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Abstract 

We demonstrate how order-theoretic abstractions can be useful in identifying, formalizing, and 

exploiting relationships between seemingly dissimilar AI algorithms that perform computations 

on partially-ordered sets. In particular, we show how the order-theoretic concept of an anti-chain 
can be used to provide an efficient representation for such sets when they satisfy certain special 

properties. We use anti-chains to identify and analyze the basic operations and representation 

optimizations in the version space learning algorithm and the assumption-based truth maintenance 
system (ATMS). Our analysis allows us to (1) extend the known theory of admissibility of 
concept spaces for incremental version space merging, and (2) develop new, simpler label-update 
algorithms for ATMSs with DNF assumption formulas. @ 1997 Published by Elsevier Science 
B.V. 

Keywords: Version spaces; ATMS; Concept learning; Truth maintenance; Label update algorithms; 
Anti-chains; Partial orders; Admissibility 

1. Introduction 

This paper shows how the order-theoretic concept of an anti-chain provides a useful 
abstraction for the representation of partial information. The primary contribution is the 

isolation of a collection of eight primitive operations on anti-chains and a demonstra- 

tion of how these operations can be used in some circumstances where the efficient 
representation of partial information is a key concern. We call this set of operations 
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the anti-chain algebra. The description and basic properties of the operations are given 

in Section 2; the remainder of the paper is devoted to applications of the anti-chain 
algebra. The discovery of a useful algebra of expressions can be a powerful technique. 

For example, Codd’s introduction of an algebra of relations aided the development of 

practical and semantically clear database query languages. While it is ambitious to think 

that an anti-chain algebra will do for knowledge representation what Codd’s relational 
algebra did for query languages, significant insights can be obtained from recognizing 

when anti-chains are a good representation. 

To show how the anti-chain algebra can be useful in expressing representations for 

partial information, we examine two well-known approaches to manipulating and refining 

partial information. The first of these, the version space (VS) algorithm, is used for 

inductive learning based on forming concept descriptions from examples. This is the 

topic of Section 3. The second, assumption-based truth maintenance system (ATMS) 

algorithm, records dependencies between propositions by maintaining all of the support 

sets for a proposition. Our discussion of ATMSs is broken into two parts: Section 4 

studies the “basic” ATMS, which uses Horn clauses for its base of facts, while Section 5 

studies the “extended” ATM& which extends the basic ATMS by permitting the use of 
facts in disjunctive normal form in addition to Horn clauses. Although only a cursory 

knowledge of the VS, ATMS, and extended ATMS representations is required to see that 

the ideas they embody have many things in common, appropriate mathematical structures 
are needed to obtain an account of this commonality that is rigorous enough to show 

how the methods can share notations, facts supporting correctness proofs, optimizations, 
and even code modules. We show that the anti-chain algebra achieves this. An appendix 

describing interfaces for modules implementing our anti-chain algebra is provided at the 
end of the paper. Such modules provide an ability to share software between algorithms 

based on the anti-chain algebra. 
Each of the three treatments of partial information representation techniques follows 

a similar pattern. First we provide a mathematical description of the problem to be 
solved using ordered structures: each of the techniques is based on an order-theoretic 
notion of information refinement. In particular, the algorithms all employ a common 

approach to optimization based on the use of operations on anti-chains. The essence 

of each approach is then described in terms of the anti-chain algebra and rendered in 
pseudo-code using the anti-chain interfaces. Once this description is given we explore 
correctness and optimization issues for the algorithms using the basic properties of 
the anti-chain algebra. For the VS and extended ATMS algorithms we conclude with 

generalizations of known correctness criteria and algorithms. In particular, we extend 
results of Hirsh [7] and Mellish 181 on the admissibility of the VS algorithm and 

provide a generalization and simplification of de Kleer’s choose construct [3] for the 
extended ATMS. 

2. Representing sets as anti-chains 

One way to represent a set is to maintain a list of its elements. Given an ordering for 
set elements, this can be optimized by maintaining the elements of a set in a structure 
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like a balanced tree. In special circumstances a set can be maintained more indirectly 
as a predicate that tests set membership. This has the advantage of greater flexibility 

(such as the ability to represent infinite sets of elements), but it may be so general 

that it is impossible to implement basic operations efficiently. In this section we analyze 
the primitive operations for a representation that can compromise between these two 

approaches when the sets being represented are known to have certain order-theoretic 

closure properties. 
To begin the discussion with an illustrative example, suppose we must maintain sets 

of strings of digits, supporting operations like testing whether a particular string is in a 

set and binary operations like taking the union or intersection of two such sets. We can 
order digit strings by the prefix order (for example, 01 is a prefix of 012 and 013 but 

not of 001) and represent them as balanced trees of strings, but it may become costly 
to maintain large sets in this way. We could introduce a logic capable of expressing 

properties of strings and then use predicates to represent sets; the efficiency of this 

approach will depend on the kinds of predicates we expect to use and how expensive 

it will be to test them. However, there are circumstances where something like a list 

of elements can be used (even to represent infinite sets), but where it is not essential 
to include all elements in order to represent the whole set. Suppose we know a special 

fact about the sets of strings that interest us: that they are pre$~ closed. In other words, 

if s E S for one of the sets S, and s is a prefix of s’. then s’ E S too. In this case we 

do not need to maintain a tree of all of the elements in S because the presence of some 

can be inferred from that of others. For instance, if 01 E S, then 012 and 013 are also 
in S. In particular, we can represent S as a set of strings S’ having the property that 

no two strings in S’ are prefixes of one another and every element of S has an element 
of S’ as one of its prefixes. This provides a compact representation for sets which are 
infinite, although only sets that have finitely many distinct prefixes could be represented 

in this way. To determine of a string s whether it is in S, one simply checks whether it 

has any of the elements of S’ as a prefix. 
Even if checking membership is no problem, the representation will be useless if it 

is not possible to carry out other basic operations with it. For example, given sets S 

and T represented by prefixes from S’ and T’, how does one represent a set like S U T? 

This could be done by testing membership in S or T, but we can represent this test by 

using S’ U T’. This can be optimized by removing elements u E S’ U T’ if there is an 
element u’ E S’ U T’ such that U’ is a proper prefix of U. The situation is a little more 

complicated for the intersection operation, but S n T can also be calculated in terms of 
S’, T’. 

2.1. Upper sets and lower sets 

Let us now turn to identifying the idea underlying the representation employed in the 

above example. A poset is a set P together with a binary relation 5 that is reflexive 

(X 5 x), antisymmetric (X 5 y and y 5 x implies x = y), and transitive (X 5 y and 
y 3 z implies x 3 z.). A set S C P is said to be downward closed or lower if x E S 
and y 5 x implies that y E S. Given a set S C P, there is a smallest downward-closed 
subset of P that contains S which is denoted by 
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A lower set 

Fig. 1. A lower subset of &-r(P), where P = {A, B, C}. Note that x 5 y denotes x > y 

An example is pictured in Fig. 1. It is easy to see that S is downward-closed if, and 
only if, S = 1 S. Dually, S is said to be upward closed or upper if 

It will save us some extra parentheses later if we assume that the unary operations of 
downward and upward closure bind more strongly than various set-theoretic operations. 

For example, ISn lT is the same as (1s) n (LT). 

Notation 1. For a set S, the collection of all subsets of S is denoted Pwr( S). The 

collection of finite subsets of S is denoted FinPwr( S) . 

Let us begin by assuming that the poset in question is finite and consider a specific 

example. Let L: be a language of propositional atoms with a distinguished atom I 

representing falsehood. We focus on a distinguished finite subset A C: C which we call 
assumptions. Let E = Pwr(d) be the collection of subsets of A; elements of I are 

called environments. Environments form a poset under the ordering < taking x < y if, 

and only if, x 5 y. Environments will arise later when we discuss the ATMS algorithms; 
as an intuition about their meaning, an environment is a set of assumptions whose truth 
would allow one to derive a given conclusion. We will be interested in representing 
upward-closed sets of environments and operations on these sets. For example, if A = 
{A, B, C, D}, then the set of all environments that contain the atom A or both of the 

atoms C, D is 

S = {{A, B, C, D}, {A, B, C}, {A, CD}, {A, B, D}, 

{A, B), {A,C), {A, D), {A), {CD}, {B, C, D)}. 

We need only keep the smallest elements S’ of S (the minimal elements), and from 
these we can test whether an environment x is in S by testing whether x is a superset 
of some X’ E S’. Now, the set of minimal elements of S is 

S’ = {{A}, {C, D}} 
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A CD 

Fig. 2. Representing an upper subset of Pwr( P) by its lower boundary, where P = {A, E, C, D}. 

under the subset ordering (for instance, {A} 5 {A, B}) . A picture of this is given in 

Fig. 2. This is what we will call a boundary representation of S because it indirectly 

represents S via the boundary of the set, which, in this case, is the lower boundary 

or set of minimal elements. In other cases we will be working with downward-closed 

sets, and these can be represented with their maximal elements, which form their upper 

boundary. And, in the case of version spaces, we will be representing a subset of a poset 

in terms of both an upper and a lower boundary. 
Returning now to the abstract development, let us say that an element x E S C P is 

maximal in S if, for every y E S, x 3 y implies y = X. It is said to be minimal in S if 

y E S and y 5 x implies y = x. Let us denote by max( S) and min( S) the respective 
sets of maximal and minimal elements of S. In a finite poset, lower and upper sets can 

be represented by their upper and lower boundaries: 

Lemma 2. Let P be a finite poset and suppose S 2 P. 
(1) IfS is a lowerset, then S= Jmax(S). 
(2) If S is an upper set, then S = Tmin(S). 

A generalization of this result will be needed later when we consider similar repre- 

sentations in an infinite poset: 

Lemma 3. Let P be a poset and suppose S’ is a j%ite subset of P. Then: 
(1) IS’ = lmax(S’), 
(2) TS’ = rmin(S>. 

To see that Lemma 3 is a generalization of Lemma 2, just note that a lower subset S 
of a finite poset is finite and 1 S = S. The proof of Lemma 3 is illustrative of issues that 
arise in the representation of infinite sets using finite boundaries. 

Proof. Let us consider ( 1)) the proof of (2) is similar. It is clear that 1 max( S’) & J, S’. 
So take x E 1 S’. Is there some y E max( S’) such that x 3 y? Let us suppose, on the 
contrary, that there is no such y. Then it must be the case that x is not itself maximal 
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in S’, and therefore there is some element XI Z x such that x i: XI. Assuming that 
we have built a chain of elements x = xa 5 xi 1 . . 5 X, such that each xi E S’ and 
xi # x,i for distinct i, j < n, we can always extend the chain with an additional element 

of S’ that is not in (x0,. . . , x,,} because otherwise we would be forced to conclude 
that x, is maximal and x 3 x,. But this implies that S’ is infinite, contradicting our 

assumption otherwise. 0 

2.2. Anti-chains 

What kinds of subsets of a poset can be the boundaries of its upper and lower subsets? 

Definition 4. Let P, 5 be a poset. A subset S c P is an anti-chain if it contains no 
comparable pair of distinct elements, that is, if x, y E S and x 3 y, then x = y. We use 

the notation Anti(P) for the set of anti-chains over P. 

Lemma 5. Let P be a finite poset. 

( 1) The upward-closure operation S H r S is a bijection (that is, one-to-one and 
onto mapping) between anti-chains and upward-closed subsets of P. 

(2) The downward-closure operation S c--t 1 S is a bijection between anti-chains and 

downward-closed subsets of P. 

The lemma can be proved by demonstrating that min and max are inverses for upward 
closure and downward closure respectively. 

2.3. Computing basic operations on posets using anti-chains 

The significance of the relationship described by Lemma 5 comes from the possi- 

bility of representing operations that we would like to perform on upward-closed and 

downward-closed sets indirectly in terms of operations on anti-chains. Let S - T be the 
set of elements in S that are not in T. Aside from testing set membership, here are 

operations that will interest us: 

l Difference: T ( S - T) where S and T are both upper sets and I( S - T) where S and 
T are both lower sets. 

l Union: S U T where S and T are both upper sets or both lower sets. 
l Heterogeneous intersection: 1 (U n L) and T ( U II L) where U is an upper set and 

L is a lower set. 
l Homogeneous intersection: S n T where S and T are both upper sets or both lower 

sets. 
A few notes on the form of these operations may clarify some apparent lack of 

uniformity. It is easy to check that the union and intersection of a pair of upper sets 
is again an upper set. A similar preservation property holds for lower sets. However, 
S - T may not be an upper set even if S and T are, so it is essential to modify 
the upward-set difference operation by taking the upward closure T(S - T) of their 

ordinary set-theoretic difference. A similar consideration holds for heterogeneous inter- 
sections. 
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Fig. 3. The lower difference S’ -’ T’ of anti-chains S’ and T’ representing the lower sets S and T is the upper 

boundary R’ of the region R in the figure. 

Our goal is to describe each of these mathematical operations in terms of the anti- 

chains by which they will be represented computationally. The description can be given 
mathematically so long as it is clear how the collections in question can be computed 
efficiently from the given description. 

Let us begin with the operation j, (S - T) where S and T are lower sets represented 

by anti-chains S’ and T’ where S = J. S’ and T = J, T’. We want the anti-chain R’ such 

that I R’ = 1 (S - T). This set R’ can be shown to be the set of those elements x E S’ 
such that there is no y E T’ such that x 5 y. This collection is easy to calculate: one 

simply takes each element of T’ in turn and removes all of the elements of S’ that 
it dominates - when all of the elements of T’ have been treated in this way, we are 

done. Now, we want to describe this as a binary operation on anti-chains. It will be 

helpful to remember that this operation is intended to represent the downward closure 
of a difference operation but is not itself the difference of the representing anti-chains, 

so we need to denote it with a different symbol. We therefore write 

S’ -’ T’ = {x E S’ ) Vy E T’. x $ y} 

where the superscript 1 is intended as a reminder that lower sets are being manipulated 

(via their representation as anti-chains). The desired property is: 

I(S’-‘T’)=J(lS’-LT’). 

Fig. 3 provides a picture of the desired result. It is also possible to show that, if we 

define 

S’ -I’ T’ = {x E S’ 1 ‘v’y E T’. x 2 y} 

where we write x 2 y to mean that y 5 x, then 

T(S’-“T’)=T(T,S’-TT’). 

The union of two sets is easy to represent in these terms. If S’,T’ are anti-chains, then 
1 S’ U 1 T’ = 1 (S’ UT’) . Unfortunately, S’ UT’ may not be an anti-chain, so it is essential 
to take maxima: 
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Fig. 4. The lower union of anti-chains S’ and T’ representing the lower sets S and 7’ is the dark region R 

with boundary R’ shown in the figure. 

pYJGziq 
Fig. 4 pictures the desired result. Similarly, we define 

1 S’U’T’=min(S’UT’) 1 

and we have 

J(S’u’T’) =J,S’uI.T’, 

t(,S’u”T’) =tS’uIT’. 

Now, if U is an upper set and L is a lower set, then we wish to calculate (upper or 

lower set generated by) the intersection of U and L in terms of their boundaries. We 
define 

U’ *l L’ = {x E L’ 1 3y E U’. y 3 x} 

and 

&Y*‘L’) =y$mJL'). 

We deliberately avoid using the intersection symbol n here for heterogeneous intersec- 
tion because it will be used for homogeneous intersection. The upper heterogeneous 
intersection has a similar representation: 

u’ *U L’ = {y E U’ ) 3x E L’. y j x) 

which satisfies 

T(U’*“L’) =t(tu’nlL’). 

Fig. 5 provides a picture. 

(1) 

Actually, it was not essential to include heterogeneous intersection in our collection 
of anti-chain operations; it can be defined in terms of the difference operation: 
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U’ U’ 

Fig. 5. The lower and upper heterogeneous intersection of anti-chains CJ’ and L’ representing the upper set Ii 
and the lower set L respectively. U’ *’ L’ is the thick upper boundary RI, while (I’ e” L’ is the thick lower 

boundary Ru. 

Proposition 6. Let P be a poset and suppose that S’ and T’ are anti-chains in P, then 
(1) S’*‘T’=S’-‘(S’-IT’), and 
(2) S’*lT’=S’-’ (S’-,‘T’). 

Proof. We prove the first equation; the proof of the second is similar. Let x be an element 

of P and let us consider what it means for it to be the case that x E S’ -I (S’ -l T’). 
By definition, this means that x E S’, but 

Vz E (S’ -I T’). x 2 z. (2) 

Since S’ is an anti-chain, x $ z is equivalent to x # z, so the formula in (2) just 

means that x 6 S’ -’ T’. By definition, this is the case if, and only if, there is some 

y E T’ such that x 3 y. But this, together with the fact that x E S’ is just the definition 
of x E S’ 9’ T’. 0 

The operations U” and U” can also be defined in terms of difference operations, given 

the usual set union and intersection operations: 

Proposition 7. Let P be a poset and suppose that S’ and T’ are anti-chains in P, then 
(1) S’U’T’=(S’-‘T’)U(S’nT’)U(T’-‘S’),and 
(2) s’V’T’=(S’J’T’)U(S’nT’)U(T’J’S’). 

Proof. We prove ( I), the proof of (2) is similar. 

Suppose x E S’ U’ T’. There are two cases: x E S’ or x E T’. Let us consider the 

first, the second is similar. Now, either there is an y c: T’ such that x 3 y or there is no 
such y. If there is one, then the fact that x is maximal in S’ U T’ implies x = y. Thus 
x E S’ f? T’. If, on the other hand, there is no such y. then x E S’ -’ T’ by the definition 
of -I. Thus C holds between the sets on the left and right sides of 1. 

Suppose x E (S’ -’ T’) U (S’ n T’) U (T’ -’ S’). There are three possibilities. If 
x E S’ -l T’ and there is an element y E S’ UT’ such that x 5 y, then, by the definition 
of the lower difference operation, y cannot be an element of T’. If it is a member of S’, 
then x = y because S’ is an anti-chain. Thus x E max( S’ U T’). The second possibility 
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is x E S’ n T’. Suppose there is some y E S’ U T’ such that x 3 y. If y E S’, then the 
fact that S’ is an anti-chain means x = y; a similar fact holds if y E T’. Thus x must be 

maximal in S’ UT’. The third case, x E T’ -I S’, has a proof similar to the first case. 0 

2.4. Computing homogeneous intersections on lattices 

Of the eight basic operations we set out to describe, we have now covered six: 

lower and upper difference (-I and -“‘), lower and upper union (U’ and U’), and 

the heterogeneous lower and upper intersection (*I and *‘). This leaves the two most 

difficult and most interesting operations: homogeneous lower and upper intersection. 
Let us focus on homogeneous upper intersection; the issues with homogeneous lower 
intersection will be dual. Suppose we want to compute the intersection of upper sets S 

and T from their representations as anti-chains S’ and T’ where S = r S’ and T = t T’. 

Taking the intersection S’ f? T’ is clearly incorrect. To see why, consider a poset P with 

three elements {a, b, c} where the only order relationships are b 3 a and c 3 a. If 

S = {a, b} and T = {a, c}, then S’ = {b} and T’ = {c}. While S n T = {a}, we have 
S’ n T’ = 0. In this case, the value of S’ fl” T’ clearly needs to be {a} rather than 0. The 

question, therefore, is how this is calculated. 
Let us consider how the intersection of upper sets should be calculated for the 

particular example of the poset Pwr(A) of environments under the subset ordering, 
where A is a finite set of propositional atoms. If we are given upper sets S and T of 
Pwr(A), then an element x in S f’ T is an element of both S and T, so, if S’ and T’ 

are the minimal elements of these sets, then it is a superset of some y E S’ and some 

z E T’. This is equivalent to saying that it is a superset of y U z. Hence 

S n T = {x 1 x 2 y u z for some y E S’ and z E T’}. 

But it is clear that the minimal elements of this collection (relative to the subset 

ordering) will all be sets of the form y U z where y E S’ and z E T’. So the desired 
operation is given by 

S’ 0’ T’ = min{y U z / y t S’ and z E T’} (3) 

To calculate the minimal elements of a finite collection R of environments is not a 

problem; for each element x E R, compare it to each of the other elements of R 

removing those that are supersets and removing x itself if there is another element of R 

that is a subset of x. 
Rather than show that the equation in (3) gives us the desired property, let us look at 

the problem more abstractly so that the equation can be applied to other posets besides 

Pwr(A). 

Definition 8. A poset P, 5 is said to be a lattice if it satisfies the following conditions: 

l There is an element I such that _L 3 x for each x E P. 

l There is an element T such that x 5 T for each x E P. 
l For each pair of elements x, y E P, there is an element x A y called the meet of x 

and y such that, x A y 5 x and x A y 5 y and, for any z E P, if z 5 x and z 5 y, 
then z 5 x A y. 



C.A. Gunter et al. /Artificial Intelligence 95 (1997) 357-407 361 

l For each pair of elements x, y E P, there is an element x V y called the join of x 

and y such that, x 3 x V y and y 5 x A y and, for any z E P, if z ?Z x and z ? y, 

then z ? x V y. 

This is not the place for a lengthy discussion of the properties of lattices, but it is 

important to note that the elements I, T and the operations A, V are uniquely determined 
by the properties ascribed to them by the definition. Other basic properties of lattices 

can be found in a source like [ 11. 

Example 9. The poset Pwr( A), C of environments is a lattice where I = 8 and T = A. 

The meet is x A y = x n y and the join is x V y = x U y. 

Let us now consider how to calculate intersections of lower and upper subsets of 

lattices in terms of anti-chains. Let P be a lattice. For anti-chains S’,T’ of P, define 

S’ n’ T’ = max{x A y 1 x E S’ and y E T’} (for lattices) 

and 

1 S’ W T’ = min{x V y 1 x E S’ and y E T’} / (for lattices) 

It can be shown that the following equations are satisfied: 

J(S’n’T’) =iS’nLT’, 

T(S’fY’T’) =TS’nTT’. 

A generalization of these facts will be proved in the next section when we consider the 

case in which P fails to be a lattice (Lemma 19 to be precise). 

2.5. Using pairs of anti-chains to represent convex spaces 

One of the key ideas exploited in this work is the representation of another kind of 

subset of a poset called a convex space. Formally: 

Definition 10. Let P, 5 be a poset. A subset C C P is said to be a convex space if, for 

each x, y, z E P, the conditions x 5 y 5 z and x, z E C imply that y E C. 

This is the order-theoretic analog of convexity in the plane, where a region C is 
defined to be convex if the elements on a line between any two points in C are also 

contained in C. Convex spaces can be described in a variety of ways. 

Lemma 11. Let P be a poset and suppose that Ul, U2 are upper sets and Li , L2 are 
lower sets of P. Each of the following subsets of P is a convex space: 

6 nLl UI - Ll LI -u1 Ll -L2 u, - v2. 
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L’ 
I LnU 

Fig. 6. Representation of convex spaces using pairs of anti-chains. 

Fig. 6 pictures four of these combinations. Two of these will concern us in this paper: 

a convex space can be represented as 
l the intersection of an upper set and a lower set, or 
l the difference of two upper sets. 

In cases where upper and lower sets can be represented by anti-chains, it follows that 
convex spaces can be represented by pairs of anti-chains. For the representation of a 
convex space as the intersection of an upper set with a lower set, we have the following 

fact. 

Definition 12. Let P, 5 be a poset and suppose U, L C P. Define 

B( Cr, L) = {z E P 1 x 5 z 3 y for some x E U and z E L.} 

Lemma 13. Let P, 3 be a finite poset and suppose C 2 P. Then C is a convex space 
if, and only if, 

C = B(min(C),max(C)). 

In other words, a convex space in a finite poset can be represented by its sets of 
maximal and minimal elements - a pair of anti-chains. The result is not true of posets in 

general, however. For instance, the collection of rational numbers q such that 0 < q < 1 
is a convex space, but it has no maximal or minimal element. A small generalization of 
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the lemma would be to allow P to be any poset and restrict C to finite. However, we 
will also be interested in situations where C is infinite. 

3. Version spaces 

Let us now consider how the anti-chain operations we have described are related to 

the version space algorithm of Mitchell [ lo], The results add new insights to the ideas 
of Hirsh [ 71 and Mellish [ 81, which generalize Mitchell’s original construction. 

For our purposes a concept space is a set of sets P such that 8 E P and UP E P 

where 

iYP={aIaEnforsomexEP}. 

The elements of UP are called instances and the elements of P are called concepts. 

A concept space is partially ordered by set inclusion, that is, x 3 y iff x & y. It is 

important to note that nothing in general is known about the structure of this poset; in 
particular, P will not typically be the collection of all subsets of UP (this deviation 

being the “representational bias” [9] of the concept space). If x 5 y then we say that 
x is more speci$c than y or we say that y is more general than x. A training set’ 

over a version space P is a pair (r, A) where P C UP is called the set of positive 

instances and A & UP is called the set of negative instances. The version space K( r, A) 

determined by (r, A) is defined by the equation 

where A is the complement of A in UP. This collection represents the set of concepts 
consistent with the training set (r, A). Computationally, the goal is to calculate new 
version spaces as the training set is extended. In [lo] this was done by an algorithm for 

calculating Ic(TU {u},A) and K(r,AU {u}) from K(I’,A) for any instance a. This 
idea was refined by Hirsh [7] to the question of how one efficiently calculates 

Icu7 Uf294 UA2) 

in terms of K ( rl, Al ) and K (r2, AZ). He aptly terms the solution for this, which can 
be viewed as a generalization of Mitchell’s original approach, the incremental version 

space merging algorithm. Our first goal is to show how this algorithm can be understood 
directly in terms of the anti-chain operations defined in the previous section. 

3.1. Using pairs of anti-chains to version spaces 

The key observation concerning the representation of version spaces is that the version 
space induced by any training set is a convex space and may therefore be represented 
in one of the ways discussed earlier. In particular, [ lo] represents a version space as 

’ This is a slight misnomer because a training “set” is actually a pair of sets. 
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a pair of anti-chains consisting of its maximal and minimal elements. The 
merging algorithm is defined in terms of this succinct data representation. 

Lemma 14. I” P is a concept space and (r, A) is a training set, then 

space K (r, A) is a convex space. 

incremental 

the version 

Lemmas 13 and I4 tell us that the version spaces over a finite concept space P can 
be represented by a pair consisting of their maximal and minimal elements. Another 

way to view this, in light of the correspondence between anti-chains and upper or lower 

sets, is to view a convex space C as a pair consisting of an upper set, J’S, and a lower 
set, j, G, where S = min( C) is the set of most specific elements of C and G = max( C) 

is the set of its most general elements. 
The key question is how to compute the desired operations on version spaces in terms 

of these anti-chains. To do this, we first note that we have the following equation for 

training sets (rr, Al ) and (r2, AZ) : 

Ic(T1 Uf2,4 UA2) =K:(TI,AI)~K:(T~,A~). (4) 

This means that it suffices to be able to compute the intersection of version spaces in 

terms of the pairs of anti-chains that represent them. We can describe how to do this 
quite succinctly in terms of our collection of anti-chain operations by the following 

definition: 

(Sl,Gl) nc (S2,G2) 

= ((S, f-? g) 2 (cl n’ c2), (S, n* s,) *I cc, II’ c2)) 
(5) 

Correctness of the equation is described by the following: 

Theorem 15. Let P be a finite concept space that is a lattice and suppose (rl , Al ) 

and (Tz, AZ) are training sets with 

SI =min(K(Tl,Al)), GI =max(K(rl,Al)), 

S2 =min(K(r2,&)), G2 = max(K:(r2,A2)). 

If (&,Gj) = (S,Gl) W (S2,G2) and C = KlTl U r2, AI U AT), then min(C) = S3 

and max(C) = G3. 

The theorem is an immediate consequence of following: 

Lemma 16. Let CI , C2 be convex spaces that are subsets of a finite lattice P and 

(S’,T’) = (min(Ct) ,max(Cr)) nC (min(C2),max(Cz)). 

Then min( Cr n CT) = S’ and max( Ct n C2) = T’. In particular, 

c, n C2 = B(S’,T’). 
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Incremental version space merging algorithm 

function mergeVS((S1, Gi), (S2, G2)) = 
let value u = Sl C-P 52 

and L = Gl n’ C2 
and S3 = U *’ L 
and G3 = S3 *’ L 

in (S3, G3) 
endlet 

We omit the proof since it is similar to the one we give for a more general result 

(Lemma 20). 
From a computational perspective, there is some redundancy in Eq. (5) since the anti- 

chains S = S, r-P S2 and G = G1 n” G2 are apparently calculated twice each. Moreover, 
there is an optimization one can make in calculating the second component if one is 

given the value of the first. A more realistic algorithmic presentation of version space 

merging is given in Table 1 where the program is described in pseudo-code using the 
appropriate four anti-chain operations. 

The basic constructs in this pseudo-code will be used in later examples as well. As 

a brief explanation, pairs (and tuples) are written with parentheses and commas: (S , 
G). The form 

function f (x> = E 

declares a function f with formal parameter x and body E. It will often be useful to 

describe the formal parameter as a pattern. For example, the function mergeVS takes a 

pair of pairs as an argument. The form 

let D in E endlet 

evaluates expression E after establishing the bindings from declaration D. The declara- 
tion form 

value x1 = El 
and x2 = E2 

. . 
and x, = E,, 

binds each xi in the environment obtained after establishing bindings for xj where j < i. 
The calculation in Table 1 is essentially the same as those in [7, lo]. It differs from 

the value described in Eq. (5) in calculating S1 fS’ 82 and Gl n’ G2 only once, of course, 

but also by using S3 to compute G3 rather than using U = SI n” S2 for this purpose. To 
see that it is equivalent to the value described by Eq. (5), we need only establish the 
following equation 

(u*“L)*iL=v*lL. (6) 

for anti-chains ZJ and L. To see that this implies that the value (SS, G3) computed in 

Table 1 matches the value calculated in Eq. (5), just let U = S, r-P S2 and L = G, nt G2 
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Table 2 
Version space learning 

function learnVS(G,S) = 

if (G,S) is good enough 

then (G,S) 
else let value (newC, newS) be learned from new information 

and CbetterG, betters) 

= mergeVS((G,S), CnewG, news)) 
in learnVS(betterG, betters) 

endlet 
endif 

and substitute using Eq. (6). To see why (6) holds, let us analyze what it means to 
have x E (U *’ L) *’ L. Unfolding the definitions of upper and lower heterogeneous 
intersection yields the assertion 

xELandCIyE(U*“L).yix 

which means 

x E L and 3y E U. (3x0 E L. y 3 x0) and y 5 x. 

But this is clearly equivalent to 

x E L and 3y E U. y 5 x 

which is the same as x E U *’ L. 

The version space learning algorithm itself proceeds by repeated merging of version 
spaces. The algorithm assumes that we are given a way to obtain new information in 

the form of a version space; this may be done by extending a training set by examining 

a new instance, but any method - including the exploitation of domain knowledge - 
would suit the algorithm. The new information is merged with the old until the desired 

level of accuracy is achieved. Pseudo-code for this process is given in Table 2. 

The code there uses a form 

if B then El else E2 endif 

which evaluates a boolean B and, depending on whether its value is true or false, 
evaluates expression El or E2 respectively, and returns the resulting value. The 1earnVS 

function is used by being invoked on an initial version space. 

3.2. A simple concept learning example 

We illustrate the theoretical concepts introduced in this section in the context of a 
simple concept learning problem adapted from [ 10 J . The instance space UP is a set 
of objects identified by their shape and color. The concept space P is a set of subsets 
of UP. 

UP = {Redo, Redo, BlueO, BlueO}, 
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P = (8, {Redo}, {Redo}, {BlueO}, {BlueO}, {RedQRedO}, 

{RedO,BlueO}, {BlueO,BlueO}, {RedO,BlueO}, UP}. 

373 

Note that only 10 of the 16 possible subsets are represented in P. This concept space 

bias provides the means of making non-trivial generalizations of observed instances. The 

elements of P are ordered by subset inclusion. Thus, {Redo} 3 {Redo, BlueO}. 

Consider the version space generated by the training set (0, {BlueO}): 

X(0, {BlueO}) = {x E P 1 8 C x L UP - {BlueO}} 

= (8, {Redo}, {Redo}, {BlueO}, 

{RedCt,RedO}, {RedO,Blueo}}. 

The anti-chains that represent the minimal and maximal boundaries of this version space 

are: 

Sl = {0}, 

Gt ={{Red~,RedO},{Red~,BlueO}}, 

NOW consider the version space generated by ({RedCl}, 0) : 

K({Redn}, 0) = {x E P / {Redo} c x C UP} 

= {{Redo}, {RedO,RedO}, {RedU,BlueO}, 

{Redo, BlueO, Redo, BlueO}}. 

The anti-chains that represent the boundaries of this version space are: 

SZ = {{Redn}}, 

G2 = {{Redo, Redo, Blueo, BlueO}}. 

We now show the steps in the computation of K( {Redo}, {BlueO}) = X(0, {BlueO}) r- 

x((Redn}, 8) in terms of the anti-chains that represent them (Table 1). 

x({Redo}, {BlueO}) = {{Redo}, {RedO,RedO}, {RedO,BlueCl}}, 

St nU 5’2 = {{RedO}}, 

GI n’ G2 = {{Redo, Redo}}, {Redo, Blueo}}, 

S3 = (St nu s2) *u (G, n’ G2) 

= {y E (Sl flu S-2) 1 3x E (Cl dG2) y -: x} 

= {{RedO}}, 

G3=(S3 *t (GI n’G2)) 

= {x E (GI d G2) 1 3y E S3. y I x} 

= {{Redo, Redo}, {Redo, BlueCi}}. 

We can easily see that a( S3, G3) = K( {Redo}, {BlueO}). 
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Fig. 7. Quasi-meets and quasi-joins 

3.3. More general concept spaces 

We have now shown how operations on version spaces are calculated if the concept 

space is a finite lattice, but is there a way to work with spaces that are not finite lattices? 
We now describe a necessary and sufficient condition for when we are assured that the 

incremental update algorithm is usable, at least in principle. The key idea is to identify 

what we need to be able to compute; this is given by the following: 

Definition 17. Let P, 3 be a poset x, y E P. The quasi-meet of x and y is defined by 

the equation 

xAy=max{z E P 1 z 5x and z 5~) 

and the quasi-join of x and y is defined by 

xOy=min{zEPIz?xandz>Y) 

In [8], JxAy is called bb(x,y) and fxOy is called aa(x,y). 

If P is a lattice, then it is easy to cheek that x A y = {x A y} and x v y = {x V y} 
so, in the event that we are dealing with lattices, quasi-meets and quasi-joins basically 
correspond to meets and joins. However, it is not always the case that quasi-meets and 

quasi-joins are singletons. A graphical representation using a Hasse diagram is given 
in Fig. 7 where x vy = {gt , . . ,g,,} and x A y = {si,. . . , s,}. When the poset P is 
a concept space, the elements of set x V y are sometimes called the “most specialized 

generalizations” of x, y and those of x A y are called “most general specializations” of 

x, y. 
It is not sufficient simply to know how to compute quasi-meets and quasi-joins; it 

is essential to know that these operations can be used to compute anti-chains that are 
needed to represent version spaces. However, this is a special property of the concept 
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space. Just as we defined a lattice to be a poset on which there are operations A, V with 
special properties, we need an analogous definition: 

Definition 18. A poset P is said to have property W if 
l min( P) is finite and P = r min( P) and, 
l for each X, y E P, the quasi-meet xii, .v is finite and 

l(xhy) = {z E P I z 5 x and z 5 y}. 

is said to have property M if 
l max( P) is finite and P = 1 max( P), and 

l for each X, y E P, the quasi-join x V y is finite and 

T(xVy) = {z E P I z k x and z t-y}. 

poset that has both properties is said to have property MW. 

Property M is familiar from ideas in topology (where it is an order-theoretic for- 
mulation of an important property of compact subsets called “coherence” [ 151) and in 
domain theory (where it is a necessary condition for the bases of domains with good 

closure properties [ 141). Mellish identified these conditions in [ 81; he too noted the 

need for finite quasi-meets and quasi-joins of pairs of elements of P, and by fiat intro- 
duced a top and bottom element for P so that the first part of the M and W properties 

hold. 
Given an MW poset P, we can now express in greater generality how the intersection 

of two upper sets or two lower sets can be carried out in terms of their representation 
as anti-chains. We define 

Sn’T’=max(U{x,iylxtS’andyET’)) (forMWposets) 

and 

S’ fY’ T’ = min(u{x D y / x E S’ and y E 7”}) 

,A 

(for MW posets) 

Note, in particular, that although P may be infinite, if S’ and T’ are finite, then S’ n’ T’ 
and S’ VT are also finite. The definition of fY is the same as given in Eq. (5) although 

the operations used there should be taken on MW posets. That is, the definitions of *I 
and *’ are unchanged, but those for f? and nU are the ones just given. 

Lemma 19. Let P be a poset and suppose S’, T’ are anti-chains in P. 
(1) IfP hasproperty W, then L(S’f?T’) =Is’nlT’. 
(2) IfP hasproperty M, then T(S’fFT’) = TS’flTT’. 

Proof. We prove ( 1) ; the proof of (2) is dual. First suppose that x E J, (S’ f? T’) . Then 
there are elements y, U, u such that x 3 y where y E u A u and u E S’ and u E T’. This 
means that x 3 u and x _i ~1 so x E 1 S’ n I T’. 
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Now suppose that x E 1 S’ and x E 1 T’. Then there are elements ua E S’ and uc E T’ 
such that n 5 ~0, ua. By property W we must therefore have x E J ( uo A ~0) , so x is an 

element of 1 X where 

~=u{uAuIx~S’andy~T’} 

The set X is finite, so, by Lemma 3, 1 X = J(max( X) ) = 1 (S’ n’ T’) as desired. 0 

Lemma 20. Suppose P is an MW poset and Cl, C2 C P are convex spaces where the 
sets 

S1 = min( Ct ), Cl = max(Ct), 

S2 = min(Cz), G:! = max(C;?). 

are finite and the equations Cl = B( S1, Cl ) and C2 = B( ST, G2) hold. If 

(S’,T’) = (min(Ci) ,max(Ct)) nYmin(C2),max(C2)), 

then min( Ci n C2) = S’ and max(Ct n C2) = T’. In particular, 

Cl n C2 = B(S’,T’). 

Proof. The desired result follows from Lemma 13 if we can show that 

min(Ci n C2) = (Si V S2) *’ (Gi f? G2) and 

max(Cr nC2) = (Si nU S2) *’ (Cl i-7 G2). 

Let us do the first of these, the second has a similar proof. Starting with Eq. (1) and 
Lemma 20 we calculate: 

T((Sl n”S2) *u (Gi n’G2)) 

=Tum ms2mwl fuG2)) 

=~((?‘slnlGl)n(rs2nlG2)) 

= T(B(SI,G) nB(S2,G2)) 

= wl n c2). 

It is not difficult to check that if U’ is an anti-chain and U = t U’, then U’ = min( U). 
The desired equation therefore follows. 0 

3.4. Necessity of properties M and W 

The MW property is not a difficult condition to satisfy. For instance, any finite poset 
has property MW and any lattice has property MW. But are there examples of concept 
spaces on which incremental version space merging could be used but where MW is 
not satisfied? We now show that it can essentially be claimed that concept spaces for 
which the anti-chain representation on which the algorithm in Table 1 depends can only 
make sense for a poset that satisfies the MW property. 
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The key assumption underlying the anti-chain representation of a convex space is that 
the convex spaces that are represented in this way have the form a( S, G) where S and 
G are finite anti-chains. Some vocabulary is helpful here: 

Definition 21. Let P be a poset. A lower subset S of P is said to be finitely repre- 

sentable if max (S) is finite and S = 1 max (S). A upper subset T C P is said to be 

finitely representable if min(r) is finite and T = t min(T). A convex space C C_ P 

is said to be finitely representable if max( C) and min(C) are both finite and C = 

a(min(C),max(C)). 

In these terms it is possible to express succinctly the Admissibility Theorem for 

version spaces: 

Theorem 22 (Admissibility). Let P be a concept space that satisfies property ME! 

If, for every instance a, the convex spaces K({a},0) and K(Q), {u}) are finitely 

representable, then so is K( P, A) for any training set (P, A). 

Proof. Note first that Ic( 8,Q)) = B(min( P), max( P) ) is finitely representable by the 
conditions for properties M and W concerning the collections min( P) and max( P). 

Eq. (4) says that it is possible to express other collections as intersections of convex 

spaces of the forms K({a},0) and K(@,{a}>.B ase d on Lemma 20 and our assumption 

that such collections are finitely representable, it follows that K(r, A) must also be 
finitely representable. 0 

Theorem 23. Let P be a poset. 
(1) If the set min( P) is finite with P = T min( P) and intersections of finitely- 

representable upwards-closed subsets are finitely representable, then P has prop- 

erty W 

(2) If the set max( P) is finite with P = J. max( P) and intersections of finitely- 

representable upwards-closed subsets arejnitely representable, then P has prop- 

erty M. 

( 3) If the poset P is itself a finitely-representable convex space and if intersections 

of its finitely-representable convex subsets are finitely representable, then P has 

properties M and W 

Proof. We prove (1); the others have similar proofs. Let X, y E P and let L = l(x) f? 
l(y). Since this is an intersection of finitely representable sets it must be finitely 

representable, so suppose L’ is an anti-chain such that L = I L’. In this case L’ = 
max( L). Since L = {z 1 z 5 x and z 3 y}, it follows that L’ = x K y. Hence 

I(xAy) = {z E P 1 z 3 x and z 3 y) 

and this means that P has property W. q 

Theorems 22 and 23 significantly extend the known theory of admissibility presented 
in [ 7,8, lo]. They provide a direct means for verifying whether the anti-chain repre- 
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sentation adopted by the version space algorithm is correct for an arbitrary training 
sequence and a concept language that satisfies the MW property in terms of its behavior 

on each element of the set of training instances. 

3.5. A complex concept learning example 

We now turn to a more complex example of a concept space in order to illustrate 

the role that properties M and W may play in the admissibility of the version space 
algorithm. Theorem 23 says that if intersections of finitely representable (fr) subsets of 
an fr poset P are always fr, then P has property MW. Since the version space algorithm 

relies on intersecting fr subsets to get fr subsets, this result is clearly relevant. However, 

it may be the case that the algorithm does not actually need to take intersections of all 

possible pairs of fr subsets. If the intersections it does take are always finite, then no 

problem will arise. To illustrate how this can happen, we examine the task of learning 
axis-parallel rectangles on a plane from labeled points on the plane. This problem 

was introduced in [ lo] and has applications in the geometric analysis of subsymbolic 

learning methods. 

Consider an integer grid imposed on the xy plane. Labeled examples are points (x, y) 
on the grid marked as either being inside or outside the target axis-parallel rectangle. The 
target rectangle is represented as a conjunction of two closed intervals over the natural 
numbers N. We now formally define the set UP of instances and the set P of concepts 

composed of elements that are subsets of UP. As in the previous concept learning 

example, representational bias is introduced in P to permit non-trivial generalization of 
instances. In particular, P consists of those subsets of UP that can be represented as 
the product of a pair of closed, half-open, or open intervals on x and y. To be precise, 

suppose R E { <, <}, and define: 

P={{(x,y) j [ZRxRrlA[bRyRtl}/1,~,b,tENu{~}}, 

UP={(x,y) IxENandyEN}. 

The elements of P are (points in) open, half-open, or closed rectangles corresponding 

to whether both defining intervals are open, at least one interval is half-closed, or both 

intervals are closed. This poset has the empty rectangle as a least element and UP as a 
greatest one. Let us define the A operation between two elements p and 4 in P to yield 

the largest axis-parallel rectangle on the grid that is contained in both p and q. Let us 
define the operation V between elements p and q in P to be the smallest rectangle on 

the grid that contains them both if there is one. 

To see where this proviso about existence comes from, consider the rectangles 

RI = {(x,y) 10 < x < 20 and 0 < y < 30}, 

R2 = {(x, y) 1 10 < x < 30 and 0 < y < 30). 

Their union is not an element of P, and it is not difficult to see that there is no least 

element of P that contains them both. That is, RI V R2 is undefined. But more that this 
is true: property M fails! To see why, note that it is not just the case that there is no 
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least element in P containing RI U R2; there is also no minimal element in P containing 
it. 

Let us put these concerns aside for now and focus on how the algorithms in Tables 1 
and 2 are carried out using the partially defined operations for conjunction and disjunc- 

tion. The target concept is a closed rectangle defined as I < x < r and b 6 y < t. 

Should 1 > r or b > t we have the empty rectangle. The ordering 5 on P is that of 
set inclusion 2. Because of the special form of the elements in P, we can check set 
inclusion by checking for inclusion in the x and y intervals. We will use this fact in the 

construction of anti-chain representations of the version space. 
We calculate the version space given by the training set having the points (12, 12)) 

( 11, 11) as a positive instances and the point ( 13, 13) as a negative one. Let us as- 

sume thatthey arelearned in thefollowingorder: +(12,12),-(13,13),+(11,11).By 

definition, 

K({(12,12)},0) = {SE P \{(12,12)} c s c UP}. 

The anti-chains SI and Gl representing K( { ( 12,12)}, 0) are sets of elements of P. In 
this example, Sl and Gi are singletons: St contains a point rectangle at (12,12) and G, 

is the half-open rectangle with its bottom left corner at (0,O) and its top right corner 
at (oo,co). 

S, ={(x.y) 1 12 Q x < 12 and 12 < y < 12}, 

G, = {(x, y) IO 6 x < 03 and 0 < y < oc}. 

Now, (13,13) is a point outside of our target closed rectangle so, by definition: 

X(0, {( 13,13)}) = {S E P 1 0 C S c. UP- {(13,13)}}. 

While S2 is a singleton consisting of the empty rectangle, G:! consists of four elements 

in P denoting four rectangles on the plane that exclude the point ( 13,13) : 

s2 = {0}, 

G~={{(x,y) 10 6 x < 13 and 0 6 y < 13}, 

{(x,y) IO < x < 13 and 13 < y < co}, 

{(x,y) I 13 < x < co and 0 < y < 13}, 

{(&Y) I 13 < x < 00 and 13 < y < 00)). 

We now calculate the anti-chains representing the version space 

using the construction in Table 1. Each element in an anti-chain is an open, half-open, 
or closed rectangle. The pairwise V between the elements in SI and S2 yields the point 
rectangle in Sr. The pairwise A operation between elements in G2 and the element in 
G1 yields the elements in G2 in turn. 
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SI flu S2 =min{p V q 1 p E 4 and q E &} 

={(x,y) 1 12 < x < 12 and 12 6 y < 12}, 

Grf~‘G~=rnax{p~qIp~S~ andqE&} 

={{(xvY) 

{<XT Y) 

{t&Y) 

I<% Y> 

0 < x < 13 and 0 < y < 13}, 

0 < x < 13 and 13 < y < oo}, 

13 < x < 03 and 0 < y < 13}, 

13 < x < 00 and 13 < y < CXI}}. 

To obtain the anti-chains Ss and Gs representing the boundaries of 

~({(12,12)}~{(13~ 13))) 

we complete the last two steps in the algorithm in Table 1: 

Ss = (Sr nU Sz) *a (Gr n’ G2) 

= {P E 6% nU S2) I 3q E WI f-f G2) P 5 4) 

={(x,y) I 12 <x < 12 and 12 < y < 12}, 

G3 = (Sr V S2) *’ ( GI n’ G2) 

= {q E (G1 n’ G2) I 3 E (SI ws2) P 15 4) 

={(x,y) IO 6 x < 13 and 0 6 y < 13). 

As expected, Ss is the point rectangle at (12,12) and G:! is the half-open rectangle with 

its bottom left corner at (0,O) and its top right corner at (13,13) where (13,13) is 
not included in this rectangle. 

The version space for the positive instance ( 11,ll) is represented by the pair (S4, G4) 

where 

&={(x,y) I 11 <x < 11 and 11 < y < ll}, 

G4={(x,y) IO < x < cc and 0 < y < ce}. 

When we merge this with (Ss, Gs), the upper boundary remains Gs, but the new lower 

boundary is 

SS = {(x,y> I 11 <x < 12 and 11 < y < 12}, 

since this is the value of S3 fP S4, a closed square with corners at ( 11, 11) and ( 12, 12). 
Let us return now to the question of why the algorithm seems to work (at least on 

the example) even though property M fails. The need for property M arises from the 
use in the algorithm of quasi-joins to calculate lower set boundaries, which serve as the 
lower boundaries of the convex version spaces. However, it is not hard to see that not 
every concept in P could arise as an element of a lower boundary S of a version space 
when only training sequences of points are used to generate version spaces. To see why, 
note that the lower boundary of a version space will always be a single closed rectangle, 
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which will, in fact, be the smallest (most specific) rectangle containing the positive 
instances of the training sequence. Our counter-example to property M was obtained 

by attempting to take the union of a closed rectangle with an open one - a situation 

that will not arise in the algorithm unless new convex spaces are learned by some other 
means than training sequences of points. By contrast, the upper boundaries of version 

spaces in this concept space are always open rectangles (that is, rectangles that do not 
include their finite boundaries). This heterogeneity has the consequence that we cannot 
stipulate that a concept is “learned” when S and G in the version space coincide since 

this will never happen! So, referring to Table 2, the test good-enough must be defined 

to test that S and G are singleton sets such that the difference between them is a border 

of width 1 around S. 
In general terms, the success of the version space representation for this concept 

space can be seen as relying on the fact that upper and lower boundaries lie in special 

subsets of the concept space. Another way to say this, is that the specific concepts 

are represented in a concept space of closed rectangles while the general concepts 

are represented in one of open rectangles. To incorporate this into a general theory 

such as the one we have described in this section would require generalizing our 
view of version spaces to accommodate three partial orders: one for upper bound- 

aries, one for lower boundaries, and one for comparing upper and lower boundaries. 
The first of these must satisfy property M and the second must satisfy property W. 

The order for comparing upper and lower does not need to satisfy any order-theoretic 

properties, but, of course, we must be able to compute it in order to execute the 
version space merging algorithm, where it will be used to compute heterogeneous in- 
tersections. We will not attempt a further elaboration of this generalization in this 

paper. 

4. Assumption-based truth maintenance systems 

An Assumption-Based Truth Maintenance System (ATMS) is a structure introduced 

by de Kleer [2,3] which is intended to compute sets of assumptions on which a 
conclusion can be based relative to a given theory. Our goal in this section is to 
show how the computations involved in the ATMS can be expressed in terms of anti- 

chains. This provides a semantic basis for understanding the ATMS and reveals efficient 
representations for the calculations. 

To describe the ATMS, we need some ideas from logic. We work with a language Is 

of propositional atoms that includes an atom I standardly interpreted as falsehood. In 
general, atoms will be denoted with lower case letters a, 6, c from the beginning of the 
Latin alphabet. Propositions (or formulas) 4, I/J are built from atoms using the usual 

logical connectives * for implication, 1 for negation, A for conjunction, and V for 
disjunction. A theory 3 is a set of propositions. A model M is a subset of C - {I} 
where an atom a is interpreted as being true if, and only if, a E M. We write M + C$ if 

M interprets 4 as true with the usual truth table interpretation of the logical connectives. 
We write 3 + C#J if each model of the elements of 3 is also a model of $. We say that 
a theory 3 is inconsistent if it has no models or, equivalently, if 3 k 1. 
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As we discussed in an example earlier, we let A be a finite subset of C whose 
elements we call assumptions and define the poset of environments & to be Pwr(d) 

under the subset ordering. Assumption atoms may be written using upper case letters 

A, B, C to help distinguish them from general atoms. Environments will be denoted with 

lower case letters x, y, t from near the end of the alphabet. 
Given a theory .ZF and assumption set A, an ATMS is designed to efficiently calculate 

the collection of nogoods, defined as 

N(F) ={xEE~.RJx~:I} 

and, for each a E L, the set 

V(~,a)={xEE(~Ux#Iand3Ux/=a}. 

In practice, this function is invoked more often on different as than on different 3s 

so the primary computational goal of the ATMS is to calculate the function 

&(a) = V(F, a) 

typically representing it as a hash table look-up on the atoms in L. For uniformity of 

notation, let us also write NT = N(F). 
There are several important observations that aid the design of an efficient represen- 

tation of this computation. First, let us note that: 

Lemma 24. V’(a) S & is a convex space. 

So it can be represented as a pair of anti-chains. This is done in [ 2,3] as the diference 

of two upper subsets of &. The efficiency of this representation owes to the fact that 

the subsets V’(a) effectively share a common upper boundary that can be computed 
in terms of the nogoods. In particular, we can simply maintain the following function 
mapping atoms to anti-chains in E: 

i 

min{xEEjFUx+J_} if a = I, 
J%(Q) = 

min{xEEI~Ux#_land~Ux~a} ifa# 1. 

Knowing LF allows us to compute all of the desired values. 

Example 25. If _4 = {A, B, C, D} is an assumption set and F is a theory such that 

b_(a) = {{A, B}, {C}} and &(1) = {{CD}}, then 

&(a) = {{C},{A,~},{A,C},{A,D),(B,C},{~,~},{A,~,C},{A~B~~}} 

can be represented as the difference of the upper sets t L.ZF (a) and T LF( I). The convex 
space V’(a) is illustrated as the lightly shaded part of Fig. 8. 

Lemma 26. Given a theory F and assumption set A, 
(1) NF=tLF(j). 
(2) Ma> = (t LAa)) - (t LA-L>>. 
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Fig. 8. The convex space VJZ(~) of environments represented as the difference of two anti-chains 

LF(N) = {{A,B},C} and LF(~) = {{C,D}}. 

In practice, it is more efficient to use a boundary representation and work with LF( I) 

and LF( a) -’ LF( 1) than with NT and VF( a), These sets are called the labels [ 21 
of I and a respectively. Knowing the labels is sufficient because we can reconstruct V3 
from them: 

7(&(a) -’ b(l)) - T LFLJ-) = l‘(I’b(a) - T b_(l)) - N3 

=T(TWa) - NF) -NT 

= (Tk(a)) - NF 

= VF(LI). 

So, referring back to our earlier discussion surrounding Lemma 11, the proposed opti- 
mization represents the convex space of interest as the difference of two upper sets. 

4.1. The ATMS interface 

An ATMS can be understood as an abstract data type in terms of the semantic 
interpretation described above. It is used by a client problem-solving system to cache 
inferences about assumptions that justify propositional atoms. The ATMS data type is 

defined by the three operators given in Table 3. The ATMS data type itself is denoted 
atms there of course. FinPwr( C) is the collection of finite sets of propositional atoms. 

The function initatms creates an ATMS based on a given set of propositional atoms 
which plays the role of the assumption set A. This function generates an ATMS that 

associates with each atom a E A, the label {{u}}, and with each atom b E L - A, 
the empty label. The function label computes the label of a propositional atom; this 
label is an anti-chain in the poset I of environments (finite subsets of A), The function 
update is the work-horse of the interface: given a theory (set of propositions) and 
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Table 3 
The ATMS interface 

init_atms : FinFWr(L) + atms 
label : L x atms + Anti(E) 

update : theory x atms + atms 

an ATMS, it produces an “updated” ATMS with labels that incorporate the information 
provided by the new theory into the labels determined by the previous theories with 
which the initial ATMS has been updated. 

The combination of the basic operations on anti-chains with the basic operations on 
the ATMS provide the desired functionality for the ATMS in a modular, semantically 

clear, and efficiently implementable manner. For instance, the functions in [2] that 
the ATMS is meant to compute can all be succinctly expressed using our interfaces. 

The same is true for most of the functions in [4]. To see some examples from the 

latter, consider the function node-consistent-with? from [4, p.4401. This takes as 

arguments an atom a E /Z and an environment x E &; it returns the boolean value true 
if, in the label of a, there is a consistent environment y that is a superset of x. In 

other words, x has a (consistent) extension to an environment from which a follows. 
In terms of our ATMS and anti-chain interfaces (that is, in terms of the operators in 
Tables 3, A.2, and A.3), this is simply 

lowerrmember( label( a, theATMS), x) 

where theATMS is the ATMS of interest. upper-member(A, E) checks if element E 
is a member of the upper set corresponding to the anti-chain A. Another exam- 
ple, described in [4] as useful for “sophisticated inference engines” is a function 

supporting-antecedent? which takes a set of atoms S = {al,. . . , a,} and an envi- 

ronment x as arguments; it checks whether the conjunction of the atoms in S holds in 

x. In terms of our interfaces, this is upper-member( S’, x) where, with some mixing of 

mathematical and programming notation, 

S’ = label(ul , theATMS) fl” . . . flu label( a,, theATMS). 

Using the binary operation upperhomogeneousintersection, the anti-chain S’ is 

calculated by using the analog of the Common Lisp utility apply. 
We can extend our interface to provide additional information to a client problem 

solver. For example, we can include a function 

atoms : atms -+ FinPwr(L) 

which returns the (finite) set of atoms mentioned in the current theory of the ATMS. 
This would make it possible to ask for the collection of atoms that are “believed” 
relative to a given environment X. This collection is sometimes called the context of x; 
it can be calculated by collecting all of the atoms a in atoms(theATMS) such that x 
is a superset of an element of L = label( a, theATMS). In particular, x is a superset 
of such an element holds just in case upperrmember(L,x) is equal to true. However, 
it seems unlikely that one will want to actually form the context of an environment 
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as a set; in most cases one will want to know only whether an atom is in the context 
determined by a given environment, and this can be learned from the functions label 

and upper-member without recourse to atoms. On the other hand, an implementation 

of the ATMS requires the function atoms, so there is no cost in making it available to 

the client problem solver. 
To provide the function explain-node described in [4] requires an extension of a 

different nature to our basic interface. This function (described in [4, p. 4421) takes 
an atom and an environment as arguments; it returns a proof for the atom based on 

the theory of the ATMS and the given environment. For our present formulation of 
the ATMS we have chosen not to keep any information about proofs of atoms from 

assumptions, instead retaining only the anti-chain of minimal sets of assumptions from 
which a atom can be derived. To add this function, we need to provide a propositional 

theorem prover that can reconstruct the proofs of the atoms from the anti-chain of 
assumptions associated with it. The design of appropriate interfaces for the ATMS is a 

very interesting and rich subject in its own right; the appropriateness of various choices 
are essentially compromises between the needs of the client problem-solving system and 

the computational overhead of delivering the needed functionality. 

4.2. The basic ATMS 

While we have imposed no restrictions on the theories that can be used with an ATMS, 

in the absence of such restrictions the update function may involve computation that 
is exponential in the size of A. One way to ensure that update can be calculated 

efficiently for a reasonably expressive language is to restrict the propositions in theories 

to be Horn clauses. A Horn clause is a proposition of the form 

al A... Aa,*a 

where n = 0 means the proposition is just a, which we may write in the form =+ 

a. For many applications this has proven to provide a good balance between logical 
expressiveness and efficiency. The restriction to Horn clauses was used in de Kleer’s 
original paper [2], as well as in much of the discussion of the ATMS in [4]. The 
computational advantage to Horn clauses lies in the fact that the complexity of the 

decision problem F k a is linear in the size of F (as opposed to exponential in the 

size of A). 

The logical meaning of the interface function update was specified to be the label 
function L3 where 3 is the theory associated with the ATMS. The question still remains 
of how this function is to be calculated. Our goal now is to provide an abstract descrip- 
tion of how this can be done in terms of anti-chains using a class of functions called 
“closure operators”. * The idea is to do this as a declarative “executable” specification, 
In other words, the computation is described as a mathematical entity: in particular, as 
the least fixed-point of a functional as one does in the denotational semantics of pro- 
gramming languages [ 6,121. The benefit of a mathematical treatment can be realized 

2 The mathematical notion of a closure operator should not be confused with that of a “closure” in functional 

programming languages, where the term refers to a pair consisting of a code pointer and an environment. 
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in proving correctness of algorithms for computing labels. Indeed a proof of correctness 
based on a fixed-point semantics was given in [ 51. What we add to their treatment (as 

far as the basic ATMS is concerned) is a succinct formulation in terms of our anti- 

chain operations together with a fuller discussion of the role of closure operators. The 

use of anti-chain operators makes it possible to capture the mathematical description in 

pseudo-code that is quite close to an actual efficient implementation one might use. We 
first show how properties of closure operators allow one to describe the label update 
algorithm for the basic ATMS; in a later section we use them to develop a new algorithm 

for the ATMS relative to a more general class of propositions. 
Turning now to the technical details, let Anti(E) be the set of anti-chains over 1. 

Let us form a partial ordering of anti-chains by taking x 3 y if, and only if, T x C T y. 

Suppose C$ is a Horn clause at A . . . A a,, + a; the proposition C$ induces a functional 
which can be viewed as an operation for “improving” the information in a label for the 

atom a. Repeated application of such information-improving functionals is the key idea 

of the ATMS label update algorithm. Suppose that F is a function from C to Anti(&). 

We can view F as describing the “current state of knowledge” about the label function. 
Let us say that another such function G is ‘at least as informative’ as F and write F 5 G 

if F(b) 3 G(b) for each atom b. Taking into account the information provided by C,?J is 

done by applying an operator 

4 : (C -+ Anti(l)) + (L ---f Anti(E)) 

which is defined by the equation 

F(b) if b + a, 

&F)(b) = 
F(a) U” n’{F(ai) 1 1 < i < n} if b = a. 

There are three special characteristics of 4 whose proof we discuss below. First of 
all, if G is a labeling function that is at least as informative as F, then J(G) is at 

least as informative as 2(F); that is, F 3 G implies that $J( F) 1: 4(G). Second, 
d(F) contains at least as much information as F; that is, F(b) 3 J(F) (b) for any 
atom 6. Third, applying $ twice consecutively adds no further information; that is, 

$(4(F)) = p(F). These are the defining properties of a closure operator: 

Definition 27. Let P be a poset and suppose f : P --+ P is a function. Then f is a 

closure operator if it is 
0 monotone: x 5 y implies f(x) 3 f(y), 

l inflationary: x 3 f(x) for any x E P, and 
l idempotent: f(f(x)) = f(x). 

Lemma 28. For any Horn clause c$, the function 4 is a closure operator. 

Proof. Say 4 is al A ’ + A a, =+ a. To see that C$ is monotone, suppose F 3 G and b 

is an atom. If b # a, then J(F) (b) = F(b) 5 G( 6) = 4(G) (b) since F 5 G. On the 
other hand, if b = a, then 
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t+(~)(b) = T(FW uu nU{F(ai) I I G i G 4) 
= (t F(U)) u nft F(Ui) I 1 < i < rl} 

5 (t G(4) u nit G(Ui) I 1 < i < 4 

= t (G(U) UL' n"'{G(ui) / 1 G i 6 II}) 

= t&G)(b) 

so C$ is monotone. 
To see that it is inflationary, suppose b # a, then F(b) = 4(F) (b). If b = a, then 

t&F)(b) = T (F(n) U” n%Yai) I 1 G i 6 4) 

= W(4) un{tWi) ( 16 i< n> 

2 t F(b). 

To prove idempotence, we consider two cases. Either a = ai for some i or a + ai 

for all i. If the former holds then 4 is “uninformative” and it is easy to verify that 
p(F) = F for any F. If the latter holds, then 4(F) (ui) = F( ui) for each i and we can 
calculate as follows for the case in which the argument is a: 

&$(F))(a) =&(F)(a) uUn”{&F)(ai) I 1 <i < n} 

= (F(u) U” n’{F(u;) / 1 < i < n}) 

uU n%(F) (ui) I 1 G i G n> 

= F(u) U” nU{F(ui) ) 1 < i 6 n} 

=&F)(u). 

If the argument is b # a, then the result is immediate, so we are done. q 

The key point concerning closure operators and partial information is that the repeated 
application of members of a family S of such operators eventually leads to a point of 
stability in which no new information is added by additional applications of operators 
from S. This point of stability is technically a least common fixed point of the operators 

in S. We require a slightly more general fact which the next theorem expresses. 

Theorem 29. Suppose P is a jinite poset and S is u family of closure operators f : 
P + P. For any point x0 E P, there is a least common&ed point of S above x0. That 

is, there is an element x E P such that x0 3 x and .f (x) = x for each f E S. 

This is a corollary of the following lemma, which describes how such a fixed point 
can be computed. 
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Lemma 30. Suppose that {fi 1 i E I} is a family of monotone and in$ationaryfunctions 
on a poset P indexed by some finite set I. Suppose that P is finite and x0 E P. Let v 

be an infinite sequence of members of i such that every element of I appears in every 

&ix of u. Let a[ n] be the nth element of LT. Consider the set 

This set has a least upper bound x. This point x is the least commonJixed point above 

x0 for the fu~tctions (fi \ i f I). 

Proof. The fact that r has a least upper bound follows from the observation that it is 

a chain (that is, y 3 z or z 5 y for each y, z E r) and the poset P is finite. 
To prove that x is a common fixed point, we need a convenient notation for composing 

sequences of fis. We write (T,, for the length n prefix of u’. We write f, for the 

composition fo[nl 0 fvj,,_l 1 0 . . . o fa, 11. First, note that the elements of r are written 

in non-decreasing order because all the fi are inflations. Second, because P is finite, 
the least upper bound is attained at some finite stage, that is, for some n, the least upper 

boundofris frrrnl(frrln-lI(...(f~lll(Xo)))) or, using our notation, fg,, (x0). Let us 
begin by noting that 

if 172 2 n, then x = fun,(x). (7) 

Since x is the least upper bound of r, we already know that fg, (x0) 3 n, and since 

f CT[ n+I ] J . . . I f rrlkl are all inflations, we also know that x = fv,, (x0) 5 fvn, (x0). 

Now, consider one of the functions f;. We must show that fi(X) = x. To this end, 

let nz be a number greater than n such that cr[m] = i; we know there must be such 

an nz from the assumption that i appears in every suffix of I+. By (7)) we know that 

x = f<,,,,_, (x0). Applying frrr,lll to both sides of this equation yields fi(X) = f,,, (x0), 

which, by (7) again, is equal to x. Thus, n is a fixed point of any of the functions in r. 
Suppose that x’ is any other common fixed point, we have, by an easy induction on 

m, that for all m, f,,“, (x0) 3 x’ by the monotonicity of the fi and the fact that x0 _i x’. 

Thus, x’ is an upper bound for r and, since x is the least upper bound, x 5 x’. 0 

The upshot of this lemma is that if we wish to find the least common fixed point of 
a set of closure operators we need only apply each one often enough in succession, not 
necessarily in any systematic order, and we will find the fixed point. The appearance of 

the infinite sequence g in the proof is only to formalize the notion of “often enough”; 

the fact that P is finite ensures that only finitely many iterations of such applications 

are required in order to reach the desired fixed point. 
We now use this theorem to express the ATMS label update computation. Suppose that 

LB is the label function constructed from the set s of Horn clauses. The improvement 
of the label function Ls by a set F of Horn formulas is characterized as follows. 

Theorem 31 (Soundness of the basic ATMS algorithm). Let A be a set of assumption 

atoms, and suppose & is the associated environment lattice. Let L be the label function 

for A, E, and suppose that 3 and G are sets of Horn clauses. If Lg : C + Anti(E) 
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Converting a Horn clause q5 to a closure operator 6 

function d;(F) (b) = 

if b + a then F(b) 

else F(a) U” (fold(n”, map(F)(S), {0})) 
endif 

where 4 is a Horn clause such that S is the set of its premises and a is its conclusion. 

is the label function relative to G, then there is a least common fixed point F of the 

functions 

above LG. Moreover, this jxed point satisjes the equation: 

&Fug(a) = 
F(a) -‘F(I) ifa f I, 

F(I) ifa= 1. 
(8) 

A proof of the theorem involves relating the semantic entailment k for the Horn 
clause formulas C#J to the least fixed point of the closure operators 4. This can be done 
through the use of a minimal model for a collection of Horn clauses. Details sufficient 

to construct a proof of Theorem 3 1 can be found in [ 51 and [ 111. 
It is worth noting how Theorem 31 reflects the “non-monotonicity” of labels despite 

using a fixed point computation based on monotonic operators. Since some members 
of LB(U), for a f I, may become nogoods when deductions based on 3 are taken 

into account, it is not necessarily the case that Lg(a) 5 LFUB(~). Put more generally: 
although F is a monotone operator on labeling functions, LX (a) may not be a monotone 
function of X (under an ordering of sets of formulas by subset inclusion). This non- 
monotonicity arises from the upper difference F(a) -‘I F(I) taken in 8. 

Using Lemma 30, 8 shows how to calculate L~ug from LG and 3 by the use of 

a least common fixed point. We can convert this mathematics for ATMS computation 
into pseudo-code in the way Tables 1 and 2 did for version spaces. Pseudo-code for the ,. 
operation 4 H 4, which takes a Horn clause to the corresponding closure operator on 
label functions, is given in Table 4. 

In the program there, the following functions are taken from the anti-chains interface: 

upper-union upper_homogeneous_intersection 
singleton empty 

The first two of these we have encountered before. The operation singleton takes an 
element x and forms the singleton anti-chain {x}. empty is the empty set, which is 
itself an anti-chain. In particular, the upper set that the anti-chain singleton(empty) 

represents is T(0) = E. Aside from the operations on anti-chains, we require two basic 
operations on sets: 

map fold 
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Table 5 

Basic ATMS label update 

function improveLABEL = 

let L' = C(L) 

in ifL=L' 

then A(atom) => 

if atom = I then L(I) 

else L(atom) -II L(I) 

else improveLABEL 

endif 

endlet 

The function map takes two arguments, a function F and a set S; it returns the set ob- 

tained by applying F to each of the elements of S. For instance map square ( I, 2,3) = 

{ 1,4,9}. A Common Lisp analog for lists is mapcar. The function fold takes a binary 

operation *, a set T = {XI, . . . , x,,}, and an “end value” x; it returns XI *x2 * . *x,, *x. 
If T = 8, then fold * T x = x. For instance fold + { 1,2,3} 0 = 6 and 
fold f 8 42 = 42. The Common Lisp function apply is similar but does not 
use the “end value” X. In Table 4, the end value used is (0) (which is not to be 
confused with the empty set itself). In particular, note the case in which #J has the 
form + a so that S is the emptyset. In this case an upper union is taken between 
F(a) and the singleton containing empty set. The upper union of these is the single- 
ton containing the empty set. The upper set of this is the entire environment lattice; 

this is what we expect, since a is a premise and therefore holds in every environ- 

ment. 
To use the operation 4 H 4 to calculate a label one can use a “label improvement” 

function; pseudo-code for a such a function appears in Table 5. Since the result of 
evaluating improveLABEL should be a new labeling function, the returned value 
must itself be a function, This is represented in the pseudo-code using a form 

A(x) => E 

which is an “anonymous” function with formal parameter x and body E. 

The algorithms in Tables 4 and 5 correctly implement the ATMS computation. How- 
ever, they are less efficient than they could be: at least three changes can be used to 

optimize the algorithms for some cases. 

(1) 

(2) 

Improving the termination test. The test L’ = L in the third line of Table 5 can 
be combined with the calculation of C(L), saving a second pass through the 

structures L and L' . In an actual implementation, this is accomplished by using a 
flag that is set whenever a change to L occurs. The test C L = L is then replaced 
by a test to check if this flag is set. 
Optimizing the choice of application sequences of closure operators. It is possible 

to determine as the computation proceeds that some of the closure operators will 
not yield new information in the current state of information. In particular, when 
the label of an atom a is updated, the only “directly relevant” Horn clauses to 
consider are those in which a occurs as an antecedent. 
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Basic ATMS label update algorithm 

Assume C$ is a Horn clause of the form c~~,....cL,, =$ CL 
function PROPAGATE (4, b, I) = 

let S = WEAVECb, I, {w,....c~n}) 

in if S # 0 then UPDATERS, a) endif 

endlet 

function UPDATERS, a) = 

if a=l 

then NOGOOD 

else L(a) := S U" L(a) 

for each C$ such that a is an antecedent of C#J 

do PROPAGATE($,a,S); 

S := [S U" L(a)1 -' L(i); 

if S is empty then return endif 

endfor 

endif; 

function WEAVE(b, I, {(II, . . . . cl”}) = 
for each u; 

do if (I, + b then I:= (I n" L(q)) -' L(I) endif 

endfor; 

return I 

function NOGOOD = 

L(I):= L(L) U" s; 

for each atom b # 1 

do L(b):= L(b) -' S 

endfor 

(3) Incrementally removing nogoods. Rather than removing nogoods at end of the 

calculation as in improveLABEL, they can be eliminated incrementally during 
the course of an update, as new environments are added to the anti-chain of 

nogoods. 
All these optimizations are found in real implementations of basic ATMS update algo- 
rithm. The Forbus-de Kleer algorithm from [4] is reconstructed in Table 6 using our 
anti-chain operations. The closure operators that occur in the declarative specification of 
the ATMS are implemented in Table 6 using procedural iteration constructs. 

The chief insight in the algorithm is to propagate changes to labels rather than the 
entire labels in the update computation. We can define the incremental information 
provided by a Horn clause (b as the application of an operator 

A$ : (C --f Anti(E)) --t (C --t Anti(&)) 

which is defined by the equation 

0 if b # a, 

A&‘)(b) = 
n”{P’( ai) 1 1 < i 6 n} if b = a. 

The procedure WEAVE in Table 6 implements A$. Nogoods are removed as they are 
discovered in the de Kleer-Forbus algorithm. The procedure NOGOOD in Table 6 imple- 
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ments incremental nogood removal by in-place update of the evolving label function 
F. When an anti-chain S is added to the evolving anti-chain of nogoods F(I), then 

every label set F(a), a # I, a E C is updated to eliminate environments in S and 

those subsumed by S (i.e., F(a) -’ S). In procedure UPDATE, the label of an atom a is 
updated to include the new labels in the anti-chain S. In the for loop in this procedure 

the closure operator consisting of the “relevant” Horn clauses (ones in which a occurs 
in the antecedent) is constructed incrementally and the label function F updated by each 

of these Horn clauses in turn (by procedure PROPAGATE). PROPAGATE computes A$ 

with respect to a given Horn clause (by using WEAVE) and terminates label propagation 

if there is no change in the label set (S = 8). The compact semi-procedural/declarative 
reconstruction of the optimizations in this algorithm allows us to use the anti-chains 

package for effective implementation. 

5. Extended ATM% 

Closure operators have a crucial but largely unappreciated importance for designing 

algorithms that manipulate partial information. We now illustrate this for what de Kleer 
called the “extended ATMS”. 

The extended ATMS is defined in [ 31 to be an ATMS where the input theory consists 

of Horn clauses over L and disjunctions of assumptions Al V . . . V A,,. The extended 
ATMS has the same interface (Table 3) as the basic ATMS, but permits certain kinds 
of disjunctions to be given in theories, in addition to Horn clauses. That is, the goal is 

to compute L~,,l(a) for propositional atoms a E C, where 3 is a set of Horn clauses 

and 7 is a set of disjunctions of assumptions. 

Example 32. If A = {A, B, C} is an assumption set, 

3={A+u, B+b, C=sc, CAU+~, cr\b=%I} 

is a set of Horn clauses, and 7 = {A V B} is a set of disjunctions of assumptions, then 

LF(L) = {{A, C}, {B, C}}, 

LFUl(J-) = {{C>) 

since one of A or B is guaranteed to hold in models of 3 U 1. 

As de Kleer notes in [3], the label update algorithm for the basic ATMS, which is 

sound and complete for Horn clause theories, becomes incomplete when disjunctions 
are allowed. To correctly compute labels with respect to 3 U 7, [ 31 uses two hyper- 
resolution rules to “fix up” labels computed with respect to 3 by the basic ATMS 
algorithm. 

Our approach to an extended ATMS generalizes the disjunctions of assumptions used 

in [ 31, to formulas of the form 

r=q!q v4q v...vq&, 
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where each +i has the form 

4; = A’, 17 . . ’ A A:,, 

and A,; E A. 
In other words, simple disjunctions of assumptions are generalized to formulas in 

disjunctive normal form over assumptions. Let us refer to a formula having the form of 

7 as an Assumption Disjunctive Normal Form (ADNF) . To appreciate why generalizing 
from primitive disjunctions to ADNFs is a natural step, note that a conjunction of 

assumptions like & is essentially equivalent to an environment {A:, . . . , A:,} E E. A 
formula like 7 can therefore be viewed as an anti-chain over E, provided the &s are 

not subsumed by one another. In effect, we are permitting the logical import of an anti- 

chain to be directly asserted by the problem-solving system in the form of an ADNF. 
To develop the details it will help us to confuse the distinction between an ADNF like 
7 and a set of environments. So we write t E T to mean that t = {A’;, . . . , A;(} for 

some i < n. That is, t is the environment that corresponds to &. We use symbols 
7, I’ for sets of ADNF formulas. Our mathematical treatment in terms of closure 

operators allows us to derive a new algorithm for computing labels with respect to 

theories that include assumption DNFs and to prove its soundness. In addition, new 
optimizations in label computations that were otherwise hidden are revealed in this 

formulation. 

We now examine how the introduction of assumption DNF formulas over A changes 
the set of environments in which a propositional atom holds. Continuing with Exam- 

ple 32: 

NF = 1‘L~(l) = {{~,C},{~,C},{~,~,C>}, 

NRJ~ = T L=IJ~(~) = {{C}, {AC}, {R C}, {A B, C}}. 

The set of environments in which I holds expands with the introduction of the disjunc- 
tion A V B to include environments x E E such that x U {A} E N3 and x U {B} E N3. 

To identify such environments added by the assumption DNF formula 7 E 7, we define 
the operator 

q7 : Pwr(8) 4 Pwr(E) 

which is intended to extend the upward closed set of environments VF(a) and N3 to 

the upward closed sets V’u{7) (a) and N3v{7~ respectively. Given a set S C E, define 

~~(S)={xE&/~tE7.XUtE1‘S}. 

It is easy to see that pT( S) is an upward closed set, i.e., 1‘ p,(S) = pT( S). For instance, 
given the theories defined in Example 32: 

N~FU{AVR} = ~{{A),{B}}(NF). 

Note also that p(S) = ly (T S) for any S. Ultimately, however, we are interested in 
working with operations on anti-chains of environments. We define the anti-chain analog 

Q7 : Anti(E) + Anti(E) 



394 CA. Gunter et al. /Arti$cial Intelligence 95 (I 997) 357-407 

of p7 as follows, 

or, equivalently, G,(S) is the unique anti-chain in & such that 

Lemma 33. The function P7 is a closure operator for any ADNF formula -r. 

Proof. Let S C: T, where S, T E Pwr(&). This means that 1‘ S C r T. We first establish 

monotonicity. 

xEP7(S) =+ vtEr.XUfEfS 

* V?E7.XUCETT 

=+ x eP‘,(T). 

To see that p, is inflationary, suppose x E S and t E r. Then clearly x u t c 7 S, so 

x E ?PT( S) . Thus S c q7( S) To demonstrate idempotence, we show that p’,( p7 (S) ) = 

FT( S) _ We know that Yr( S) C W,(p,( 5’) ). To prove the opposite inclusion, let x be 
an environment: 

x E FT(P,(S)> =+ v’t E 7. x u t E TP,(S) 

=-+ vtEr.XUtEP~(S) 

j \JtE7.XUfE(xrEE/~?‘E7.X’Ut’ETS} 

j vtET.xUtUtE~S 

=+ XE!PT(S). 

Hence ly, is idempotent and therefore a closure operator. 0 

Corollary 34. The ,function Q7 is a closure operator for any ADNF formula r. 

Proof. Recall that S 3 T for anti-chains S, T means t S C: T T. Now, 

t Q,(S) = PAS) C PT(T) = t @T(T), 

so QD, is monotone. Moreover, t S C pT( T S) = p’,(S) means 

S=min(tS) 5min(ly,(S)) =@,(S), 

so Gj7 is inflationary. Finally, 

so Q7 ( 07( S) ) = cPi,( S) too. Hence Gp, is idempotent. q 
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In general, results like this corollary follow from the fact that Cp and P are corre- 
sponding operators on isomorphic spaces (that is, on anti-chains and upper sets respec- 

tively). 

Lemma 35. Suppose S E Anti(&) and r1,72 are ADNFs. Then 

@J,,(@,,(S>> =@%,(@,,(S)) =@,(S>, 

where 7- = min{x E E / 3tl E q3t2 E 72. x = tl U tz}. 

Proof. Let S be an anti-chain of environments and suppose y is an environment, then 

y E @JT, (@T?(S)) 

-3 vt, E 7,. y ut1 E T@T,(S) 

‘3 vt, E 71 321 E @,z(S>. ZI L Y Ufl 

~V~,E~~~ZI.(~~~~E~~.ZIU~~ETS)~~~~ICYU~I 

* v’t, E 3-l vt2 E 72. (y u t1> u t2 E T S 

@ y E @T(S) 

H Vt2 E 7-2 Vt1 E 71. (y U t2) U t1 E t S 

H ‘dt2 E r1 322. Oh1 E 71. 22 U tl E T S) and 22 (I Y U f2 

~~t:!Erl322E~+,(S).z2CyUt2 

H Vt2 E 72. y U t2 E T Q7, (9 

@ y E@,,(@T,(S)) q 

It is illuminating to note that the formula r in this lemma essentially corresponds 
to the anti-chain that one could obtain from taking an upper intersection of 71 and r2 

viewed as anti-chains, that is r = r1 0’ 72. 

Lemma 36. For S E Anti(&) , and for closure operators QT, , . . . , @jr,, , the least com- 

monfuedpointof{@,) 1 ~ii6}aboveSis~,,(~,(...(~,,(S)...))). 

Proof. This is a consequence of Corollary 34, Lemma 35, and Lemma 30. 0 

Given a set 7 = (71, . . . , 7,) of ADNF formulas, let us define Qil (S) to be the least 
fixed point above S of the closure operators a,, , . . . , a7,,. Lemma 36 tells us how to 
compute @I ( S) 

Our goal now is to show how to calculate the label function for the extended ATMS. 
This is done in two parts: first, we show how to compute labels using the operators @Q- 

and, second, we show how to compute @7(S) for anti-chains S. For the first step, here 
is the desired result: 

Theorem 37 (Extended ATMS algorithm). Let F be a set of Horn clauses over C, 
and let 7 = (71,. . . , r,} be a set of ADNF formulae over the assumption set A. Then 
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for every propositional atom a E C, 

km(a) = 
i 

@dL3(a)) ifa=I, 

&-(&(a) U” LF(I)) -’ LF.uI(J) ifa # 1. 

The proof of the theorem, which is a demonstration of the soundness of the extended 
ATMS algorithm, is best done by establishing some general equations as a preliminary. 

Let F be any theory (the formulas in F do not need to be Horn clauses or ADNFs, 

although this is the case we are actually interested in). Suppose that x E E and r is an 

ADNF. Then the following correspondence holds: 

FU(7)Uxka iff QtET..FUtUxka. (9) 

To see why, let us look first at +. Suppose that any model of FU {T}UX is also a model 

of a, and suppose that M k F U t U x for some t E T. Then M k 3 U {T} U x too, so by 

assumption, M k a. Thus Qt E T. 3 U t U x /= a. Turning now to a proof of +=, suppose 
that for any t E T, a model of F U t U x is also a model of a. If M h 3 U {T} U x, then 

M /= r, so M k t for some t E 7. Hence M k 3 U t U x and our hypothesis allows us 
to conclude that M + a too. This establishes (9). 

Now, it will be convenient for us to have a notation for the upper set of environments 

that prove a given conclusion. So, given a theory 3, we define 

UF(a) ={xEI /FUx+a}. 

Given a theory F and a collection 7 of ADNF formulas, the main fact of interest about 

U is the following: 

UF&r = P’I 0 u3. (10) 

This can be proved by induction on the number of elements in 7. When this is 0, then 

7 is empty and there is nothing to prove. Suppose r E 7 and ‘7’ = 7 - {r} and the 
desired result is known for 7’. Given an atom a, 

U~u~(a)={xE~/3U7’U{7}Ux~a} 

={xEEjQtE~..FU7’UtUxf=a} 

=W,(U3w(a>> 

= pT(P,t(U3(a))) 

=?PTou3 

(11) 

(12) 

Eq. (11) follows from (9) and Eq. (12) follows from the inductive hypothesis. 

Proof of Theorem 37. To calculate L3”7-( I), note first that it is defined to be 
min(UF”l(l))) which is equal to min(Pl(UF(l))) by Eq. 10. This, in turn, is 

equal to @z-(&(1)). 
If a is an atom other than I, then 
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@~(LF(u) U” b(l)) =min(P-r(t(&da) U” bF(~)))) 

=min(Fdt b(a) U t b(l))) 

=min(P7-(U7(a))) 

=min(Uml(a)) 

=hJ7(a) u” hJl(-L). 

397 

Thus 

hJ7-(~> = (kw7(a> u” kJ7u-) 1 -u hJI(J-) 

=e-(b(a) U”b4l)) -“hJ7(l). 0 

What remains is showing how to calculate Gp,. Given a collection of anti-chains 

S={s,,.. . , s,,}, it will be useful to write 

u 

U s = S] u” . . . lJL’ s, and h s = S] flu . . . flu s,. 

YES .XES 

The desired expression of Q,(S) in terms of anti-chain operations is given by the 

following: 

Lemma 38. For S E Anti(&) and ADNF formula r over d, 

G,(S) =$J{s- t> 
IE7 YES 

Proof. We calculate as follows: 

Q,(S) =min(!PT(S)) 

=min{xEI/~‘tE7.XUtErS} 

=min{xE&I~‘tE7.3sES.sCxUt} 
u 

=numin{xEEIsEaut) 
ET YES 

Now consider the sets es = {x E I 1 s C x U t}. An environment x is in es just in case 
it contains the environment s - t. Hence s - t is the unique minimum element of es. 

The equation in the lemma therefore follows. q 

The algorithms in Table 7 and Table 8 correctly implement the extended ATMS label 
computations. We now show two examples of the use of these algorithms. 
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Example 39. We illustrate the computation of the label for _L in the example introduced 
at the start of this subsection. 

Recall that the assumption set A = {A, B, C}. Our aim is to calculate Z,F,T( I). First, 
we use the basic ATMS algorithm to compute 

LzK(-L) = {{AC}, {B, C}}. 

Next, the closure operator @T is constructed from Lemma 38 by the algorithm in 
Table 7. 

@{{A),(B)} = [ij+ - {A}}] nu [fib - {B)}] 
s s 

Finally, we use Theorem 37 and the algorithm in Table 8 to obtain the desired result. 

~J{~A),JB))(~~ =@{{A),{B)}({{A,CI+ {B,C))) 

= [{{AS} - {A}} U” {{B,C} - {A}}1 

n” [{{A,C) - {B)) U” {{KC} - {B}}l 

= f{(C)) u” {{BX))l 0’ [{{AC)} u” {(C))1 

= UCH fI” tic>) 

= wu 

Example 40. We demonstrate the power of the anti-chains formulation of label compu- 
tations in the context of an example with a more complex T. Consider 

.F={A,h+B*b,C=+e,b+c,c+d}, 

7={&‘BVC,Av?i} 

= wm {BL WIL {{Al, Gw. 

We need to calculate LF”T(~). From the basic ATMS algorithm, we know that 

LA4 = t(B), {C}) and LF(~) = {{A,A}}. 

Next, we use Lemma 35 to reduce 7 = (71, ~2) to a single ADNF formula 7. 

7=min{x E & 13, E~~,ilt2 E 72,x=tl Ut2) 

=m~~{{~,A},{~},{B,A},{B,;i},{C,A},{C,~}} 

= {{$, {B, A}, {C, A}}. 
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Table 7 
Converting an ADNF formula Q- to a closure operator @, 

function e7(S) = 

fold(rl”‘,map(At. foldW”,map(As.s - t)(S) ,0) CT)) ,{0}) 
where 7 is an ADNF formula and S is an anti-chain over &. 

Now we construct @{,I using the algorithm in Table 7. 

q,>(S) = [fi{s- {x}}] I-?’ [ij{s- {BJ}}] .‘I [ij,s- {CA}}]. 
sES .v s 

We can then calculate LF”I( I) and LF”l(d) using the algorithm in Table 8. 

LFM-(~) =@~({{A&)) 

= [{{&xii) - {Ti}}l 0’ [{{AA} - {B,A}}l 

0’ [{{Ax} - {CA}}1 

= &W n*’ {@H n” {{~)) 

= {{A z)}, 

LmT(d) =@7(LF(d) u” k(J-1) -’ LFU?-(~) 

=@T({{B}, {C}, {A,$}) -’ {{A>$), 

@z-({(B), ((3, {A&}) 
= I{(B) - {A}) u” {{C> - {x)) u” {{A>$ - {$)I 

n” I{(B)-{B,A}}UU{{C}-{&A}}U”{{A,A}-{B,A}}l 

~“~{{~}-{~,~}}~lf{{~}-{~,~}}~U{{~,~}-{~,~}}l 

= [WI) u” {W u” HWI 

nz’ f(0) u” {{c)} u” {{@}I 

nu r WW uu 101 u* GWi 

= I(B), {Cl, {Al). 

Note that {A} has been added to the basic ATMS label of d by the extended ATMS 
computation. This means that F U 7 U {A} /= d. W e note that this follows from the fact 
that.FUIU{A}~BVC (sinceAVBVCistrue),andthat.FU(BVC) kd (since 
B+dandC+d). 
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Table 8 
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Extended ATMS label update 

function correctLABEL(LF,Qs7) = 

let L = @7(&(I)) 
in /\(atom) => 

if atom = i then L 

else +(lF(atorn) U” LF(I)) -I’ L 
endif 

endlet 

The computation of the label L~“l(a), for any atom a E C is essentially the enu- 
meration of all minimal “models” (restricted to atoms in A) of a in .FU 7. This task is 

known to be #P-complete [ 131. Thus, in the general case, we expect to perform com- 
putation exponential in the size of A. De Kleer [ 31 uses hyper-resolution to incorporate 

disjunctions in 7 (the cause of the exponentiality) into labels computed using the Horn 

theory 3. Our order-theoretic reconstruction of the computation in terms of closures 

and anti-chains allows us to enumerate labels directly in the space of models rather 
than indirectly in the space of proofs. A proof-theoretic scheme for label computation 

is computationally more expensive than the model-theoretic approach when there are 

multiple proofs of a literal a in 3 U 7 based on the same support set x E E. All of 
these proofs are enumerated in the course of the application of the hyper-resolution label 

correction rules. 
The fundamental computation in our framework to incorporate an ADNF formula 7 

into an anti-chain S on &. 

@r(S) = AL r, = 6,s - t}. 
t&- YES 

If 7 = {t,,... , tn} and S = {st , . . . s,,}, where each ti, s.; E E, then a straightforward 
implementation of this computation requires mn set-difference operations, mn upper 

unions, and n upper homogeneous intersections. Any reduction in the number of opera- 
tions is a win, as is any reduction in the sizes of the arguments of the upper unions and 
upper homogeneous intersections. We now describe a list of optimizations that can be 

implemented very cheaply to achieve both types of reductions. 

( 1) Computing changes to labels caused by the introduction of 7. We compute 
changes to labels in the @, computation, rather than the entire new label. In effect, we 
define the new operator A@, shown below and use it to calculate the extended ATMS 

label. 

Qi,(S) =Su’ A@,(S), 

A@,(S) =fjAyt, 
ET 

AY, = fi if {s - t} = {s} then 8 else {s - t}. 
YES 
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Table 9 
The optimized G,(S) computation 

function Q,(S) = 
let d@,(S) = (0) 
infort E Tdo 

let fl8 = 0 
in for .Y E S do 

if s - t # s then dyt = AK U” {s - t} endif 

endf or 

A@,(S) = A@,(S) n” Ayt 
endf or 

return S U” A@,(S) 
endlet 

For each s, t pair for which s - t = s, we save one upper union operation. In addition, 

the sizes of arguments to the remaining upper unions is reduced, since we only work 
with A& rather than the Y,s themselves. This optimization, shown in Table 9, employs 

the same intuition as that used by De Kleer and Forbus in their basic ATMS algorithm 

shown in Table 6. 
(2) Detection of early termination. During the computation of G7 (S) we can detect 

conditions under which G,(S) = S, so that we can terminate the computation early. 

Suppose there is a t E T such that for all s E S, s -- t = s. It is easy to see that the 
corresponding Y, = S. We have [W&l 5 yt by the property of f?. But Q5,( S) = f7”K > S 
since Qr is a closure operator. Therefore, whenever K = S for some t E T then Q7 (S) = 
S, and we can stop the label computation. At best, we save (m - 1) n set differences, 
(m - 1) n upper unions and n upper homogeneous intersections. At worst, i.e., when this 

condition is true of the last t E 7 examined, we save n upper homogeneous intersections. 
(3) SimpliJications involving U” and 0”. We use properties of nU and U” to simplify 

the computation of individual Y,s as well as Q7 (S) . 

((8)) UU S={(8)} for any S E Anti(E), 

((0)) Vk=S for any S E Anti(&). 

Thus, for instance, if we encounter an s, t pair in the computation of a specific K, 

such that s 2 t, then s - t = 8 and we can immediately report X = ((0)) saving upto 

m - 1 upper unions and 1 upper intersection in the computation of @r(S). 
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Appendix A. Anti-chain library interface 

In this appendix we describe signatures for a Standard Meta-Language implementation 
of anti-chains over lattices. With the brief explanation we now provide, these should 

make sense to readers not familiar with SML. An SML signature is a list of names 

expected to be present in an implementation of the signature; such implementations 
are called structures. Signatures contain the names of structures, types, exceptions, and 

values; the cases we consider in this section contain only names of types, exceptions, 

and values. In a signature, a value name is given together with its type. For example, to 

declare that the name singleton denotes a value mapping elts to acs, one includes 

the line 

val singleton : elt -> ac 

in the signature. The signature for anti-chains is given at the end of the paper. It indicates, 

for example, that an anti-chain structure contains a type called elt and a type called 
ac. There is also an exception called NotFound which is used to signal the failure to 
find an elt in an ac and a value empty which is of type ac. The signature does not 

describe the semantics of these objects. For instance, it does not say that elts will be 
viewed as elements of ac. It describes only the types of the values, and lists the names 

of exceptions and types that are present. 
Before giving a more detailed discussion of the particular values in the ANTICHAIN 

signature, we sketch the role that this signature plays in programming with anti-chains. 
Anti-chains are special kinds of subsets of a poset, so it makes no sense simply to 

speak of anti-chains independently of the posets over which anti-chains are being taken. 
The signature ANTICHAIN should be viewed as part of the “type” of an operator from 
environments (sets of bindings) to environments, taking as its parameter an environment 

defining a lattice is defined and producing a new environment in which operations on 
anti-chains over that lattice are provided. Like anti-chains, lattices come with a collection 
of operators we expect to be present; they are given as a signature LATTICE in Table A. 1. 

The particulars of this signature will be discussed shortly. Now, an implementation of 
anti-chains is an operator called afunctor (the SML term for a parameterized structure) 

that takes a lattice structure (that is, an implementation of the signature LATTICE) and 
produces a anti-chain structure (that is, an implementation of the signature ANTICHAIN) 
over that lattice structure. If we analogize with functions and types we might write this 

as follows: 

functor Lattice2AC: LATTICE -> ANTICHAIN 

In summary, the implementation of anti-chains is given by the coding of a transformation 

such as this. 
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signature LATTICE = 

sig 

type elt 

datatype relationship = Less I Greater I Equal 
datatype 'a option = Some of 'a i None 

val 1atOrd: elt * elt -> relationship option 

val bottom: elt 

val meet: elt * elt -> elt 

val top: elt 

val join: elt * elt -> elt 

val sort0rd: elt 1: elt -> relationship 

end (* LATTICE *) 

Let us begin by discussing the signature LATTICE for lattices given in Table A.1. 

According to its definition, a lattice is a set together with a relation, two constants, and 

two binary operators. In LATTICE, the lattice elements are drawn from a type called elt 
and the order relation 1atOrd on elts is represented as a function mapping pairs of elts 
to values of a type relationship option. The values of relationship represent 3 

(Less), h- (Greater), and = (Equal). In a lattice a given pair of elements may satisfy 
none of these relationships, so the 1atOrd operation takes a pair of lattice elements and 

produces a relationship option as its output. An element of relationship option 
either has the form Some x where x is a relationship or has the form None. The 

constants are bottom, top and the binary operations are meet, join. 

The function sortOrd is not part of the the mathematical definition of a lattice. It is 
given here for purposes of efficiency and its significance arises when we wish to form 

sets (or anti-chains) of lattice elements. To represent sets efficiently, it is often useful to 
have a linear ordering of set elements (that is, an ordering in which any two elements 
are related). This allows sets to be represented as balanced trees so that searching for 
an element can be done quickly. It is important to appreciate that the ordering used for 
such balanced trees generally must be different from the ordering 1atOrd on the lattice 

since a lattice need not be a linear ordering (as reflected in the fact that the image 
of 1atOrd is a relationship option rather than a relationship). Note in particular that 
if we are representing anti-chains relative to the lattice ordering then there will be IZO 
relationship between pairs of elements of the anti-chain! 

The semantics of the signature LATTICE is given by the mathematical lattice axioms 
together with the stipulation that sortOrd is a linear order. An implementation of 

LATTICE is assumed to satisfy this semantics, although SML cannot check that it does. 
Now let us turn to the signature ANTICHAIN which is given in Tables A.2 and A.3. 

The semantics of most of the interface operations in Table A.3 of the signature are 
described by the mathematics in Section 2 (assuming a self-evident mapping of the 

names). Constants and operations in the Table A.2 part are taken by analogy with 
other operations in the sets signature of the SML/NJ library. The semantics of these 
are described succinctly in notes delimited by the comment characters (* and *>. The 
values described in the first half of ANTICHAIN are ones that are basically the same for 
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Table A.2 

ANTICHAIN 

signature ANTICHAIN = 

sig 

type elt 

type ac 

exception NotFound 

val empty: ac 

(* Empty ac *) 

val singleton: elt -> ac 

(* Create a singleton ac *) 

val isEmpty: ac -> boo1 

(* Return true if and only if the ac is empty. *) 

val equal: (ac * ac) -> boo1 

(* Return true iff the two at's are equal *) 

val oumElts: ac -> int 

(* Return the number of elt's in the ac *) 

val 1istElts: ac -> elt 

(* Return a list of 

val app: (elt -> 'b) -> ac -> unit 

(* Apply a function to the elt's in the 

1: ac in decreasing order *) 

val revapp: (elt -> 'b) -> ac -> unit 

(* Apply a function to the elt's in the 

* ac in increasing order *) 

val fold: (elt + 'b -> 'b) -> ac -> 'b -7 'b 

(* Apply a folding function to the elt's 

* in the ac in decreasing order *) 

val revfold: (elt * 'b -> 'b) -> ac -7 'b -7 'b 

(* Apply a folding function to the elt's 

* in the ac in increasing order *) 

list 

the elt's in the ac *) 

val exists: (elt -> bool) -7 ac -> elt option 

(* Return an elt in the ac satisfying the predicate 

t if any, return NONE if there is none *) 

both sets and anti-chains or that apply only to anti-chains. The important thing to note 
is whether an operation refers to the anti-chain or to the downward- or upward-closed 
set that the anti-chain is meant to represent. This distinction means nothing for functions 
like singleton and equal which are the same regardless of which meaning is taken. 
However, it is essential to note that the function numElts gives the number of elements 
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ANTICHAIN (continued) 

val upper-add: ac * elt -> ac 

val lower-add: ac * elt -> ac 

(* Insert an elt *) 

val upper-find: ac * elt -> elt 

val lower-find: ac * elt -> elt 

val 

val 

upper-peek: ac * elt -> elt option 

lower-peek: ac * elt -> elt option 

(* Look for an elt in a set, return NONE 

* if the elt is not there. *) 

val 

val 

upper-member: ac * elt -> boo1 

lower-member: ac * elt -> boo1 

(* Return true iff elt is in the set *) 

val 

val 

upper-subset: (ac * ac) -> boo1 

lower-subset: (ac * ac) -> boo1 

(* Subsets *) 

val 

val 

upper-difference: ac * ac -> ac 

lower-difference: ac * ac -> ac 

(* Difference. *) 

val 

val 

upper_union: ac * ac -> ac 

lower-union: ac * ac -> ac 

(* Union *) 

val 

val 

upper-homogeneous-intersection: ac * ac -> ac 

lower_homogeneous_intersection: ac t ac -> ac 

(* Homogeneous intersection. *) 

val 

val 

upper-heterogeneous-intersection: ac * ac -> ac 

lower_heterogeneous_intersection: ac * ac -> ac 

(* Heterogeneous intersection. *) 

end (* ANTICHAIN *) 

end 

(* Find an elt in an set, raise NotFound 

* if not found *) 

in the representing anti-chain rather than the number of elements in a lower or upper 
set represented by it. In the semantic description given as comments in the signatures, 
this distinction is made by distinguishing consistently between the anti-chain and the 

set. So, for instance, the comment 

(* Return the number of elt’s in the anti-chain. *> 

means that numElts takes a set represented as an anti-chain as an argument and returns 
the number of elements in the representing anti-chain. If we had wanted to know how 
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many elements were in the set that the anti-chain is meant to represent, we would need 
to know whether the anti-chain represents its upper set or its lower set (and have some 
way of enumerating its elements or otherwise counting them). 

For the functions app, revapp, fold, and revf old, the order that is increasing or 
decreasing must, of course, be sorttlrd. 

The values declared in the second column of ANTICHAIN come in two flavors, upper_ 
or lower- depending on whether the anti-chain is viewed as representing an upper set or 

a lower set. So, for instance, the application upperadd(S, x> inserts x into the upper 
set S. If S ’ is the anti-chain representing S then this means that x is added to S ) unless 

there is an element y of S’ such that the value of latOrd(x,y) is not Greater or 
Equal, in which case the value is simply S ‘. If we had applied lower-add instead, we 
would check whether sortClrd(x,y) is not Less or Equal. Similarly, the functions for 

f ind’ing and peek’ing do their finding and peeking in upper or lower sets depending 
on how they are prefixed. 

The key points about these interfaces and the way they have been described are 

these: 

(1) The semantics of the interfaces are given abstractly so that the mathematical 
model is clear and does not over-constrain the implementation. 

(2) What to include in the interface was based on a selection of the mathematical 
primitives needed to express the algorithms which the implementations of the 
interfaces are intended to support. 

(3) The interface language in which the sets of operations are described provides 
types and abstractions supporting a substantial but computationally feasible part 

of the task. 

Although an emphasis on mathematical and implementation independent descriptions 

is desirable, the choice of interfaces will be significantly influenced by a tension between 

available implementation techniques and the kind of reuse that the programmer is trying 

to achieve. The interfaces provide a vocabulary in which to discuss these trade-offs more 
formally. Let us illustrate. In some contexts using Lattice2AC may prove awkward or 

inefficient. For example, although the mathematics of lattices calls for top and bottom 
elements, it is possible to implement ANTICHAIN without using them. Moreover, in some 
cases where one has a lattice mathematically, one or the other of these elements may 
be difficult to implement. Hence it is often desirable to use a “thinner” lattice signature, 
LATTICE’ that omits top and bottom. In SML an implementation of LATTICE’ is still 

an implementation of LATTICE, so little is lost by this thinning. 
Another serious issue arises when one knows something about the input lattice that 

can be useful in the efficient implementation of anti-chains over it. For instance, if one 
knows that the lattice will be a boolean lattice over a finite set of atoms, then the anti- 
chain implementation may optimized by taking advantage of this fact. A functor from 
LATTICE or LATTICE’ to ANTICHAIN cannot do this because its input interface lacks 
the needed primitives. Moreover, it is quite simple to describe boolean lattices because 
all one needs to know are the atoms; the lattice operations can all be defined in terms 
of whatever representation of sets of atoms one chooses to use. For these two reasons it 
probably makes more sense to organize code into a functor that takes an “atoms” model 
as its input. So, given a signature like 
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signature ATOMS = 

sig 

type elt 

val eq: elt * elt -> boo1 

val atoms = elt list 

end (* ATOMS *> 

one implements 

functor Atoms2AC: ATOMS -> ANTICHAIN 

Whether anti-chains over a lattice are produced using Lattice2AC or Atoms2AC, the 

mathematical semantics of the anti-chain operations should remain the same. The im- 
plementations will undoubtably differ. 
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