elements of UP are called instances and the elements of P are called concepts.

A concept space is partially ordered by set inclusion, that is, x 3 y iff x & y. It is

important to note that nothing in general is known about the structure of this poset; in
particular, P will not typically be the collection of all subsets of UP (this deviation

being the “representational bias” [9] of the concept space). If x 5 y then we say that
x is more speci$c than y or we say that y is more general than x. A training set’

over a version space P is a pair (r, A) where P C UP is called the set of positive

instances and A & UP is called the set of negative instances. The version space K(r, A)

determined by (r, A) is defined by the equation

where A is the complement of A in UP. This collection represents the set of concepts
consistent with the training set (r, A). Computationally, the goal is to calculate new
version spaces as the training set is extended. In [lo] this was done by an algorithm for

calculating Ic(TU {u},A) and K(r,AU {u}) from K(I’,A) for any instance a. This
idea was refined by Hirsh [7] to the question of how one efficiently calculates

Icu7 Uf294 UA2)

in terms of K (rl, Al) and K (r2, AZ). He aptly terms the solution for this, which can
be viewed as a generalization of Mitchell’s original approach, the incremental version

space merging algorithm. Our first goal is to show how this algorithm can be understood
directly in terms of the anti-chain operations defined in the previous section.

3.1. Using pairs of anti-chains to version spaces

The key observation concerning the representation of version spaces is that the version
space induced by any training set is a convex space and may therefore be represented
in one of the ways discussed earlier. In particular, [lo] represents a version space as

’ This is a slight misnomer because a training “set” is actually a pair of sets.

370 C.A. Gunter et al. /Art@%1 Intelligence 95 (1997) 357-407

a pair of anti-chains consisting of its maximal and minimal elements. The
merging algorithm is defined in terms of this succinct data representation.

Lemma 14. I” P is a concept space and (r, A) is a training set, then

space K (r, A) is a convex space.

incremental

the version

Lemmas 13 and I4 tell us that the version spaces over a finite concept space P can
be represented by a pair consisting of their maximal and minimal elements. Another

way to view this, in light of the correspondence between anti-chains and upper or lower

sets, is to view a convex space C as a pair consisting of an upper set, J’S, and a lower
set, j, G, where S = min(C) is the set of most specific elements of C and G = max(C)

is the set of its most general elements.
The key question is how to compute the desired operations on version spaces in terms

of these anti-chains. To do this, we first note that we have the following equation for

training sets (rr, Al) and (r2, AZ) :

Ic(T1 Uf2,4 UA2) =K:(TI,AI)~K:(T~,A~). (4)

This means that it suffices to be able to compute the intersection of version spaces in

terms of the pairs of anti-chains that represent them. We can describe how to do this
quite succinctly in terms of our collection of anti-chain operations by the following

definition:

(Sl,Gl) nc (S2,G2)

= ((S, f-? g) 2 (cl n’ c2), (S, n* s,) *I cc, II’ c2))
(5)

Correctness of the equation is described by the following:

Theorem 15. Let P be a finite concept space that is a lattice and suppose (rl , Al)

and (Tz, AZ) are training sets with

SI =min(K(Tl,Al)), GI =max(K(rl,Al)),

S2 =min(K(r2,&)), G2 = max(K:(r2,A2)).

If (&,Gj) = (S,Gl) W (S2,G2) and C = KlTl U r2, AI U AT), then min(C) = S3

and max(C) = G3.

The theorem is an immediate consequence of following:

Lemma 16. Let CI , C2 be convex spaces that are subsets of a finite lattice P and

(S’,T’) = (min(Ct) ,max(Cr)) nC (min(C2),max(Cz)).

Then min(Cr n CT) = S’ and max(Ct n C2) = T’. In particular,

c, n C2 = B(S’,T’).

Table I

CA. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407 371

Incremental version space merging algorithm

function mergeVS((S1, Gi), (S2, G2)) =
let value u = Sl C-P 52

and L = Gl n’ C2
and S3 = U *’ L
and G3 = S3 *’ L

in (S3, G3)
endlet

We omit the proof since it is similar to the one we give for a more general result

(Lemma 20).
From a computational perspective, there is some redundancy in Eq. (5) since the anti-

chains S = S, r-P S2 and G = G1 n” G2 are apparently calculated twice each. Moreover,
there is an optimization one can make in calculating the second component if one is

given the value of the first. A more realistic algorithmic presentation of version space

merging is given in Table 1 where the program is described in pseudo-code using the
appropriate four anti-chain operations.

The basic constructs in this pseudo-code will be used in later examples as well. As

a brief explanation, pairs (and tuples) are written with parentheses and commas: (S ,
G). The form

function f (x> = E

declares a function f with formal parameter x and body E. It will often be useful to

describe the formal parameter as a pattern. For example, the function mergeVS takes a

pair of pairs as an argument. The form

let D in E endlet

evaluates expression E after establishing the bindings from declaration D. The declara-
tion form

value x1 = El
and x2 = E2

. .
and x, = E,,

binds each xi in the environment obtained after establishing bindings for xj where j < i.
The calculation in Table 1 is essentially the same as those in [7, lo]. It differs from

the value described in Eq. (5) in calculating S1 fS’ 82 and Gl n’ G2 only once, of course,

but also by using S3 to compute G3 rather than using U = SI n” S2 for this purpose. To
see that it is equivalent to the value described by Eq. (5), we need only establish the
following equation

(u*“L)*iL=v*lL. (6)

for anti-chains ZJ and L. To see that this implies that the value (SS, G3) computed in

Table 1 matches the value calculated in Eq. (5), just let U = S, r-P S2 and L = G, nt G2

312 C.A. Cunter et al. /Art@cial Intelligence 95 (1997) 357-407

Table 2
Version space learning

function learnVS(G,S) =

if (G,S) is good enough

then (G,S)
else let value (newC, newS) be learned from new information

and CbetterG, betters)

= mergeVS((G,S), CnewG, news))
in learnVS(betterG, betters)

endlet
endif

and substitute using Eq. (6). To see why (6) holds, let us analyze what it means to
have x E (U *’ L) *’ L. Unfolding the definitions of upper and lower heterogeneous
intersection yields the assertion

xELandCIyE(U*“L).yix

which means

x E L and 3y E U. (3x0 E L. y 3 x0) and y 5 x.

But this is clearly equivalent to

x E L and 3y E U. y 5 x

which is the same as x E U *’ L.

The version space learning algorithm itself proceeds by repeated merging of version
spaces. The algorithm assumes that we are given a way to obtain new information in

the form of a version space; this may be done by extending a training set by examining

a new instance, but any method - including the exploitation of domain knowledge -
would suit the algorithm. The new information is merged with the old until the desired

level of accuracy is achieved. Pseudo-code for this process is given in Table 2.

The code there uses a form

if B then El else E2 endif

which evaluates a boolean B and, depending on whether its value is true or false,
evaluates expression El or E2 respectively, and returns the resulting value. The 1earnVS

function is used by being invoked on an initial version space.

3.2. A simple concept learning example

We illustrate the theoretical concepts introduced in this section in the context of a
simple concept learning problem adapted from [10 J . The instance space UP is a set
of objects identified by their shape and color. The concept space P is a set of subsets
of UP.

UP = {Redo, Redo, BlueO, BlueO},

C.A. Gunter et al. /Art$cial Intelligence 95 (I 997) 357-407

P = (8, {Redo}, {Redo}, {BlueO}, {BlueO}, {RedQRedO},

{RedO,BlueO}, {BlueO,BlueO}, {RedO,BlueO}, UP}.

373

Note that only 10 of the 16 possible subsets are represented in P. This concept space

bias provides the means of making non-trivial generalizations of observed instances. The

elements of P are ordered by subset inclusion. Thus, {Redo} 3 {Redo, BlueO}.

Consider the version space generated by the training set (0, {BlueO}):

X(0, {BlueO}) = {x E P 1 8 C x L UP - {BlueO}}

= (8, {Redo}, {Redo}, {BlueO},

{RedCt,RedO}, {RedO,Blueo}}.

The anti-chains that represent the minimal and maximal boundaries of this version space

are:

Sl = {0},

Gt ={{Red~,RedO},{Red~,BlueO}},

NOW consider the version space generated by ({RedCl}, 0) :

K({Redn}, 0) = {x E P / {Redo} c x C UP}

= {{Redo}, {RedO,RedO}, {RedU,BlueO},

{Redo, BlueO, Redo, BlueO}}.

The anti-chains that represent the boundaries of this version space are:

SZ = {{Redn}},

G2 = {{Redo, Redo, Blueo, BlueO}}.

We now show the steps in the computation of K({Redo}, {BlueO}) = X(0, {BlueO}) r-

x((Redn}, 8) in terms of the anti-chains that represent them (Table 1).

x({Redo}, {BlueO}) = {{Redo}, {RedO,RedO}, {RedO,BlueCl}},

St nU 5’2 = {{RedO}},

GI n’ G2 = {{Redo, Redo}}, {Redo, Blueo}},

S3 = (St nu s2) *u (G, n’ G2)

= {y E (Sl flu S-2) 1 3x E (Cl dG2) y -: x}

= {{RedO}},

G3=(S3 *t (GI n’G2))

= {x E (GI d G2) 1 3y E S3. y I x}

= {{Redo, Redo}, {Redo, BlueCi}}.

We can easily see that a(S3, G3) = K({Redo}, {BlueO}).

374 C.A. Gunter et nl. /ArtQicial Intelligence 95 (I 997) 357-407

Fig. 7. Quasi-meets and quasi-joins

3.3. More general concept spaces

We have now shown how operations on version spaces are calculated if the concept

space is a finite lattice, but is there a way to work with spaces that are not finite lattices?
We now describe a necessary and sufficient condition for when we are assured that the

incremental update algorithm is usable, at least in principle. The key idea is to identify

what we need to be able to compute; this is given by the following:

Definition 17. Let P, 3 be a poset x, y E P. The quasi-meet of x and y is defined by

the equation

xAy=max{z E P 1 z 5x and z 5~)

and the quasi-join of x and y is defined by

xOy=min{zEPIz?xandz>Y)

In [8], JxAy is called bb(x,y) and fxOy is called aa(x,y).

If P is a lattice, then it is easy to cheek that x A y = {x A y} and x v y = {x V y}
so, in the event that we are dealing with lattices, quasi-meets and quasi-joins basically
correspond to meets and joins. However, it is not always the case that quasi-meets and

quasi-joins are singletons. A graphical representation using a Hasse diagram is given
in Fig. 7 where x vy = {gt , . . ,g,,} and x A y = {si,. . . , s,}. When the poset P is
a concept space, the elements of set x V y are sometimes called the “most specialized

generalizations” of x, y and those of x A y are called “most general specializations” of

x, y.
It is not sufficient simply to know how to compute quasi-meets and quasi-joins; it

is essential to know that these operations can be used to compute anti-chains that are
needed to represent version spaces. However, this is a special property of the concept

C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 375

space. Just as we defined a lattice to be a poset on which there are operations A, V with
special properties, we need an analogous definition:

Definition 18. A poset P is said to have property W if
l min(P) is finite and P = r min(P) and,
l for each X, y E P, the quasi-meet xii, .v is finite and

l(xhy) = {z E P I z 5 x and z 5 y}.

is said to have property M if
l max(P) is finite and P = 1 max(P), and

l for each X, y E P, the quasi-join x V y is finite and

T(xVy) = {z E P I z k x and z t-y}.

poset that has both properties is said to have property MW.

Property M is familiar from ideas in topology (where it is an order-theoretic for-
mulation of an important property of compact subsets called “coherence” [151) and in
domain theory (where it is a necessary condition for the bases of domains with good

closure properties [141). Mellish identified these conditions in [81; he too noted the

need for finite quasi-meets and quasi-joins of pairs of elements of P, and by fiat intro-
duced a top and bottom element for P so that the first part of the M and W properties

hold.
Given an MW poset P, we can now express in greater generality how the intersection

of two upper sets or two lower sets can be carried out in terms of their representation
as anti-chains. We define

Sn’T’=max(U{x,iylxtS’andyET’)) (forMWposets)

and

S’ fY’ T’ = min(u{x D y / x E S’ and y E 7”})

,A

(for MW posets)

Note, in particular, that although P may be infinite, if S’ and T’ are finite, then S’ n’ T’
and S’ VT are also finite. The definition of fY is the same as given in Eq. (5) although

the operations used there should be taken on MW posets. That is, the definitions of *I
and *’ are unchanged, but those for f? and nU are the ones just given.

Lemma 19. Let P be a poset and suppose S’, T’ are anti-chains in P.
(1) IfP hasproperty W, then L(S’f?T’) =Is’nlT’.
(2) IfP hasproperty M, then T(S’fFT’) = TS’flTT’.

Proof. We prove (1) ; the proof of (2) is dual. First suppose that x E J, (S’ f? T’) . Then
there are elements y, U, u such that x 3 y where y E u A u and u E S’ and u E T’. This
means that x 3 u and x _i ~1 so x E 1 S’ n I T’.

376 CA. Gunter et al./Art@cial Inrelligence 95 (1997) 357-407

Now suppose that x E 1 S’ and x E 1 T’. Then there are elements ua E S’ and uc E T’
such that n 5 ~0, ua. By property W we must therefore have x E J (uo A ~0) , so x is an

element of 1 X where

~=u{uAuIx~S’andy~T’}

The set X is finite, so, by Lemma 3, 1 X = J(max(X)) = 1 (S’ n’ T’) as desired. 0

Lemma 20. Suppose P is an MW poset and Cl, C2 C P are convex spaces where the
sets

S1 = min(Ct), Cl = max(Ct),

S2 = min(Cz), G:! = max(C;?).

are finite and the equations Cl = B(S1, Cl) and C2 = B(ST, G2) hold. If

(S’,T’) = (min(Ci) ,max(Ct)) nYmin(C2),max(C2)),

then min(Ci n C2) = S’ and max(Ct n C2) = T’. In particular,

Cl n C2 = B(S’,T’).

Proof. The desired result follows from Lemma 13 if we can show that

min(Ci n C2) = (Si V S2) *’ (Gi f? G2) and

max(Cr nC2) = (Si nU S2) *’ (Cl i-7 G2).

Let us do the first of these, the second has a similar proof. Starting with Eq. (1) and
Lemma 20 we calculate:

T((Sl n”S2) *u (Gi n’G2))

=Tum ms2mwl fuG2))

=~((?‘slnlGl)n(rs2nlG2))

= T(B(SI,G) nB(S2,G2))

= wl n c2).

It is not difficult to check that if U’ is an anti-chain and U = t U’, then U’ = min(U).
The desired equation therefore follows. 0

3.4. Necessity of properties M and W

The MW property is not a difficult condition to satisfy. For instance, any finite poset
has property MW and any lattice has property MW. But are there examples of concept
spaces on which incremental version space merging could be used but where MW is
not satisfied? We now show that it can essentially be claimed that concept spaces for
which the anti-chain representation on which the algorithm in Table 1 depends can only
make sense for a poset that satisfies the MW property.

C.A. Gunter et al. /Art$cial Intelligence 95 (1997) 357-407 371

The key assumption underlying the anti-chain representation of a convex space is that
the convex spaces that are represented in this way have the form a(S, G) where S and
G are finite anti-chains. Some vocabulary is helpful here:

Definition 21. Let P be a poset. A lower subset S of P is said to be finitely repre-

sentable if max (S) is finite and S = 1 max (S). A upper subset T C P is said to be

finitely representable if min(r) is finite and T = t min(T). A convex space C C_ P

is said to be finitely representable if max(C) and min(C) are both finite and C =

a(min(C),max(C)).

In these terms it is possible to express succinctly the Admissibility Theorem for

version spaces:

Theorem 22 (Admissibility). Let P be a concept space that satisfies property ME!

If, for every instance a, the convex spaces K({a},0) and K(Q), {u}) are finitely

representable, then so is K(P, A) for any training set (P, A).

Proof. Note first that Ic(8,Q)) = B(min(P), max(P)) is finitely representable by the
conditions for properties M and W concerning the collections min(P) and max(P).

Eq. (4) says that it is possible to express other collections as intersections of convex

spaces of the forms K({a},0) and K(@,{a}>.B ase d on Lemma 20 and our assumption

that such collections are finitely representable, it follows that K(r, A) must also be
finitely representable. 0

Theorem 23. Let P be a poset.
(1) If the set min(P) is finite with P = T min(P) and intersections of finitely-

representable upwards-closed subsets are finitely representable, then P has prop-

erty W

(2) If the set max(P) is finite with P = J. max(P) and intersections of finitely-

representable upwards-closed subsets arejnitely representable, then P has prop-

erty M.

(3) If the poset P is itself a finitely-representable convex space and if intersections

of its finitely-representable convex subsets are finitely representable, then P has

properties M and W

Proof. We prove (1); the others have similar proofs. Let X, y E P and let L = l(x) f?
l(y). Since this is an intersection of finitely representable sets it must be finitely

representable, so suppose L’ is an anti-chain such that L = I L’. In this case L’ =
max(L). Since L = {z 1 z 5 x and z 3 y}, it follows that L’ = x K y. Hence

I(xAy) = {z E P 1 z 3 x and z 3 y)

and this means that P has property W. q

Theorems 22 and 23 significantly extend the known theory of admissibility presented
in [7,8, lo]. They provide a direct means for verifying whether the anti-chain repre-

378 C.A. Gunter et al. /Artijicinl Intelligence 95 (1997) 357-407

sentation adopted by the version space algorithm is correct for an arbitrary training
sequence and a concept language that satisfies the MW property in terms of its behavior

on each element of the set of training instances.

3.5. A complex concept learning example

We now turn to a more complex example of a concept space in order to illustrate

the role that properties M and W may play in the admissibility of the version space
algorithm. Theorem 23 says that if intersections of finitely representable (fr) subsets of
an fr poset P are always fr, then P has property MW. Since the version space algorithm

relies on intersecting fr subsets to get fr subsets, this result is clearly relevant. However,

it may be the case that the algorithm does not actually need to take intersections of all

possible pairs of fr subsets. If the intersections it does take are always finite, then no

problem will arise. To illustrate how this can happen, we examine the task of learning
axis-parallel rectangles on a plane from labeled points on the plane. This problem

was introduced in [lo] and has applications in the geometric analysis of subsymbolic

learning methods.

Consider an integer grid imposed on the xy plane. Labeled examples are points (x, y)
on the grid marked as either being inside or outside the target axis-parallel rectangle. The
target rectangle is represented as a conjunction of two closed intervals over the natural
numbers N. We now formally define the set UP of instances and the set P of concepts

composed of elements that are subsets of UP. As in the previous concept learning

example, representational bias is introduced in P to permit non-trivial generalization of
instances. In particular, P consists of those subsets of UP that can be represented as
the product of a pair of closed, half-open, or open intervals on x and y. To be precise,

suppose R E { <, <}, and define:

P={{(x,y) j [ZRxRrlA[bRyRtl}/1,~,b,tENu{~}},

UP={(x,y) IxENandyEN}.

The elements of P are (points in) open, half-open, or closed rectangles corresponding

to whether both defining intervals are open, at least one interval is half-closed, or both

intervals are closed. This poset has the empty rectangle as a least element and UP as a
greatest one. Let us define the A operation between two elements p and 4 in P to yield

the largest axis-parallel rectangle on the grid that is contained in both p and q. Let us
define the operation V between elements p and q in P to be the smallest rectangle on

the grid that contains them both if there is one.

To see where this proviso about existence comes from, consider the rectangles

RI = {(x,y) 10 < x < 20 and 0 < y < 30},

R2 = {(x, y) 1 10 < x < 30 and 0 < y < 30).

Their union is not an element of P, and it is not difficult to see that there is no least

element of P that contains them both. That is, RI V R2 is undefined. But more that this
is true: property M fails! To see why, note that it is not just the case that there is no

C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 319

least element in P containing RI U R2; there is also no minimal element in P containing
it.

Let us put these concerns aside for now and focus on how the algorithms in Tables 1
and 2 are carried out using the partially defined operations for conjunction and disjunc-

tion. The target concept is a closed rectangle defined as I < x < r and b 6 y < t.

Should 1 > r or b > t we have the empty rectangle. The ordering 5 on P is that of
set inclusion 2. Because of the special form of the elements in P, we can check set
inclusion by checking for inclusion in the x and y intervals. We will use this fact in the

construction of anti-chain representations of the version space.
We calculate the version space given by the training set having the points (12, 12))

(11, 11) as a positive instances and the point (13, 13) as a negative one. Let us as-

sume thatthey arelearned in thefollowingorder: +(12,12),-(13,13),+(11,11).By

definition,

K({(12,12)},0) = {SE P \{(12,12)} c s c UP}.

The anti-chains SI and Gl representing K({ (12,12)}, 0) are sets of elements of P. In
this example, Sl and Gi are singletons: St contains a point rectangle at (12,12) and G,

is the half-open rectangle with its bottom left corner at (0,O) and its top right corner
at (oo,co).

S, ={(x.y) 1 12 Q x < 12 and 12 < y < 12},

G, = {(x, y) IO 6 x < 03 and 0 < y < oc}.

Now, (13,13) is a point outside of our target closed rectangle so, by definition:

X(0, {(13,13)}) = {S E P 1 0 C S c. UP- {(13,13)}}.

While S2 is a singleton consisting of the empty rectangle, G:! consists of four elements

in P denoting four rectangles on the plane that exclude the point (13,13) :

s2 = {0},

G~={{(x,y) 10 6 x < 13 and 0 6 y < 13},

{(x,y) IO < x < 13 and 13 < y < co},

{(x,y) I 13 < x < co and 0 < y < 13},

{(&Y) I 13 < x < 00 and 13 < y < 00)).

We now calculate the anti-chains representing the version space

using the construction in Table 1. Each element in an anti-chain is an open, half-open,
or closed rectangle. The pairwise V between the elements in SI and S2 yields the point
rectangle in Sr. The pairwise A operation between elements in G2 and the element in
G1 yields the elements in G2 in turn.

380 CA. Gunter et al. /Art@cial Intelligence 95 (1997) 357-407

SI flu S2 =min{p V q 1 p E 4 and q E &}

={(x,y) 1 12 < x < 12 and 12 6 y < 12},

Grf~‘G~=rnax{p~qIp~S~ andqE&}

={{(xvY)

{<XT Y)

{t&Y)

I<% Y>

0 < x < 13 and 0 < y < 13},

0 < x < 13 and 13 < y < oo},

13 < x < 03 and 0 < y < 13},

13 < x < 00 and 13 < y < CXI}}.

To obtain the anti-chains Ss and Gs representing the boundaries of

~({(12,12)}~{(13~ 13)))

we complete the last two steps in the algorithm in Table 1:

Ss = (Sr nU Sz) *a (Gr n’ G2)

= {P E 6% nU S2) I 3q E WI f-f G2) P 5 4)

={(x,y) I 12 <x < 12 and 12 < y < 12},

G3 = (Sr V S2) *’ (GI n’ G2)

= {q E (G1 n’ G2) I 3 E (SI ws2) P 15 4)

={(x,y) IO 6 x < 13 and 0 6 y < 13).

As expected, Ss is the point rectangle at (12,12) and G:! is the half-open rectangle with

its bottom left corner at (0,O) and its top right corner at (13,13) where (13,13) is
not included in this rectangle.

The version space for the positive instance (11,ll) is represented by the pair (S4, G4)

where

&={(x,y) I 11 <x < 11 and 11 < y < ll},

G4={(x,y) IO < x < cc and 0 < y < ce}.

When we merge this with (Ss, Gs), the upper boundary remains Gs, but the new lower

boundary is

SS = {(x,y> I 11 <x < 12 and 11 < y < 12},

since this is the value of S3 fP S4, a closed square with corners at (11, 11) and (12, 12).
Let us return now to the question of why the algorithm seems to work (at least on

the example) even though property M fails. The need for property M arises from the
use in the algorithm of quasi-joins to calculate lower set boundaries, which serve as the
lower boundaries of the convex version spaces. However, it is not hard to see that not
every concept in P could arise as an element of a lower boundary S of a version space
when only training sequences of points are used to generate version spaces. To see why,
note that the lower boundary of a version space will always be a single closed rectangle,

C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 381

which will, in fact, be the smallest (most specific) rectangle containing the positive
instances of the training sequence. Our counter-example to property M was obtained

by attempting to take the union of a closed rectangle with an open one - a situation

that will not arise in the algorithm unless new convex spaces are learned by some other
means than training sequences of points. By contrast, the upper boundaries of version

spaces in this concept space are always open rectangles (that is, rectangles that do not
include their finite boundaries). This heterogeneity has the consequence that we cannot
stipulate that a concept is “learned” when S and G in the version space coincide since

this will never happen! So, referring to Table 2, the test good-enough must be defined

to test that S and G are singleton sets such that the difference between them is a border

of width 1 around S.
In general terms, the success of the version space representation for this concept

space can be seen as relying on the fact that upper and lower boundaries lie in special

subsets of the concept space. Another way to say this, is that the specific concepts

are represented in a concept space of closed rectangles while the general concepts

are represented in one of open rectangles. To incorporate this into a general theory

such as the one we have described in this section would require generalizing our
view of version spaces to accommodate three partial orders: one for upper bound-

aries, one for lower boundaries, and one for comparing upper and lower boundaries.
The first of these must satisfy property M and the second must satisfy property W.

The order for comparing upper and lower does not need to satisfy any order-theoretic

properties, but, of course, we must be able to compute it in order to execute the
version space merging algorithm, where it will be used to compute heterogeneous in-
tersections. We will not attempt a further elaboration of this generalization in this

paper.

4. Assumption-based truth maintenance systems

An Assumption-Based Truth Maintenance System (ATMS) is a structure introduced

by de Kleer [2,3] which is intended to compute sets of assumptions on which a
conclusion can be based relative to a given theory. Our goal in this section is to
show how the computations involved in the ATMS can be expressed in terms of anti-

chains. This provides a semantic basis for understanding the ATMS and reveals efficient
representations for the calculations.

To describe the ATMS, we need some ideas from logic. We work with a language Is

of propositional atoms that includes an atom I standardly interpreted as falsehood. In
general, atoms will be denoted with lower case letters a, 6, c from the beginning of the
Latin alphabet. Propositions (or formulas) 4, I/J are built from atoms using the usual

logical connectives * for implication, 1 for negation, A for conjunction, and V for
disjunction. A theory 3 is a set of propositions. A model M is a subset of C - {I}
where an atom a is interpreted as being true if, and only if, a E M. We write M + C$ if

M interprets 4 as true with the usual truth table interpretation of the logical connectives.
We write 3 + C#J if each model of the elements of 3 is also a model of $. We say that
a theory 3 is inconsistent if it has no models or, equivalently, if 3 k 1.

382 C.A. Gunter et ul. /ArtiJicial Intelligence 95 (1997) 3.57-407

As we discussed in an example earlier, we let A be a finite subset of C whose
elements we call assumptions and define the poset of environments & to be Pwr(d)

under the subset ordering. Assumption atoms may be written using upper case letters

A, B, C to help distinguish them from general atoms. Environments will be denoted with

lower case letters x, y, t from near the end of the alphabet.
Given a theory .ZF and assumption set A, an ATMS is designed to efficiently calculate

the collection of nogoods, defined as

N(F) ={xEE~.RJx~:I}

and, for each a E L, the set

V(~,a)={xEE(~Ux#Iand3Ux/=a}.

In practice, this function is invoked more often on different as than on different 3s

so the primary computational goal of the ATMS is to calculate the function

&(a) = V(F, a)

typically representing it as a hash table look-up on the atoms in L. For uniformity of

notation, let us also write NT = N(F).
There are several important observations that aid the design of an efficient represen-

tation of this computation. First, let us note that:

Lemma 24. V’(a) S & is a convex space.

So it can be represented as a pair of anti-chains. This is done in [2,3] as the diference

of two upper subsets of &. The efficiency of this representation owes to the fact that

the subsets V’(a) effectively share a common upper boundary that can be computed
in terms of the nogoods. In particular, we can simply maintain the following function
mapping atoms to anti-chains in E:

i

min{xEEjFUx+J_} if a = I,
J%(Q) =

min{xEEI~Ux#_land~Ux~a} ifa# 1.

Knowing LF allows us to compute all of the desired values.

Example 25. If _4 = {A, B, C, D} is an assumption set and F is a theory such that

b_(a) = {{A, B}, {C}} and &(1) = {{CD}}, then

&(a) = {{C},{A,~},{A,C},{A,D),(B,C},{~,~},{A,~,C},{A~B~~}}

can be represented as the difference of the upper sets t L.ZF (a) and T LF(I). The convex
space V’(a) is illustrated as the lightly shaded part of Fig. 8.

Lemma 26. Given a theory F and assumption set A,
(1) NF=tLF(j).
(2) Ma> = (t LAa)) - (t LA-L>>.

C.A. Gunter et al. /Arfificial Intelligence 95 (1997) 357-407 383

Fig. 8. The convex space VJZ(~) of environments represented as the difference of two anti-chains

LF(N) = {{A,B},C} and LF(~) = {{C,D}}.

In practice, it is more efficient to use a boundary representation and work with LF(I)

and LF(a) -’ LF(1) than with NT and VF(a), These sets are called the labels [21
of I and a respectively. Knowing the labels is sufficient because we can reconstruct V3
from them:

7(&(a) -’ b(l)) - T LFLJ-) = l‘(I’b(a) - T b_(l)) - N3

=T(TWa) - NF) -NT

= (Tk(a)) - NF

= VF(LI).

So, referring back to our earlier discussion surrounding Lemma 11, the proposed opti-
mization represents the convex space of interest as the difference of two upper sets.

4.1. The ATMS interface

An ATMS can be understood as an abstract data type in terms of the semantic
interpretation described above. It is used by a client problem-solving system to cache
inferences about assumptions that justify propositional atoms. The ATMS data type is

defined by the three operators given in Table 3. The ATMS data type itself is denoted
atms there of course. FinPwr(C) is the collection of finite sets of propositional atoms.

The function initatms creates an ATMS based on a given set of propositional atoms
which plays the role of the assumption set A. This function generates an ATMS that

associates with each atom a E A, the label {{u}}, and with each atom b E L - A,
the empty label. The function label computes the label of a propositional atom; this
label is an anti-chain in the poset I of environments (finite subsets of A), The function
update is the work-horse of the interface: given a theory (set of propositions) and

384 C.A. Gunter et nl.MrtQScial Intelligence 95 (1997) W-407

Table 3
The ATMS interface

init_atms : FinFWr(L) + atms
label : L x atms + Anti(E)

update : theory x atms + atms

an ATMS, it produces an “updated” ATMS with labels that incorporate the information
provided by the new theory into the labels determined by the previous theories with
which the initial ATMS has been updated.

The combination of the basic operations on anti-chains with the basic operations on
the ATMS provide the desired functionality for the ATMS in a modular, semantically

clear, and efficiently implementable manner. For instance, the functions in [2] that
the ATMS is meant to compute can all be succinctly expressed using our interfaces.

The same is true for most of the functions in [4]. To see some examples from the

latter, consider the function node-consistent-with? from [4, p.4401. This takes as

arguments an atom a E /Z and an environment x E &; it returns the boolean value true
if, in the label of a, there is a consistent environment y that is a superset of x. In

other words, x has a (consistent) extension to an environment from which a follows.
In terms of our ATMS and anti-chain interfaces (that is, in terms of the operators in
Tables 3, A.2, and A.3), this is simply

lowerrmember(label(a, theATMS), x)

where theATMS is the ATMS of interest. upper-member(A, E) checks if element E
is a member of the upper set corresponding to the anti-chain A. Another exam-
ple, described in [4] as useful for “sophisticated inference engines” is a function

supporting-antecedent? which takes a set of atoms S = {al,. . . , a,} and an envi-

ronment x as arguments; it checks whether the conjunction of the atoms in S holds in

x. In terms of our interfaces, this is upper-member(S’, x) where, with some mixing of

mathematical and programming notation,

S’ = label(ul , theATMS) fl” . . . flu label(a,, theATMS).

Using the binary operation upperhomogeneousintersection, the anti-chain S’ is

calculated by using the analog of the Common Lisp utility apply.
We can extend our interface to provide additional information to a client problem

solver. For example, we can include a function

atoms : atms -+ FinPwr(L)

which returns the (finite) set of atoms mentioned in the current theory of the ATMS.
This would make it possible to ask for the collection of atoms that are “believed”
relative to a given environment X. This collection is sometimes called the context of x;
it can be calculated by collecting all of the atoms a in atoms(theATMS) such that x
is a superset of an element of L = label(a, theATMS). In particular, x is a superset
of such an element holds just in case upperrmember(L,x) is equal to true. However,
it seems unlikely that one will want to actually form the context of an environment

C.A. Gunter et al./Art$cial Intelligence 95 (1997) 357-407 385

as a set; in most cases one will want to know only whether an atom is in the context
determined by a given environment, and this can be learned from the functions label

and upper-member without recourse to atoms. On the other hand, an implementation

of the ATMS requires the function atoms, so there is no cost in making it available to

the client problem solver.
To provide the function explain-node described in [4] requires an extension of a

different nature to our basic interface. This function (described in [4, p. 4421) takes
an atom and an environment as arguments; it returns a proof for the atom based on

the theory of the ATMS and the given environment. For our present formulation of
the ATMS we have chosen not to keep any information about proofs of atoms from

assumptions, instead retaining only the anti-chain of minimal sets of assumptions from
which a atom can be derived. To add this function, we need to provide a propositional

theorem prover that can reconstruct the proofs of the atoms from the anti-chain of
assumptions associated with it. The design of appropriate interfaces for the ATMS is a

very interesting and rich subject in its own right; the appropriateness of various choices
are essentially compromises between the needs of the client problem-solving system and

the computational overhead of delivering the needed functionality.

4.2. The basic ATMS

While we have imposed no restrictions on the theories that can be used with an ATMS,

in the absence of such restrictions the update function may involve computation that
is exponential in the size of A. One way to ensure that update can be calculated

efficiently for a reasonably expressive language is to restrict the propositions in theories

to be Horn clauses. A Horn clause is a proposition of the form

al A... Aa,*a

where n = 0 means the proposition is just a, which we may write in the form =+

a. For many applications this has proven to provide a good balance between logical
expressiveness and efficiency. The restriction to Horn clauses was used in de Kleer’s
original paper [2], as well as in much of the discussion of the ATMS in [4]. The
computational advantage to Horn clauses lies in the fact that the complexity of the

decision problem F k a is linear in the size of F (as opposed to exponential in the

size of A).

The logical meaning of the interface function update was specified to be the label
function L3 where 3 is the theory associated with the ATMS. The question still remains
of how this function is to be calculated. Our goal now is to provide an abstract descrip-
tion of how this can be done in terms of anti-chains using a class of functions called
“closure operators”. * The idea is to do this as a declarative “executable” specification,
In other words, the computation is described as a mathematical entity: in particular, as
the least fixed-point of a functional as one does in the denotational semantics of pro-
gramming languages [6,121. The benefit of a mathematical treatment can be realized

2 The mathematical notion of a closure operator should not be confused with that of a “closure” in functional

programming languages, where the term refers to a pair consisting of a code pointer and an environment.

386 CA. Gunter et al./Arfificial Intelligence 95 (1997) 357-407

in proving correctness of algorithms for computing labels. Indeed a proof of correctness
based on a fixed-point semantics was given in [51. What we add to their treatment (as

far as the basic ATMS is concerned) is a succinct formulation in terms of our anti-

chain operations together with a fuller discussion of the role of closure operators. The

use of anti-chain operators makes it possible to capture the mathematical description in

pseudo-code that is quite close to an actual efficient implementation one might use. We
first show how properties of closure operators allow one to describe the label update
algorithm for the basic ATMS; in a later section we use them to develop a new algorithm

for the ATMS relative to a more general class of propositions.
Turning now to the technical details, let Anti(E) be the set of anti-chains over 1.

Let us form a partial ordering of anti-chains by taking x 3 y if, and only if, T x C T y.

Suppose C$ is a Horn clause at A . . . A a,, + a; the proposition C$ induces a functional
which can be viewed as an operation for “improving” the information in a label for the

atom a. Repeated application of such information-improving functionals is the key idea

of the ATMS label update algorithm. Suppose that F is a function from C to Anti(&).

We can view F as describing the “current state of knowledge” about the label function.
Let us say that another such function G is ‘at least as informative’ as F and write F 5 G

if F(b) 3 G(b) for each atom b. Taking into account the information provided by C,?J is

done by applying an operator

4 : (C -+ Anti(l)) + (L ---f Anti(E))

which is defined by the equation

F(b) if b + a,

&F)(b) =
F(a) U” n’{F(ai) 1 1 < i < n} if b = a.

There are three special characteristics of 4 whose proof we discuss below. First of
all, if G is a labeling function that is at least as informative as F, then J(G) is at

least as informative as 2(F); that is, F 3 G implies that $J(F) 1: 4(G). Second,
d(F) contains at least as much information as F; that is, F(b) 3 J(F) (b) for any
atom 6. Third, applying $ twice consecutively adds no further information; that is,

$(4(F)) = p(F). These are the defining properties of a closure operator:

Definition 27. Let P be a poset and suppose f : P --+ P is a function. Then f is a

closure operator if it is
0 monotone: x 5 y implies f(x) 3 f(y),

l inflationary: x 3 f(x) for any x E P, and
l idempotent: f(f(x)) = f(x).

Lemma 28. For any Horn clause c$, the function 4 is a closure operator.

Proof. Say 4 is al A ’ + A a, =+ a. To see that C$ is monotone, suppose F 3 G and b

is an atom. If b # a, then J(F) (b) = F(b) 5 G(6) = 4(G) (b) since F 5 G. On the
other hand, if b = a, then

CA. Gunter et al./Art@cial Intelligence 95 (1997) 357-407 387

t+(~)(b) = T(FW uu nU{F(ai) I I G i G 4)
= (t F(U)) u nft F(Ui) I 1 < i < rl}

5 (t G(4) u nit G(Ui) I 1 < i < 4

= t (G(U) UL' n"'{G(ui) / 1 G i 6 II})

= t&G)(b)

so C$ is monotone.
To see that it is inflationary, suppose b # a, then F(b) = 4(F) (b). If b = a, then

t&F)(b) = T (F(n) U” n%Yai) I 1 G i 6 4)

= W(4) un{tWi) (16 i< n>

2 t F(b).

To prove idempotence, we consider two cases. Either a = ai for some i or a + ai

for all i. If the former holds then 4 is “uninformative” and it is easy to verify that
p(F) = F for any F. If the latter holds, then 4(F) (ui) = F(ui) for each i and we can
calculate as follows for the case in which the argument is a:

&$(F))(a) =&(F)(a) uUn”{&F)(ai) I 1 <i < n}

= (F(u) U” n’{F(u;) / 1 < i < n})

uU n%(F) (ui) I 1 G i G n>

= F(u) U” nU{F(ui)) 1 < i 6 n}

=&F)(u).

If the argument is b # a, then the result is immediate, so we are done. q

The key point concerning closure operators and partial information is that the repeated
application of members of a family S of such operators eventually leads to a point of
stability in which no new information is added by additional applications of operators
from S. This point of stability is technically a least common fixed point of the operators

in S. We require a slightly more general fact which the next theorem expresses.

Theorem 29. Suppose P is a jinite poset and S is u family of closure operators f :
P + P. For any point x0 E P, there is a least common&ed point of S above x0. That

is, there is an element x E P such that x0 3 x and .f (x) = x for each f E S.

This is a corollary of the following lemma, which describes how such a fixed point
can be computed.

388 CA. Gunter et al. /Artificial Intelligence 95 (I 997) 357-407

Lemma 30. Suppose that {fi 1 i E I} is a family of monotone and in$ationaryfunctions
on a poset P indexed by some finite set I. Suppose that P is finite and x0 E P. Let v

be an infinite sequence of members of i such that every element of I appears in every

&ix of u. Let a[n] be the nth element of LT. Consider the set

This set has a least upper bound x. This point x is the least commonJixed point above

x0 for the fu~tctions (fi \ i f I).

Proof. The fact that r has a least upper bound follows from the observation that it is

a chain (that is, y 3 z or z 5 y for each y, z E r) and the poset P is finite.
To prove that x is a common fixed point, we need a convenient notation for composing

sequences of fis. We write (T,, for the length n prefix of u’. We write f, for the

composition fo[nl 0 fvj,,_l 1 0 . . . o fa, 11. First, note that the elements of r are written

in non-decreasing order because all the fi are inflations. Second, because P is finite,
the least upper bound is attained at some finite stage, that is, for some n, the least upper

boundofris frrrnl(frrln-lI(...(f~lll(Xo)))) or, using our notation, fg,, (x0). Let us
begin by noting that

if 172 2 n, then x = fun,(x). (7)

Since x is the least upper bound of r, we already know that fg, (x0) 3 n, and since

f CT[n+I] J . . . I f rrlkl are all inflations, we also know that x = fv,, (x0) 5 fvn, (x0).

Now, consider one of the functions f;. We must show that fi(X) = x. To this end,

let nz be a number greater than n such that cr[m] = i; we know there must be such

an nz from the assumption that i appears in every suffix of I+. By (7)) we know that

x = f<,,,,_, (x0). Applying frrr,lll to both sides of this equation yields fi(X) = f,,, (x0),

which, by (7) again, is equal to x. Thus, n is a fixed point of any of the functions in r.
Suppose that x’ is any other common fixed point, we have, by an easy induction on

m, that for all m, f,,“, (x0) 3 x’ by the monotonicity of the fi and the fact that x0 _i x’.

Thus, x’ is an upper bound for r and, since x is the least upper bound, x 5 x’. 0

The upshot of this lemma is that if we wish to find the least common fixed point of
a set of closure operators we need only apply each one often enough in succession, not
necessarily in any systematic order, and we will find the fixed point. The appearance of

the infinite sequence g in the proof is only to formalize the notion of “often enough”;

the fact that P is finite ensures that only finitely many iterations of such applications

are required in order to reach the desired fixed point.
We now use this theorem to express the ATMS label update computation. Suppose that

LB is the label function constructed from the set s of Horn clauses. The improvement
of the label function Ls by a set F of Horn formulas is characterized as follows.

Theorem 31 (Soundness of the basic ATMS algorithm). Let A be a set of assumption

atoms, and suppose & is the associated environment lattice. Let L be the label function

for A, E, and suppose that 3 and G are sets of Horn clauses. If Lg : C + Anti(E)

Table 4

C.A. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407 389

Converting a Horn clause q5 to a closure operator 6

function d;(F) (b) =

if b + a then F(b)

else F(a) U” (fold(n”, map(F)(S), {0}))
endif

where 4 is a Horn clause such that S is the set of its premises and a is its conclusion.

is the label function relative to G, then there is a least common fixed point F of the

functions

above LG. Moreover, this jxed point satisjes the equation:

&Fug(a) =
F(a) -‘F(I) ifa f I,

F(I) ifa= 1.
(8)

A proof of the theorem involves relating the semantic entailment k for the Horn
clause formulas C#J to the least fixed point of the closure operators 4. This can be done
through the use of a minimal model for a collection of Horn clauses. Details sufficient

to construct a proof of Theorem 3 1 can be found in [51 and [111.
It is worth noting how Theorem 31 reflects the “non-monotonicity” of labels despite

using a fixed point computation based on monotonic operators. Since some members
of LB(U), for a f I, may become nogoods when deductions based on 3 are taken

into account, it is not necessarily the case that Lg(a) 5 LFUB(~). Put more generally:
although F is a monotone operator on labeling functions, LX (a) may not be a monotone
function of X (under an ordering of sets of formulas by subset inclusion). This non-
monotonicity arises from the upper difference F(a) -‘I F(I) taken in 8.

Using Lemma 30, 8 shows how to calculate L~ug from LG and 3 by the use of

a least common fixed point. We can convert this mathematics for ATMS computation
into pseudo-code in the way Tables 1 and 2 did for version spaces. Pseudo-code for the ,.
operation 4 H 4, which takes a Horn clause to the corresponding closure operator on
label functions, is given in Table 4.

In the program there, the following functions are taken from the anti-chains interface:

upper-union upper_homogeneous_intersection
singleton empty

The first two of these we have encountered before. The operation singleton takes an
element x and forms the singleton anti-chain {x}. empty is the empty set, which is
itself an anti-chain. In particular, the upper set that the anti-chain singleton(empty)

represents is T(0) = E. Aside from the operations on anti-chains, we require two basic
operations on sets:

map fold

390 C.A. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407

Table 5

Basic ATMS label update

function improveLABEL =

let L' = C(L)

in ifL=L'

then A(atom) =>

if atom = I then L(I)

else L(atom) -II L(I)

else improveLABEL

endif

endlet

The function map takes two arguments, a function F and a set S; it returns the set ob-

tained by applying F to each of the elements of S. For instance map square (I, 2,3) =

{ 1,4,9}. A Common Lisp analog for lists is mapcar. The function fold takes a binary

operation *, a set T = {XI, . . . , x,,}, and an “end value” x; it returns XI *x2 * . *x,, *x.
If T = 8, then fold * T x = x. For instance fold + { 1,2,3} 0 = 6 and
fold f 8 42 = 42. The Common Lisp function apply is similar but does not
use the “end value” X. In Table 4, the end value used is (0) (which is not to be
confused with the empty set itself). In particular, note the case in which #J has the
form + a so that S is the emptyset. In this case an upper union is taken between
F(a) and the singleton containing empty set. The upper union of these is the single-
ton containing the empty set. The upper set of this is the entire environment lattice;

this is what we expect, since a is a premise and therefore holds in every environ-

ment.
To use the operation 4 H 4 to calculate a label one can use a “label improvement”

function; pseudo-code for a such a function appears in Table 5. Since the result of
evaluating improveLABEL should be a new labeling function, the returned value
must itself be a function, This is represented in the pseudo-code using a form

A(x) => E

which is an “anonymous” function with formal parameter x and body E.

The algorithms in Tables 4 and 5 correctly implement the ATMS computation. How-
ever, they are less efficient than they could be: at least three changes can be used to

optimize the algorithms for some cases.

(1)

(2)

Improving the termination test. The test L’ = L in the third line of Table 5 can
be combined with the calculation of C(L), saving a second pass through the

structures L and L' . In an actual implementation, this is accomplished by using a
flag that is set whenever a change to L occurs. The test C L = L is then replaced
by a test to check if this flag is set.
Optimizing the choice of application sequences of closure operators. It is possible

to determine as the computation proceeds that some of the closure operators will
not yield new information in the current state of information. In particular, when
the label of an atom a is updated, the only “directly relevant” Horn clauses to
consider are those in which a occurs as an antecedent.

Table 6

CA. Gunter et al. /Artificial Intelligence 9.5 (1997) 357-407 391

Basic ATMS label update algorithm

Assume C$ is a Horn clause of the form c~~,....cL,, =$ CL
function PROPAGATE (4, b, I) =

let S = WEAVECb, I, {w,....c~n})

in if S # 0 then UPDATERS, a) endif

endlet

function UPDATERS, a) =

if a=l

then NOGOOD

else L(a) := S U" L(a)

for each C$ such that a is an antecedent of C#J

do PROPAGATE($,a,S);

S := [S U" L(a)1 -' L(i);

if S is empty then return endif

endfor

endif;

function WEAVE(b, I, {(II, cl”}) =
for each u;

do if (I, + b then I:= (I n" L(q)) -' L(I) endif

endfor;

return I

function NOGOOD =

L(I):= L(L) U" s;

for each atom b # 1

do L(b):= L(b) -' S

endfor

(3) Incrementally removing nogoods. Rather than removing nogoods at end of the

calculation as in improveLABEL, they can be eliminated incrementally during
the course of an update, as new environments are added to the anti-chain of

nogoods.
All these optimizations are found in real implementations of basic ATMS update algo-
rithm. The Forbus-de Kleer algorithm from [4] is reconstructed in Table 6 using our
anti-chain operations. The closure operators that occur in the declarative specification of
the ATMS are implemented in Table 6 using procedural iteration constructs.

The chief insight in the algorithm is to propagate changes to labels rather than the
entire labels in the update computation. We can define the incremental information
provided by a Horn clause (b as the application of an operator

A$: (C --f Anti(E)) --t (C --t Anti(&))

which is defined by the equation

0 if b # a,

A&‘)(b) =
n”{P’(ai) 1 1 < i 6 n} if b = a.

The procedure WEAVE in Table 6 implements A$. Nogoods are removed as they are
discovered in the de Kleer-Forbus algorithm. The procedure NOGOOD in Table 6 imple-

392 C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407

ments incremental nogood removal by in-place update of the evolving label function
F. When an anti-chain S is added to the evolving anti-chain of nogoods F(I), then

every label set F(a), a # I, a E C is updated to eliminate environments in S and

those subsumed by S (i.e., F(a) -’ S). In procedure UPDATE, the label of an atom a is
updated to include the new labels in the anti-chain S. In the for loop in this procedure

the closure operator consisting of the “relevant” Horn clauses (ones in which a occurs
in the antecedent) is constructed incrementally and the label function F updated by each

of these Horn clauses in turn (by procedure PROPAGATE). PROPAGATE computes A$

with respect to a given Horn clause (by using WEAVE) and terminates label propagation

if there is no change in the label set (S = 8). The compact semi-procedural/declarative
reconstruction of the optimizations in this algorithm allows us to use the anti-chains

package for effective implementation.

5. Extended ATM%

Closure operators have a crucial but largely unappreciated importance for designing

algorithms that manipulate partial information. We now illustrate this for what de Kleer
called the “extended ATMS”.

The extended ATMS is defined in [31 to be an ATMS where the input theory consists

of Horn clauses over L and disjunctions of assumptions Al V . . . V A,,. The extended
ATMS has the same interface (Table 3) as the basic ATMS, but permits certain kinds
of disjunctions to be given in theories, in addition to Horn clauses. That is, the goal is

to compute L~,,l(a) for propositional atoms a E C, where 3 is a set of Horn clauses

and 7 is a set of disjunctions of assumptions.

Example 32. If A = {A, B, C} is an assumption set,

3={A+u, B+b, C=sc, CAU+~, cr\b=%I}

is a set of Horn clauses, and 7 = {A V B} is a set of disjunctions of assumptions, then

LF(L) = {{A, C}, {B, C}},

LFUl(J-) = {{C>)

since one of A or B is guaranteed to hold in models of 3 U 1.

As de Kleer notes in [3], the label update algorithm for the basic ATMS, which is

sound and complete for Horn clause theories, becomes incomplete when disjunctions
are allowed. To correctly compute labels with respect to 3 U 7, [31 uses two hyper-
resolution rules to “fix up” labels computed with respect to 3 by the basic ATMS
algorithm.

Our approach to an extended ATMS generalizes the disjunctions of assumptions used

in [31, to formulas of the form

r=q!q v4q v...vq&,

C.A. Gunter et al. /Artijicinl Intelligence 95 (1997) 357-407 393

where each +i has the form

4; = A’, 17 . . ’ A A:,,

and A,; E A.
In other words, simple disjunctions of assumptions are generalized to formulas in

disjunctive normal form over assumptions. Let us refer to a formula having the form of

7 as an Assumption Disjunctive Normal Form (ADNF) . To appreciate why generalizing
from primitive disjunctions to ADNFs is a natural step, note that a conjunction of

assumptions like & is essentially equivalent to an environment {A:, . . . , A:,} E E. A
formula like 7 can therefore be viewed as an anti-chain over E, provided the &s are

not subsumed by one another. In effect, we are permitting the logical import of an anti-

chain to be directly asserted by the problem-solving system in the form of an ADNF.
To develop the details it will help us to confuse the distinction between an ADNF like
7 and a set of environments. So we write t E T to mean that t = {A’;, . . . , A;(} for

some i < n. That is, t is the environment that corresponds to &. We use symbols
7, I’ for sets of ADNF formulas. Our mathematical treatment in terms of closure

operators allows us to derive a new algorithm for computing labels with respect to

theories that include assumption DNFs and to prove its soundness. In addition, new
optimizations in label computations that were otherwise hidden are revealed in this

formulation.

We now examine how the introduction of assumption DNF formulas over A changes
the set of environments in which a propositional atom holds. Continuing with Exam-

ple 32:

NF = 1‘L~(l) = {{~,C},{~,C},{~,~,C>},

NRJ~ = T L=IJ~(~) = {{C}, {AC}, {R C}, {A B, C}}.

The set of environments in which I holds expands with the introduction of the disjunc-
tion A V B to include environments x E E such that x U {A} E N3 and x U {B} E N3.

To identify such environments added by the assumption DNF formula 7 E 7, we define
the operator

q7 : Pwr(8) 4 Pwr(E)

which is intended to extend the upward closed set of environments VF(a) and N3 to

the upward closed sets V’u{7) (a) and N3v{7~ respectively. Given a set S C E, define

~~(S)={xE&/~tE7.XUtE1‘S}.

It is easy to see that pT(S) is an upward closed set, i.e., 1‘ p,(S) = pT(S). For instance,
given the theories defined in Example 32:

N~FU{AVR} = ~{{A),{B}}(NF).

Note also that p(S) = ly (T S) for any S. Ultimately, however, we are interested in
working with operations on anti-chains of environments. We define the anti-chain analog

Q7 : Anti(E) + Anti(E)

394 CA. Gunter et al. /Arti$cial Intelligence 95 (I 997) 357-407

of p7 as follows,

or, equivalently, G,(S) is the unique anti-chain in & such that

Lemma 33. The function P7 is a closure operator for any ADNF formula -r.

Proof. Let S C: T, where S, T E Pwr(&). This means that 1‘ S C r T. We first establish

monotonicity.

xEP7(S) =+ vtEr.XUfEfS

* V?E7.XUCETT

=+ x eP‘,(T).

To see that p, is inflationary, suppose x E S and t E r. Then clearly x u t c 7 S, so

x E ?PT(S) . Thus S c q7(S) To demonstrate idempotence, we show that p’,(p7 (S)) =

FT(S) _ We know that Yr(S) C W,(p,(5’)). To prove the opposite inclusion, let x be
an environment:

x E FT(P,(S)> =+ v’t E 7. x u t E TP,(S)

=-+ vtEr.XUtEP~(S)

j \JtE7.XUfE(xrEE/~?‘E7.X’Ut’ETS}

j vtET.xUtUtE~S

=+ XE!PT(S).

Hence ly, is idempotent and therefore a closure operator. 0

Corollary 34. The ,function Q7 is a closure operator for any ADNF formula r.

Proof. Recall that S 3 T for anti-chains S, T means t S C: T T. Now,

t Q,(S) = PAS) C PT(T) = t @T(T),

so QD, is monotone. Moreover, t S C pT(T S) = p’,(S) means

S=min(tS) 5min(ly,(S)) =@,(S),

so Gj7 is inflationary. Finally,

so Q7 (07(S)) = cPi,(S) too. Hence Gp, is idempotent. q

C.A. Cunrer et al. /Art@cial Intelligence 9.5 (1997) 357-407 395

In general, results like this corollary follow from the fact that Cp and P are corre-
sponding operators on isomorphic spaces (that is, on anti-chains and upper sets respec-

tively).

Lemma 35. Suppose S E Anti(&) and r1,72 are ADNFs. Then

@J,,(@,,(S>> =@%,(@,,(S)) =@,(S>,

where 7- = min{x E E / 3tl E q3t2 E 72. x = tl U tz}.

Proof. Let S be an anti-chain of environments and suppose y is an environment, then

y E @JT, (@T?(S))

-3 vt, E 7,. y ut1 E T@T,(S)

‘3 vt, E 71 321 E @,z(S>. ZI L Y Ufl

~V~,E~~~ZI.(~~~~E~~.ZIU~~ETS)~~~~ICYU~I

* v’t, E 3-l vt2 E 72. (y u t1> u t2 E T S

@ y E @T(S)

H Vt2 E 7-2 Vt1 E 71. (y U t2) U t1 E t S

H ‘dt2 E r1 322. Oh1 E 71. 22 U tl E T S) and 22 (I Y U f2

~~t:!Erl322E~+,(S).z2CyUt2

H Vt2 E 72. y U t2 E T Q7, (9

@ y E@,,(@T,(S)) q

It is illuminating to note that the formula r in this lemma essentially corresponds
to the anti-chain that one could obtain from taking an upper intersection of 71 and r2

viewed as anti-chains, that is r = r1 0’ 72.

Lemma 36. For S E Anti(&) , and for closure operators QT, , . . . , @jr,, , the least com-

monfuedpointof{@,) 1 ~ii6}aboveSis~,,(~,(...(~,,(S)...))).

Proof. This is a consequence of Corollary 34, Lemma 35, and Lemma 30. 0

Given a set 7 = (71, . . . , 7,) of ADNF formulas, let us define Qil (S) to be the least
fixed point above S of the closure operators a,, , . . . , a7,,. Lemma 36 tells us how to
compute @I (S)

Our goal now is to show how to calculate the label function for the extended ATMS.
This is done in two parts: first, we show how to compute labels using the operators @Q-

and, second, we show how to compute @7(S) for anti-chains S. For the first step, here
is the desired result:

Theorem 37 (Extended ATMS algorithm). Let F be a set of Horn clauses over C,
and let 7 = (71,. . . , r,} be a set of ADNF formulae over the assumption set A. Then

396 C.A. Gunter et ul./Artifcirrl Intelligence 95 (1997) 357-407

for every propositional atom a E C,

km(a) =
i

@dL3(a)) ifa=I,

&-(&(a) U” LF(I)) -’ LF.uI(J) ifa # 1.

The proof of the theorem, which is a demonstration of the soundness of the extended
ATMS algorithm, is best done by establishing some general equations as a preliminary.

Let F be any theory (the formulas in F do not need to be Horn clauses or ADNFs,

although this is the case we are actually interested in). Suppose that x E E and r is an

ADNF. Then the following correspondence holds:

FU(7)Uxka iff QtET..FUtUxka. (9)

To see why, let us look first at +. Suppose that any model of FU {T}UX is also a model

of a, and suppose that M k F U t U x for some t E T. Then M k 3 U {T} U x too, so by

assumption, M k a. Thus Qt E T. 3 U t U x /= a. Turning now to a proof of +=, suppose
that for any t E T, a model of F U t U x is also a model of a. If M h 3 U {T} U x, then

M /= r, so M k t for some t E 7. Hence M k 3 U t U x and our hypothesis allows us
to conclude that M + a too. This establishes (9).

Now, it will be convenient for us to have a notation for the upper set of environments

that prove a given conclusion. So, given a theory 3, we define

UF(a) ={xEI /FUx+a}.

Given a theory F and a collection 7 of ADNF formulas, the main fact of interest about

U is the following:

UF&r = P’I 0 u3. (10)

This can be proved by induction on the number of elements in 7. When this is 0, then

7 is empty and there is nothing to prove. Suppose r E 7 and ‘7’ = 7 - {r} and the
desired result is known for 7’. Given an atom a,

U~u~(a)={xE~/3U7’U{7}Ux~a}

={xEEjQtE~..FU7’UtUxf=a}

=W,(U3w(a>>

= pT(P,t(U3(a)))

=?PTou3

(11)

(12)

Eq. (11) follows from (9) and Eq. (12) follows from the inductive hypothesis.

Proof of Theorem 37. To calculate L3”7-(I), note first that it is defined to be
min(UF”l(l))) which is equal to min(Pl(UF(l))) by Eq. 10. This, in turn, is

equal to @z-(&(1)).
If a is an atom other than I, then

CA. Gunter et al./Art$cial Intelligence 95 (1997) 357-407

@~(LF(u) U” b(l)) =min(P-r(t(&da) U” bF(~))))

=min(Fdt b(a) U t b(l)))

=min(P7-(U7(a)))

=min(Uml(a))

=hJ7(a) u” hJl(-L).

397

Thus

hJ7-(~> = (kw7(a> u” kJ7u-) 1 -u hJI(J-)

=e-(b(a) U”b4l)) -“hJ7(l). 0

What remains is showing how to calculate Gp,. Given a collection of anti-chains

S={s,,.. . , s,,}, it will be useful to write

u

U s = S] u” . . . lJL’ s, and h s = S] flu . . . flu s,.

YES .XES

The desired expression of Q,(S) in terms of anti-chain operations is given by the

following:

Lemma 38. For S E Anti(&) and ADNF formula r over d,

G,(S) =$J{s- t>
IE7 YES

Proof. We calculate as follows:

Q,(S) =min(!PT(S))

=min{xEI/~‘tE7.XUtErS}

=min{xE&I~‘tE7.3sES.sCxUt}
u

=numin{xEEIsEaut)
ET YES

Now consider the sets es = {x E I 1 s C x U t}. An environment x is in es just in case
it contains the environment s - t. Hence s - t is the unique minimum element of es.

The equation in the lemma therefore follows. q

The algorithms in Table 7 and Table 8 correctly implement the extended ATMS label
computations. We now show two examples of the use of these algorithms.

398 CA. Gunter et ul. /Art@cial Intelligence 95 (I 997) 357-407

Example 39. We illustrate the computation of the label for _L in the example introduced
at the start of this subsection.

Recall that the assumption set A = {A, B, C}. Our aim is to calculate Z,F,T(I). First,
we use the basic ATMS algorithm to compute

LzK(-L) = {{AC}, {B, C}}.

Next, the closure operator @T is constructed from Lemma 38 by the algorithm in
Table 7.

@{{A),(B)} = [ij+ - {A}}] nu [fib - {B)}]
s s

Finally, we use Theorem 37 and the algorithm in Table 8 to obtain the desired result.

~J{~A),JB))(~~ =@{{A),{B)}({{A,CI+ {B,C)))

= [{{AS} - {A}} U” {{B,C} - {A}}1

n” [{{A,C) - {B)) U” {{KC} - {B}}l

= f{(C)) u” {{BX))l 0’ [{{AC)} u” {(C))1

= UCH fI” tic>)

= wu

Example 40. We demonstrate the power of the anti-chains formulation of label compu-
tations in the context of an example with a more complex T. Consider

.F={A,h+B*b,C=+e,b+c,c+d},

7={&‘BVC,Av?i}

= wm {BL WIL {{Al, Gw.

We need to calculate LF”T(~). From the basic ATMS algorithm, we know that

LA4 = t(B), {C}) and LF(~) = {{A,A}}.

Next, we use Lemma 35 to reduce 7 = (71, ~2) to a single ADNF formula 7.

7=min{x E & 13, E~~,ilt2 E 72,x=tl Ut2)

=m~~{{~,A},{~},{B,A},{B,;i},{C,A},{C,~}}

= {{$, {B, A}, {C, A}}.

CA. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407 399

Table 7
Converting an ADNF formula Q- to a closure operator @,

function e7(S) =

fold(rl”‘,map(At. foldW”,map(As.s - t)(S) ,0) CT)) ,{0})
where 7 is an ADNF formula and S is an anti-chain over &.

Now we construct @{,I using the algorithm in Table 7.

q,>(S) = [fi{s- {x}}] I-?’ [ij{s- {BJ}}] .‘I [ij,s- {CA}}].
sES .v s

We can then calculate LF”I(I) and LF”l(d) using the algorithm in Table 8.

LFM-(~) =@~({{A&))

= [{{&xii) - {Ti}}l 0’ [{{AA} - {B,A}}l

0’ [{{Ax} - {CA}}1

= &W n*’ {@H n” {{~))

= {{A z)},

LmT(d) =@7(LF(d) u” k(J-1) -’ LFU?-(~)

=@T({{B}, {C}, {A,$}) -’ {{A>$),

@z-({(B), ((3, {A&})
= I{(B) - {A}) u” {{C> - {x)) u” {{A>$ - {$)I

n” I{(B)-{B,A}}UU{{C}-{&A}}U”{{A,A}-{B,A}}l

~“~{{~}-{~,~}}~lf{{~}-{~,~}}~U{{~,~}-{~,~}}l

= [WI) u” {W u” HWI

nz’ f(0) u” {{c)} u” {{@}I

nu r WW uu 101 u* GWi

= I(B), {Cl, {Al).

Note that {A} has been added to the basic ATMS label of d by the extended ATMS
computation. This means that F U 7 U {A} /= d. W e note that this follows from the fact
that.FUIU{A}~BVC (sinceAVBVCistrue),andthat.FU(BVC) kd (since
B+dandC+d).

400

Table 8

CA. Cunter er al. /Art@cial Intelligence 95 (I 997) 357-407

Extended ATMS label update

function correctLABEL(LF,Qs7) =

let L = @7(&(I))
in /\(atom) =>

if atom = i then L

else +(lF(atorn) U” LF(I)) -I’ L
endif

endlet

The computation of the label L~“l(a), for any atom a E C is essentially the enu-
meration of all minimal “models” (restricted to atoms in A) of a in .FU 7. This task is

known to be #P-complete [131. Thus, in the general case, we expect to perform com-
putation exponential in the size of A. De Kleer [31 uses hyper-resolution to incorporate

disjunctions in 7 (the cause of the exponentiality) into labels computed using the Horn

theory 3. Our order-theoretic reconstruction of the computation in terms of closures

and anti-chains allows us to enumerate labels directly in the space of models rather
than indirectly in the space of proofs. A proof-theoretic scheme for label computation

is computationally more expensive than the model-theoretic approach when there are

multiple proofs of a literal a in 3 U 7 based on the same support set x E E. All of
these proofs are enumerated in the course of the application of the hyper-resolution label

correction rules.
The fundamental computation in our framework to incorporate an ADNF formula 7

into an anti-chain S on &.

@r(S) = AL r, = 6,s - t}.
t&- YES

If 7 = {t,,... , tn} and S = {st , . . . s,,}, where each ti, s.; E E, then a straightforward
implementation of this computation requires mn set-difference operations, mn upper

unions, and n upper homogeneous intersections. Any reduction in the number of opera-
tions is a win, as is any reduction in the sizes of the arguments of the upper unions and
upper homogeneous intersections. We now describe a list of optimizations that can be

implemented very cheaply to achieve both types of reductions.

(1) Computing changes to labels caused by the introduction of 7. We compute
changes to labels in the @, computation, rather than the entire new label. In effect, we
define the new operator A@, shown below and use it to calculate the extended ATMS

label.

Qi,(S) =Su’ A@,(S),

A@,(S) =fjAyt,
ET

AY, = fi if {s - t} = {s} then 8 else {s - t}.
YES

C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 401

Table 9
The optimized G,(S) computation

function Q,(S) =
let d@,(S) = (0)
infort E Tdo

let fl8 = 0
in for .Y E S do

if s - t # s then dyt = AK U” {s - t} endif

endf or

A@,(S) = A@,(S) n” Ayt
endf or

return S U” A@,(S)
endlet

For each s, t pair for which s - t = s, we save one upper union operation. In addition,

the sizes of arguments to the remaining upper unions is reduced, since we only work
with A& rather than the Y,s themselves. This optimization, shown in Table 9, employs

the same intuition as that used by De Kleer and Forbus in their basic ATMS algorithm

shown in Table 6.
(2) Detection of early termination. During the computation of G7 (S) we can detect

conditions under which G,(S) = S, so that we can terminate the computation early.

Suppose there is a t E T such that for all s E S, s -- t = s. It is easy to see that the
corresponding Y, = S. We have [W&l 5 yt by the property of f?. But Q5,(S) = f7”K > S
since Qr is a closure operator. Therefore, whenever K = S for some t E T then Q7 (S) =
S, and we can stop the label computation. At best, we save (m - 1) n set differences,
(m - 1) n upper unions and n upper homogeneous intersections. At worst, i.e., when this

condition is true of the last t E 7 examined, we save n upper homogeneous intersections.
(3) SimpliJications involving U” and 0”. We use properties of nU and U” to simplify

the computation of individual Y,s as well as Q7 (S) .

((8)) UU S={(8)} for any S E Anti(E),

((0)) Vk=S for any S E Anti(&).

Thus, for instance, if we encounter an s, t pair in the computation of a specific K,

such that s 2 t, then s - t = 8 and we can immediately report X = ((0)) saving upto

m - 1 upper unions and 1 upper intersection in the computation of @r(S).

Acknowledgements

This project would not have come into existence without the participation of Prakash
Panangaden, who played a key role in inciting and helping us to explore the potential
usefulness in AI representations of the kinds of order-theoretic structures being used
in the semantics of concurrency. He is also responsible for showing the key role that
closures play in the ATMS. Haym Hirsh was helpful to us in understanding the usefulness
of abstractions for the VS algorithm. We also thank anonymous referees who have read

402 C.A. Gunter et al./Artijicial Intelligence 95 (1997) 357-407

the paper as well as Ziqiang He, Leonid Libkin, Rona Machlin, and Bonnie Webber.
Gunter’s work was supported in part by ONR grant N00014-95-1-0245. Ngair’s work

was supported by the Institute of Systems Science, Singapore. Subramanian’s work was

supported by NSF grant IRI-8902721.

Appendix A. Anti-chain library interface

In this appendix we describe signatures for a Standard Meta-Language implementation
of anti-chains over lattices. With the brief explanation we now provide, these should

make sense to readers not familiar with SML. An SML signature is a list of names

expected to be present in an implementation of the signature; such implementations
are called structures. Signatures contain the names of structures, types, exceptions, and

values; the cases we consider in this section contain only names of types, exceptions,

and values. In a signature, a value name is given together with its type. For example, to

declare that the name singleton denotes a value mapping elts to acs, one includes

the line

val singleton : elt -> ac

in the signature. The signature for anti-chains is given at the end of the paper. It indicates,

for example, that an anti-chain structure contains a type called elt and a type called
ac. There is also an exception called NotFound which is used to signal the failure to
find an elt in an ac and a value empty which is of type ac. The signature does not

describe the semantics of these objects. For instance, it does not say that elts will be
viewed as elements of ac. It describes only the types of the values, and lists the names

of exceptions and types that are present.
Before giving a more detailed discussion of the particular values in the ANTICHAIN

signature, we sketch the role that this signature plays in programming with anti-chains.
Anti-chains are special kinds of subsets of a poset, so it makes no sense simply to

speak of anti-chains independently of the posets over which anti-chains are being taken.
The signature ANTICHAIN should be viewed as part of the “type” of an operator from
environments (sets of bindings) to environments, taking as its parameter an environment

defining a lattice is defined and producing a new environment in which operations on
anti-chains over that lattice are provided. Like anti-chains, lattices come with a collection
of operators we expect to be present; they are given as a signature LATTICE in Table A. 1.

The particulars of this signature will be discussed shortly. Now, an implementation of
anti-chains is an operator called afunctor (the SML term for a parameterized structure)

that takes a lattice structure (that is, an implementation of the signature LATTICE) and
produces a anti-chain structure (that is, an implementation of the signature ANTICHAIN)
over that lattice structure. If we analogize with functions and types we might write this

as follows:

functor Lattice2AC: LATTICE -> ANTICHAIN

In summary, the implementation of anti-chains is given by the coding of a transformation

such as this.

Table A.1

LATTICE

C.A. Gunter et al. /Artijcial Intelligence 9.5 (1997) 357-407 403

signature LATTICE =

sig

type elt

datatype relationship = Less I Greater I Equal
datatype 'a option = Some of 'a i None

val 1atOrd: elt * elt -> relationship option

val bottom: elt

val meet: elt * elt -> elt

val top: elt

val join: elt * elt -> elt

val sort0rd: elt 1: elt -> relationship

end (* LATTICE *)

Let us begin by discussing the signature LATTICE for lattices given in Table A.1.

According to its definition, a lattice is a set together with a relation, two constants, and

two binary operators. In LATTICE, the lattice elements are drawn from a type called elt
and the order relation 1atOrd on elts is represented as a function mapping pairs of elts
to values of a type relationship option. The values of relationship represent 3

(Less), h- (Greater), and = (Equal). In a lattice a given pair of elements may satisfy
none of these relationships, so the 1atOrd operation takes a pair of lattice elements and

produces a relationship option as its output. An element of relationship option
either has the form Some x where x is a relationship or has the form None. The

constants are bottom, top and the binary operations are meet, join.

The function sortOrd is not part of the the mathematical definition of a lattice. It is
given here for purposes of efficiency and its significance arises when we wish to form

sets (or anti-chains) of lattice elements. To represent sets efficiently, it is often useful to
have a linear ordering of set elements (that is, an ordering in which any two elements
are related). This allows sets to be represented as balanced trees so that searching for
an element can be done quickly. It is important to appreciate that the ordering used for
such balanced trees generally must be different from the ordering 1atOrd on the lattice

since a lattice need not be a linear ordering (as reflected in the fact that the image
of 1atOrd is a relationship option rather than a relationship). Note in particular that
if we are representing anti-chains relative to the lattice ordering then there will be IZO
relationship between pairs of elements of the anti-chain!

The semantics of the signature LATTICE is given by the mathematical lattice axioms
together with the stipulation that sortOrd is a linear order. An implementation of

LATTICE is assumed to satisfy this semantics, although SML cannot check that it does.
Now let us turn to the signature ANTICHAIN which is given in Tables A.2 and A.3.

The semantics of most of the interface operations in Table A.3 of the signature are
described by the mathematics in Section 2 (assuming a self-evident mapping of the

names). Constants and operations in the Table A.2 part are taken by analogy with
other operations in the sets signature of the SML/NJ library. The semantics of these
are described succinctly in notes delimited by the comment characters (* and *>. The
values described in the first half of ANTICHAIN are ones that are basically the same for

404 C.A. Gunter et d/Artificial Intelligence 95 (1997) 357-407

Table A.2

ANTICHAIN

signature ANTICHAIN =

sig

type elt

type ac

exception NotFound

val empty: ac

(* Empty ac *)

val singleton: elt -> ac

(* Create a singleton ac *)

val isEmpty: ac -> boo1

(* Return true if and only if the ac is empty. *)

val equal: (ac * ac) -> boo1

(* Return true iff the two at's are equal *)

val oumElts: ac -> int

(* Return the number of elt's in the ac *)

val 1istElts: ac -> elt

(* Return a list of

val app: (elt -> 'b) -> ac -> unit

(* Apply a function to the elt's in the

1: ac in decreasing order *)

val revapp: (elt -> 'b) -> ac -> unit

(* Apply a function to the elt's in the

* ac in increasing order *)

val fold: (elt + 'b -> 'b) -> ac -> 'b -7 'b

(* Apply a folding function to the elt's

* in the ac in decreasing order *)

val revfold: (elt * 'b -> 'b) -> ac -7 'b -7 'b

(* Apply a folding function to the elt's

* in the ac in increasing order *)

list

the elt's in the ac *)

val exists: (elt -> bool) -7 ac -> elt option

(* Return an elt in the ac satisfying the predicate

t if any, return NONE if there is none *)

both sets and anti-chains or that apply only to anti-chains. The important thing to note
is whether an operation refers to the anti-chain or to the downward- or upward-closed
set that the anti-chain is meant to represent. This distinction means nothing for functions
like singleton and equal which are the same regardless of which meaning is taken.
However, it is essential to note that the function numElts gives the number of elements

Table A.3

C.A. Gunter et al. /Artijicial Intelligence 95 (1997) 357-407 405

ANTICHAIN (continued)

val upper-add: ac * elt -> ac

val lower-add: ac * elt -> ac

(* Insert an elt *)

val upper-find: ac * elt -> elt

val lower-find: ac * elt -> elt

val

val

upper-peek: ac * elt -> elt option

lower-peek: ac * elt -> elt option

(* Look for an elt in a set, return NONE

* if the elt is not there. *)

val

val

upper-member: ac * elt -> boo1

lower-member: ac * elt -> boo1

(* Return true iff elt is in the set *)

val

val

upper-subset: (ac * ac) -> boo1

lower-subset: (ac * ac) -> boo1

(* Subsets *)

val

val

upper-difference: ac * ac -> ac

lower-difference: ac * ac -> ac

(* Difference. *)

val

val

upper_union: ac * ac -> ac

lower-union: ac * ac -> ac

(* Union *)

val

val

upper-homogeneous-intersection: ac * ac -> ac

lower_homogeneous_intersection: ac t ac -> ac

(* Homogeneous intersection. *)

val

val

upper-heterogeneous-intersection: ac * ac -> ac

lower_heterogeneous_intersection: ac * ac -> ac

(* Heterogeneous intersection. *)

end (* ANTICHAIN *)

end

(* Find an elt in an set, raise NotFound

* if not found *)

in the representing anti-chain rather than the number of elements in a lower or upper
set represented by it. In the semantic description given as comments in the signatures,
this distinction is made by distinguishing consistently between the anti-chain and the

set. So, for instance, the comment

(* Return the number of elt’s in the anti-chain. *>

means that numElts takes a set represented as an anti-chain as an argument and returns
the number of elements in the representing anti-chain. If we had wanted to know how

406 C.A. Gunter et ~11. /Artificial Intelligence 95 (1997) 357-407

many elements were in the set that the anti-chain is meant to represent, we would need
to know whether the anti-chain represents its upper set or its lower set (and have some
way of enumerating its elements or otherwise counting them).

For the functions app, revapp, fold, and revf old, the order that is increasing or
decreasing must, of course, be sorttlrd.

The values declared in the second column of ANTICHAIN come in two flavors, upper_
or lower- depending on whether the anti-chain is viewed as representing an upper set or

a lower set. So, for instance, the application upperadd(S, x> inserts x into the upper
set S. If S ’ is the anti-chain representing S then this means that x is added to S) unless

there is an element y of S’ such that the value of latOrd(x,y) is not Greater or
Equal, in which case the value is simply S ‘. If we had applied lower-add instead, we
would check whether sortClrd(x,y) is not Less or Equal. Similarly, the functions for

f ind’ing and peek’ing do their finding and peeking in upper or lower sets depending
on how they are prefixed.

The key points about these interfaces and the way they have been described are

these:

(1) The semantics of the interfaces are given abstractly so that the mathematical
model is clear and does not over-constrain the implementation.

(2) What to include in the interface was based on a selection of the mathematical
primitives needed to express the algorithms which the implementations of the
interfaces are intended to support.

(3) The interface language in which the sets of operations are described provides
types and abstractions supporting a substantial but computationally feasible part

of the task.

Although an emphasis on mathematical and implementation independent descriptions

is desirable, the choice of interfaces will be significantly influenced by a tension between

available implementation techniques and the kind of reuse that the programmer is trying

to achieve. The interfaces provide a vocabulary in which to discuss these trade-offs more
formally. Let us illustrate. In some contexts using Lattice2AC may prove awkward or

inefficient. For example, although the mathematics of lattices calls for top and bottom
elements, it is possible to implement ANTICHAIN without using them. Moreover, in some
cases where one has a lattice mathematically, one or the other of these elements may
be difficult to implement. Hence it is often desirable to use a “thinner” lattice signature,
LATTICE’ that omits top and bottom. In SML an implementation of LATTICE’ is still

an implementation of LATTICE, so little is lost by this thinning.
Another serious issue arises when one knows something about the input lattice that

can be useful in the efficient implementation of anti-chains over it. For instance, if one
knows that the lattice will be a boolean lattice over a finite set of atoms, then the anti-
chain implementation may optimized by taking advantage of this fact. A functor from
LATTICE or LATTICE’ to ANTICHAIN cannot do this because its input interface lacks
the needed primitives. Moreover, it is quite simple to describe boolean lattices because
all one needs to know are the atoms; the lattice operations can all be defined in terms
of whatever representation of sets of atoms one chooses to use. For these two reasons it
probably makes more sense to organize code into a functor that takes an “atoms” model
as its input. So, given a signature like

12 1 J. de Kleer, An assumption-based TMS, Artijicial Intelligence 28 (1986) 127-162.
[3] J. de Kleer. Extending the ATMS, Artificial Intelligence 28 (1986) 163-196.
14 1 K.D. Forbus and .I. de Kleer, Building Problem Solvers (MIT Press, Cambridge, MA, 1993).

IS I Y. Fujiwara, Y. Mizushima and S. Honiden, On logical foundations of the ATMS, in: Proceedings
ECAI-90 Workshop on Truth Maintenance Systems, Stockholm, Sweden (1990)

I6 1 C.A. Gunter, Semanfics of Programming Languages: Structures and Techniques, Foundations of

Computing (MIT Press, Cambridge, MA, 1992).

(7 I H. Hirsh, Incremental Version Space Merging: A General Framework jbr Concept Learning (Kluwer

Academic Publishers, Dordrecht, Netherlands, 1990).

18 I C. Mellish, The description identification problem, Artificial Intelligence 52 (1991) 15 l-167.

I9 I T.M. Mitchell, The need for biases in generalization, in: J. Shavlik and T. Dietterich, eds., Readings in
Machine Learning (Morgan Kaufmann, Los Altos, CA, 1990).

II0 I T.M. Mitchell, Version Space: an approach to concept leaning, Ph.D. Thesis, Stanford University,
Stanford, CA (1978).

Ill I T.-H. Ngair. Convex spaces as an order-theoretic basis for problem solving, Ph.D. Thesis, University of
Pennsylvania, Philadelphia, PA (1992).

II2 I D.S. Scott and C. Strachey, Towards a mathematical semantics for computer languages, in: J. Fox, ed.,
Computers and Automata (Polytechnic Institute of Brooklyn Press, 1971) 19-46.

I 13 I J. Simon, On some central problems in computational complexity, Ph.D. Thesis, Come11 University,
Ithaca, NY (1975).

C.A. Gunter et al. /Artificial Intelligence 95 (19971 357-407 407

signature ATOMS =

sig

type elt

val eq: elt * elt -> boo1

val atoms = elt list

end (* ATOMS *>

one implements

functor Atoms2AC: ATOMS -> ANTICHAIN

Whether anti-chains over a lattice are produced using Lattice2AC or Atoms2AC, the

mathematical semantics of the anti-chain operations should remain the same. The im-
plementations will undoubtably differ.

References

I I I B.A. Davey and H.A. Priestley, Introduction to httices and Order (Cambridge University Press,

Cambridge, MA, 1990).

I 141 M. Smyth, The largest Cartesian closed category of domains, Theoret. Comput. Sci. 27 (1983) 109-I 19.
I I5 I S. Vickers, Topology via Logic, Tracts in Theoretical Computer Science, Vol. 5 (Cambridge University

Press, Cambridge, MA, 1989).

