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Abstract

The choice of where to look in a visual scene depends on visual processing of information from potential target locations. We exam-
ined to what extent the sampling window, or filter, underlying saccadic eye movements is under flexible control and adjusted to the
behavioural task demands. Observers performed a contrast discrimination task with systematic variations in the spatial scale and loca-
tion of the visual signals: small (r = 0.175�) or large (r = 0.8�) Gaussian signals were presented 4.5�, 6�, or 9� away from central fixation.
In experiment 1, we measured the accuracy of the first saccade as a function of target contrast. The efficiency of saccadic targeting
decreased with increases in both scale and eccentricity. In experiment 2, the filter underlying saccadic targeting was estimated with
the classification image method. We found that the filter (1) had a center-surround organisation, even though the signal was Gaussian;
(2) was much too small for the large scale items; (3) remained constant up to the largest measured eccentricity of 9�. The filter underlying
the decision of where to look is not fixed, and can be adjusted to the task demands. However, there are clear limits to this flexibility.
These limits reflect the coding of visual information by early mechanisms, and the extent to which the neural circuitry involved in pro-
gramming saccadic eye movements is able to appropriately weigh and combine the outputs from these mechanisms.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The highest resolution vision is only possible in the cen-
tral one or two degrees of the visual field. Therefore, in
order to explore or interact with the visual environment
humans shift their gaze at regular intervals, typically 3 or
4 times every second (Findlay & Gilchrist, 2003). Saccadic
eye movements are a critical element of almost any behav-
ioural activity that involves the use of visual information.
When an observer decides to look at some part of the visu-
al scene, it is likely that this decision was, at least partly,
driven by the visual signals sampled from that region. An
important question is ‘‘how much’’ visual information is

taken into account. In other words, how does the observer
weigh visual signals over space in order to decide where to
look?

Such a weighting function is often referred to as a tem-
plate or filter. Simple perceptual decisions, like detecting
whether a signal is present in noise, can be modelled as a
process of template-matching (Burgess, Wagner, Jennings,
& Barlow, 1981; Lu & Dosher, 1999; Pelli, 1985). A useful
tool to estimate the filter used by human observers to per-
form such a visual task is the so-called ‘classification
image’. This image is essentially a description of what parts
of a visual stimulus the human observer takes into account
to make a perceptual decision (Abbey & Eckstein, 2002;
Ahumada, 2002; Murray, Bennett, & Sekuler, 2002). The
general approach to calculate this description is to present
signals in visual noise, and then on each trial relate the
observer’s decision to the properties of the noise. Work
of this type has shown that human observers have
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considerable flexibility in their ability to adapt the filter to
the demands of the visual task, ranging from simple con-
trast detection (Abbey & Eckstein, 2002) to completion
of illusory contours (Gold, Murray, Bennett, & Sekuler,
2000). For successful interaction with the visual environ-
ment, such flexibility clearly is desirable.

Saccadic eye movements can be regarded as a unique
class of perceptual decisions. Saccades are, by definition,
directed to visual targets outside the fovea, where sensitiv-
ity to fine detail is drastically reduced (Anstis, 1974; Pointer
& Hess, 1989; Robson & Graham, 1981). In addition, these
movements are generally made in quick succession, and
appear to be based on a rather brief temporal integration
period (Caspi, Beutter, & Eckstein, 2004; Ludwig, Gil-
christ, McSorley, & Baddeley, 2005). These constraints
may impose limits on the interaction between the oculomo-
tor and visual systems, which in turn may limit the kinds of
weighting that can be achieved. As an extreme example, it
may be that the region from which visual signals are sam-
pled is fixed, or perhaps directly dependent on eccentricity
in the visual field (Garcia-Perez & SierraVazquez, 1996;
Virsu & Rovamo, 1979). In this study we assess (1) the
shape of the filter underlying saccadic eye movement deci-
sions in a contrast discrimination task; (2) whether the filter
is adjusted according to the task demands (integrate either
over small or large regions); and (3) whether the filter
depends on eccentricity in the visual field.

2. Methods

2.1. Study outline

Observers were presented with four Gaussian signals embedded in spa-
tially uncorrelated, Gaussian white noise. The contrast of one of the four
patterns (the target) was slightly higher than that of the other three (dis-
tractors), and observers signalled the location of the target with a manual
response. We varied the size of the display items (spatial standard devia-
tion of the pattern, r, was either 0.175� or 0.8�), and the eccentricity at
which they appeared (4�, 6.5�, and 9� of visual angle) in separate blocks.
Observers were free to move their eyes and we recorded the landing posi-
tion of their first saccade after display onset. The first saccade can consid-
ered the observers’ best guess (decision), at that point in time, of the target
location. Because the task is to find the highest contrast pattern, both the
stimulus-driven contrast response and the task instructions induce partic-
ipants to directly aim their first saccade to the target (Ludwig & Gilchrist,
2006). We analysed and modelled the accuracy of these first eye movement
decisions.

A first step was to provide a detailed characterisation of saccadic
targeting with variations in size and eccentricity of the display items.
Here it is important to not just examine accuracy in terms of propor-
tion correctly directed saccades, but to relate this proportion to the
amount of information that is available for the task. Thus, in experi-
ment 1 we quantified accuracy of the first saccade relative to an ideal
observer in the form of an efficiency measure (Burgess et al., 1981; Eck-
stein, Beutter, & Stone, 2001). In experiment 2, we assessed whether
variations in efficiency could be attributed to changes in the filter.
The filter was estimated using reverse correlation. This technique
involves extracting the external noise from the location of the first sac-
cade landing position for trials on which the first saccade was directed
to one of the distractor items. The extracted noise images are then aver-
aged to compute a classification image.

2.2. Observers

Three observers with normal or corrected-to-normal vision were tested
in the two experiments. Author CL is the third observer. The data were
collected in multiple sessions over a period of 6 weeks. Each observer com-
pleted �23,000 trials (across the two experiments).

2.3. Stimuli

Stimuli were viewed binocularly on a linearised M17LMAX mon-
chrome monitor (Image Systems, Minnetonka MN) The mean luminance
of the display was 31 cd/m2. Display items were 2-D Gaussians with a
standard deviation of either 0.175� or 0.8� (blocked). Dark grey outline
circles (radius of 3r of the large patch) marked the locations where the
4 patterns were presented. They were arranged along the circumference
of a circle (i.e. equidistant from the central fixation point). The 4 patterns
appeared either in a square configuration or in a diamond configuration.
The configuration varied randomly from trial to trial to prevent observers
from anticipating the exact locations where items would appear.

The Gaussian patterns were embedded in 0-mean, spatially uncorre-
lated Gaussian noise with an RMS contrast of 25%. The peak contrast
of the three distractors was 12% (pedestal contrast). In experiment 1,
the target contrast was varied at 5 levels, resulting in signal-to-noise ratios
(SNRs) that ranged from 0 to 5.6 for the small scale patterns, and from 0
to 25.77 for the large patterns. In experiment 2, the SNRs of the small and
large items were kept fixed.

2.4. Trial sequence

At the start of a trial, a fixation display appeared. Observers fixated a
small black cross in the centre of the screen, and initiated a trial by pressing
the space bar. After a variable delay (667–1333 ms), the stimulus appeared,
consisting of the circle outline markers, Gaussian patterns, fixation point,
and external noise sample. It was presented for 800 ms, followed by a
response display containing only the fixation point and the 4 marker circles.
Observers moved the mouse cursor to the location where they thought the
brightest pattern had appeared and responded by pressing the left button.
The background of the fixation and response displays were uniform grey,
with the same mean luminance as the noise background in the stimulus.

2.5. Eye movement recording and saccade classification

The position of the left eye was sampled at 250 Hz using an infrared
video-based eye tracker (SMI EyeLink). A nine-point grid calibration
was performed at the start of each block of 120 (experiment 1) or 96
(experiment 2) trials. Head movements were restricted through a chin rest.
Observers viewed the display from a distance of 56 cm.

Eyemovement data were analysed off-line. Saccades were detected using
velocity and acceleration criteria of 35�/s and 9500�/s2, respectively. Trials
were excluded if the first saccade (i) starting position deviated from the dis-
play centre by more than 1�; (ii) latency was less than 80 ms; (iii) amplitude
was less than half the distance of the display items. For observers 1–3,
respectively, these criteria resulted in the rejection of 6%, 7%, and 5% of
the trials. The landing position of the saccade was assigned to a display item
if its angle fell within 90� of the direction of that item (i.e. within the correct
quadrant). Landing positions were generally tightly clustered around dis-
play item locations: 95% of saccades had directional deviations smaller than
14�, 17�, and 26� for observers 1–3, respectively. Assigning the saccade land-
ing position to the nearest item in the display is standard practice in this type
of study (Beutter, Eckstein, & Stone, 2003; Ludwig & Gilchrist, 2006).

2.6. Analyses

2.6.1. Psychometric functions

First, the proportion of first saccades directed to the target was
mapped onto the signal detection measure of d 0 according to (Green &
Swets, 1966):
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where g(y) is the Gaussian probability distribution function, and N is the
number of alternatives (N = 4). The psychometric function relates d 0 to
SNR. The template-matching model with uncertainty (Beutter et al.,
2003; Eckstein, Ahumada, & Watson, 1997; Pelli, 1985) was used to fit
these functions. Details of the model can be found in (Beutter et al.,
2003); it is only briefly described here.

For a linear observer monitoring the output of N filters centred on the
possible target locations, d 0 is a linear function of SNR: d 0 = a · SNR,
where a is the slope defined by:

a ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

int

r2ext

r : ð2Þ

Here, r is the correlation of the human filter with ideal filter (or signal),
and r2

int and r2
ext are the internal and external noise variances, respectively.

The cross-correlation between filter and (noisy) stimulus is performed at
each possible target location, the resulting internal responses are corrupted
by internal noise, and the observer makes a saccade to whichever patch
triggered the largest response (maximum response decision rule).

A nonlinear version of the model incorporates intrinsic uncertainty by
having the observer monitor additional, irrelevant filters at each possible
target location. Thus, at each location only one filter responds to the target
or distractor, and U mechanisms respond to noise. A target-directed sac-
cade is generated if either the correct relevant filter, or an irrelevant filter
at the target location triggers a larger response than the N(U + 1) � 1
other filters. Note that for the ideal observer r = 1, rint = 0, and U = 0.
As a result, a = 1 and d 0 = SNR. In other words, the ideal observer’s per-
formance is solely limited by the external noise in the stimulus, and is
unaffected by our experimental variables of scale and eccentricity.

The model was fit using maximum likelihood (MLE) methods. Esti-
mates of the standard error of the (slope) parameters were generated using
bootstrap methods (Efron & Tibshirani, 1993). For each combination of
observer, spatial scale and eccentricity, replicate psychometric functions
were generated through resampling the binomially distributed proportion
correct at each level of contrast. These replicate functions were then fit
using the same MLE algorithm that was used to fit the observed psycho-
metric functions. Standard errors were based on bootstrapped distribu-
tions of the parameter of interest (1000 replications).

2.6.2. Filter estimates

Classification images were based only on saccades that were erroneous-
ly directed to a distractor. For each observer and experimental condition,
the classification image was computed by averaging the 87 · 87 pixel noise
patches centred on the location of the fixated distractors. On the basis of
the stimuli used (Gaussian patterns) and previous work (Eckstein, Pham,
& Shimozaki, 2004) the classification images were parameterised with 2-D
Difference-of-Gaussian (DoG) functions. Only the height and width
parameters of the DoGs were free to vary; the DC was fixed to 0, and
the centres of both Gaussian components were constrained to lie at the
centre of the image. Fits were computed using weighted least squares
errors (each pixel in the image was weighted by the reciprocal of its
squared standard error).

The original noise images that made up an individual classification
image, were resampled with replacement and then averaged in order to
create a set of 1000 bootstrap classification images for each of the 18
combinations of observer (3), scale (2), and eccentricity (3) (Efron & Tib-
shirani, 1993). Each of these bootstrapped images was fit with a DoG.
These fits allowed us to construct 18 sample distributions of the follow-
ing parameters of interest: the height of the filter, the magnitude of the
inhibitory lobes, the width of the filter, and the overall match between
filter and signal. Error bars and null-hypothesis testing were based on
these sample distributions. Note that if variability in the set of original
noise images is large, this results in broad sample distributions, large
error bars, and smaller likelihoods of rejecting the various null-
hypotheses.

3. Results

3.1. Experiment 1

Fig. 1 illustrates a set of psychometric functions for one
observer, at all combinations of eccentricity and spatial
scale. The smooth curves are the template-matching model
fits. As described above, the linear model predicts straight
psychometric functions. However, at low SNRs psycho-
metric functions frequently display an accelerating nonlin-
earity (see Fig. 1, top panel). This effect can be modelled as
a nonlinearity in the transducer (Eckstein et al., 1997; Lu &
Dosher, 1999), or intrinsic uncertainty in the monitoring of
filter outputs (Pelli, 1985). We fit a nonlinear model with
uncertainty to the data. This model encompasses the linear
model when uncertainty, U = 0. For all three observers and
eccentricities, U = 1 in the small scale conditions, and
U = 0 in the large scale conditions. Bootstrap simulations
indicated that the nonlinearity was small, but consistent
in the small scale conditions. Most importantly however,
the nonlinearity did not vary across observers and
eccentricities.

As can be seen in Fig. 1, there were clear effects of eccen-
tricity: stronger signals were required to reach a given per-
formance level as eccentricity increased. These variations
are effectively quantified by the parameter a of the model
fits, which can be regarded as an approximation of the
absolute efficiency underlying saccadic targeting (Burgess
et al., 1981): for a linear observer the absolute efficiency
is given by a2. Fig. 2 illustrates a as a function of eccentric-
ity, separately for the two spatial scales (columns) and the
three observers. There are three important aspects to these
data. First, the values were always less than 1, indicating
that human performance was suboptimal. Second, the
overall efficiency was much lower when the display items
are large compared to the small scale condition. Thus, even
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Fig. 1. Psychometric functions relating the accuracy of the first saccade
(d 0) to the signal-to-noise ratio of the target. Curves are fits of a template-
matching model (solid black, 4�; solid grey, 6.5�; dashed black, 9�). Data
from observer 1.
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though performance levels in terms of proportion correct
or d 0 were similar in the two spatial scale conditions (see
Fig. 1), humans were much less efficient relative to the ideal
observer in the large scale conditions. Third, the effect of
eccentricity was very clear and approximately linear for
the small scale conditions, but much less pronounced when
the display items were large.

We used a as a model-based approximation of the abso-
lute efficiency. A model-free estimate of this quantity can
be defined as d 02

human=d
02
ideal, where d 0

ideal ¼ SNR. In order
to verify the validity of the approximation, we computed
these model-free estimates of efficiency, averaged over
SNR. In the small scale conditions, the mean efficiencies

across observers were 0.319, 0.263, and 0.196 at eccentric-
ities of 4�, 6.5�, and 9�, respectively. In the large scale con-
ditions, the mean efficiencies were 0.024, 0.020, and 0.019.
For the small scale conditions these estimates are consistent
with previous published efficiencies for first saccades (Eck-
stein et al., 2001). The estimates from the large scale condi-
tions are much smaller. Most importantly, the model-free
efficiency estimates followed the same pattern as the psy-
chometric function parameters illustrated in Fig. 2.

The main message from experiment 1 then is that
human, unlike ideal, performance depended strongly on
the spatial scale and eccentricity of the display items. One
possible source of these performance variations is the
match between filter and signal. In experiment 2, we esti-
mated the filter underlying saccadic targeting in this visual
task.

3.2. Experiment 2

In this experiment the SNRs were fixed at 1.02 and 2.34
for the small and large items, respectively. These SNRs
were chosen to target values of d 0 that were just above
chance. At these performance levels, one would expect
observers’ decisions to be at least partly governed by the
external noise in the stimulus rather than purely by the sig-
nal (Murray et al., 2002). This is important for the classifi-
cation image method used to derive the filter estimates. As
far as the observers were concerned, their task was identical
to that of experiment 1. Again, each combination of size
and eccentricity was tested separately in different blocks.

Overall accuracy was low, but consistently above
chance. Mean d’s in the small scale conditions were 0.33,
0.35, and 0.16 at eccentricities of 4�, 6.5�, and 9�, respec-
tively. In the large scale conditions the mean accuracies
were 0.27, 0.26, and 0.27 at the three eccentricities. Based
on the psychometric functions (Fig. 1) one would not
expect large modulations of performance by eccentricity
at these low SNRs. Nevertheless, in accordance with the
results from experiment 1 there were consistent effects of
eccentricity for the small items: For each observer
performance was worst at the furthest eccentricity, com-
pared to both the nearest and the middle eccentricity
(Mann–Whitney tests with p < .01). Any comparison
between the two nearest eccentricities was not significant.
Accuracy for the large display items was independent of
eccentricity. With these levels of accuracy the number of
incorrect saccadic decisions ranged from 1773 to 2160
across observers and experimental conditions.

Fig. 3A shows an example of a raw classification image
(observer 1, r = 0.175�, eccentricity = 4�), median filtered
for display purposes to suppress the inevitably noisy
appearance of the image. Bright regions in the classification
image indicate the pixels that were weighted positively by
the observer in making saccadic decisions. Darker regions
were weighted negatively. As expected, the bright region
in the centre of the classification image in Fig. 3A looks
approximately Gaussian.
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Fig. 2. Parameter a as a function of eccentricity. This measure is derived
from the psychometric functions. Error bars indicate bootstrap standard
errors.
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Fig. 3B shows the DoG fit to the raw classification
image of panel A. Because this function is radially symmet-
ric, a one-dimensional slice is shown in panel C (grey line)
along with radial averages derived from the raw classifica-
tion image (Abbey & Eckstein, 2002). The profile of the sig-
nal is shown by the black line. In terms of goodness-of-fit
(RMSE = 2.08) the illustrated fit ranked 9th out of a total
of 18 classification images (3 observers · 3 eccentricities · 2
spatial scales; RMSE range was 1.98–2.34). The DoG func-
tions provided an effective description of the observed clas-
sification images, with only 4 parameters (as opposed to
872).

The first parameter of interest was the amplitude of the
classification image. Note that if the image had no discern-
able features (e.g. simply random noise), then on average
the amplitude of the DoG should be 0. The bootstrapped
sample distributions were used to compute a Z-score asso-
ciated with this null-hypothesis. The null-hypothesis was
easily rejected in each of 18 cases (p < .001; Table 1). In
other words, all 18 classification images had a clear excit-
atory centre. A repeated measures ANOVA with scale
and eccentricity as factors showed a marginal effect of scale
(F(1, 2) = 17.56, p = .052): the small scale classification
images tended to have slightly larger amplitudes. There
was no effect of eccentricity, nor an interaction between
the two factors.

Second, if the filter shape was in actual fact Gaussian,
there would be no inhibitory lobes. We computed the max-
imum magnitude of the inhibitory lobes for each boot-

strapped classification image. This allowed us to test the
hypothesis that these magnitudes were in fact 0. This anal-
ysis suggests that inhibitory lobes were a reliable feature of
17/18 classification images (p < .05; Table 2). A repeated
measures ANOVA showed no effects of our experimental
manipulations on the raw magnitude of the inhibitory
lobes.

The third measure of interest was the width of the filter,
as an index of the size of the spatial integration window.
For each DoG fit, we computed the full-width at half the
maximum amplitude (FWHM). These estimates are illus-
trated in Fig. 4 (top row). The dashed lines indicate the
FWHM of the ideal filter (black: r = 0.175�; grey:
r = 0.8�). The solid functions show the width of the DoG
filters as a function of eccentricity. Several aspects are note-
worthy. The width of the filter estimates in the small scale
conditions was consistently smaller than that in the large
scale conditions. Thus, observers did adapt their integra-
tion window according to the task demands. In addition,
the width of the filters, in general, did not match that of
the ideal. The pattern of using too large a filter for the
small items (as illustrated in Fig. 3C) was highly consistent
across observers and eccentricities, albeit small. More dra-
matic was the mismatch for the large scale items: The
human filter was radically smaller than the stimulus. The
mismatch in these conditions was highly significant
(p < .001; Table 3) with only one exception (observer 2,
r = 0.8�, eccentricity = 4�). For the small spatial scale,
the difference between ideal and human filter width was less
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Fig. 3. Example classification image. (A) Raw classification image from observer 1 (r = 0.175�, eccentricity = 4�), median filtered. (B) 2D DoG fit to the
raw classification image (unfiltered). (C) 1D representation of the DoG fit. Data points are radial averages obtained from the raw classification image
(unfiltered). Error bars are ±1 SEM.

Table 1
Z-scores associated with ‘amplitude = 0’

Eccentricity Observer 1 Observer 2 Observer 3

r = 0.175 r = 0.8 r = 0.175 r = 0.8 r = 0.175 r = 0.8

4 �9.72*** �5.87*** �8.72*** �3.98*** �6.53*** �8.94***

6.5 �5.83*** �5.56*** �11.08*** �4.90*** �3.88*** �6.99***

9 �6.29*** �4.74*** �9.87*** �7.34*** �5.79*** �7.32***

*p < .05.
**p < .01.

*** p < .001 (two-tailed).
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striking, but significant in most cases nevertheless. Finally,
there were no consistent effects of eccentricity. For observer
2 there appeared to be a slight decrease in filter width as
eccentricity increases, but the error bars indicate the con-
siderable uncertainty in the width estimate at the nearest
eccentricity. Consistent with these observations, only the
effect of scale was significant (F(1, 2) = 304.01, p < .05) in
an ANOVA.

Fourth, we estimated the overallmatch between the filter
and signal. The analyses reported above already suggest

that the human filter is suboptimal due to the presence of
inhibition and the mismatch in the width between signal
and filter. The overall match is formalised as the correla-
tion between the signal and the estimated filter, the term
r in Eq. (2). The bottom row of Fig. 4 shows r as a function
of eccentricity and spatial scale. Unsurprisingly, these
results are largely consistent with the FWHM analysis.
The correlation was close to 1 in the small scale conditions,
but there was a substantial mismatch in the large scale con-
ditions. For observer 2 (large spatial scale conditions) there

Table 2
Z-scores associated with ‘inhibitory lobe = 0’

Eccentricity Observer 1 Observer 2 Observer 3

r = 0.175 r = 0.8 r = 0.175 r = 0.8 r = 0.175 r = 0.8

4 2.20* 4.80*** 2.37* 0.19 2.16* 4.63***

6.5 3.12** 2.51* 2.22* 2.07* 2.36* 3.13**

9 3.68*** 3.40*** 2.83** 5.80*** 4.77*** 4.18***

* p < .05.
** p < .01.
*** p < .001 (two-tailed).
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Fig. 4. Filter characteristics as a function of eccentricity and spatial scale. Solid black lines indicate values for r = 0.175�; solid grey lines indicate values
for r = 0.8�. Dashed lines are the relevant parameter values for the small and large signals. Top row, FWHM of the estimated DoG filters. Bottom row,
correlation between estimated DoG filters and Gaussian signal. Error bars indicate bootstrap standard errors.

Table 3
Z-scores associated with ‘FWHM of the estimated DoG filter = FWHM of the signal’

Eccentricity Observer 1 Observer 2 Observer 3

r = 0.175 r = 0.8 r = 0.175 r = 0.8 r = 0.175 r = 0.8

4 �2.76** 7.12*** �2.62** 0.81 �2.19* 9.91***

6.5 �1.18 4.89*** �3.18** 3.30*** �0.30 7.76***

9 �3.07** 5.75*** �2.87** 11.35*** �3.35*** 12.55***

* p < .05.
** p < .01.
*** p < .001 (two-tailed).
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appeared to be a reliable decrease in the correlation. The
analysis of the magnitude of inhibitory lobes showed that
this finding was mainly due to stronger inhibition with
increasing eccentricity. For the remaining combinations
of observers and spatial scales, the correlations were inde-
pendent of eccentricity. Again, only the effect of scale was
significant (F(1, 2) = 101.85, p < .05).

This drastic mismatch between filter and signal in the
large scale conditions is surprising. One may wonder
whether a closer match would be found if we analysed
the correct, target-directed saccades instead of the errone-
ous eye movements. Therefore, we computed classification
images using the noise patches from the target location on
trials in which the first saccade was directed to the target.
Because error rates were high, the number of trials avail-
able for this analysis was approximately half that for the
analysis based on distractor-directed movements. Clearly
then, these filter estimates were less stable than the ones
derived from the large set of error trials.

We fit these ‘‘correct’’ classification images with a DoG,
and computed the correlations with the signal as before.
The variability around these estimates was determined by
resampling the sets of noise images that made up the cor-
rect classification images, and repeating the fitting proce-
dure with these bootstrap classification images (as before
with the error trials; see Section 2). We then determined
whether the original correlation estimates fell within the
95% confidence interval of this bootstrap distribution.
These bootstrap distributions tended to be negatively
skewed when the correlation was high (predominantly in
the small scale conditions). Therefore, we did not use the
kind of Z-approximation used in the statistical tests report-
ed above (Tables 1–3), but instead opted for the nonpara-
metric percentile confidence limits.

As such, 15/18 original correlation estimates were con-
sistent with the estimates based on the correct classification
images. Of the remaining three original estimates, two cor-
relations were lower and one was higher than those based
on the correct trials. Most importantly, the pattern of cor-
relations was highly similar to that reported above for the
error trial analyses: they were high in the small scale condi-
tions (range across observers and eccentricities: .84–1) and
much lower in the large scale conditions (.33–.88), without
any clear effects of eccentricity. On the whole then, there is
no evidence to suggest that the match between the observ-
ers’ filters and signals was tighter when the first saccade
was correctly directed to the target. These analyses support
the validity of our original measurements and the conclu-
sions derived from them.

4. Discussion

Deciding to generate a saccadic eye movement to some
location in the visual field depends on sampling the visual
signals from that location. In the current visual task sacc-
adic eye movement decisions were effectively modelled by
assuming the observer cross-correlates the visual input at

each item location with a filter, and chooses to look at
the location that elicited the strongest internal response.
We used the classification image method to estimate the
underlying filter, and showed that: (1) the shape of the filter
did not match the shape of the expected signal: it was best
described by a DoG function, even though the signal was
Gaussian; (2) the size of the filter was flexibly adjusted
according to the task demands, although the adjustment
was far from perfect, with the integration window being
much too small in the large scale conditions; (3) despite
substantial performance variations with eccentricity we
found no evidence for reliable changes in the filter with
eccentricity. We will deal with each of these three findings
in turn.

The early visual system codes the spatial distribution of
light through a bank of relatively narrowband, center-sur-
round mechanisms that are tuned to different sizes (DeVa-
lois & DeValois, 1988; Graham, 1989; Wilson & Bergen,
1979). In theory, any arbitrary filter can be constructed
by appropriately weighing and combining the outputs of
a variety of these mechanisms. Observers were unable to
form a precisely matched template to a Gaussian signal:
the filters had inhibitory side-bands. When expressed rela-
tive to the peak amplitude of the filter, the magnitude of
the inhibitory lobes ranged between 1% and 23% (mean
across observers and conditions = 10%; the inhibitory
lobes illustrated in Fig. 3 had a relative magnitude of
5%). There was a strong trend for the large scale filters to
have stronger (relative) inhibition, which clearly contributed
to the poor match between filter and signal in these
conditions. Thus, although the presence of inhibitory lobes
was fairly subtle in some conditions, it was certainly very
consistent across observers and conditions.

The center-surround organisation of the filters reported
in this study for saccades and previously for perceptual
decisions (Abbey & Eckstein, 2002; Eckstein et al., 2004)
suggests that under these conditions the saccadic system
is driven by signals computed relatively early in the visual
processing hierarchy. To some extent this finding may
depend on the task given to observers. In contrast discrim-
ination it is conceivable that the eye movement decisions
are based on the outputs of early filters. Whether observers
are able to adopt a more sophisticated template under dif-
ferent task demands remains to be seen. Rajashekar,
Bovik, and Cormack (2006) had observers search for par-
ticular geometrical shapes in 1/f noise, and their estimated
templates also suggest some flexible adjustment of the fil-
ters depending on what the observer is looking for. However,
they did not attempt to parameterise their filters to
illustrate a link between observers’ templates and early
visual mechanisms.

The mismatch between the filter and the Gaussian stim-
ulus points to limits in the pooling of outputs from these
early visual mechanisms. These limits may arise because
the saccadic system only has access to a restricted range
of mechanisms, limited temporal integration, or a
combination of both. Recent studies using a temporal noise
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variant of the contrast discrimination task have demon-
strated that only a small portion of the saccade latency
period is used for visual integration (Caspi et al., 2004;
Ludwig et al., 2005). In particular, it appears that the tem-
poral integration window is restricted to the first �100 ms.
after display onset (Ludwig et al., 2005). It is possible that
not all relevant early outputs have become available within
this restricted time period. As such, downstream oculomo-
tor structures would miss out on these outputs, preventing
a precise match between the functional filter and signal.

Despite the mismatch in shape, observers did scale the
size of the integration window with that of the display
items. As such, we can reject the hypothesis that the sacc-
adic eye movement system only has access to one class of
early visual mechanisms. These findings support the notion
that the integration window is under some control, and can
be flexibly adjusted according to the task demands (Levi,
Klein, & Chen, 2005). Nevertheless, there appear to be
clear limits to this flexibility: human observers failed to
take optimal advantage of the increase in signal area and
their filter was substantially too small for the large scale
items. Thus, the reduced efficiency in these conditions is,
at least partly, explained by an increased mismatch
between the filter and the signal.1 This result parallels the
failure to optimally integrate spatially extended signals in
perceptual decisions (Dakin & Bex, 2003).

One possible explanation for this finding is that observ-
ers may simply have underestimated the size of the large
patterns. With soft-edged patterns the perceived size
strongly depends on the peak contrast of the pattern,
among other things (Fredericksen, Bex, & Verstraten,
1997). Thus observers may have perceived the low contrast,
noise masked patterns of experiment 2 to be smaller
(although this would have to hold only for the large scale
stimulus), inducing them to integrate over a smaller region.
In the absence of perceived size measurements for these
stimuli, it is difficult to completely discount this explana-
tion. However, experiment 1 was run partly in order to
familiarise the observers with the patterns they had to dis-
criminate. In the context of that experiments observers reg-
ularly saw high contrast versions of the Gaussian signal,
allowing them to build an accurate representation of the
pattern size and shape. Regardless of the role of perceived
size, the mismatch in the large scale conditions suggests
that the eye movement system did not or could not sample
from earlier mechanisms with large enough spatial integra-
tion areas (i.e. receptive fields) or from populations of
mechanisms with partly overlapping receptive fields that,
together, cover the signal area.

Remarkably, the size of the integration window
remained relatively constant with eccentricity. It is well-

established that the size and spacing of retinal and visual
cortical receptive fields increase with eccentricity (DeValois
& DeValois, 1988). A functional consequence is that the
ability to integrate over small regions of space is reduced
outside the fovea (Garcia-Perez & SierraVazquez, 1996;
Pointer & Hess, 1989; Robson & Graham, 1981; Virsu &
Rovamo, 1979; Wilson & Bergen, 1979). As such, we
expected that the size of the integration window would
increase with eccentricity, and that this would be a major
contributor to the lower efficiency observed further out in
the visual field. Although changes in basic visual mecha-
nisms with eccentricity undoubtedly occur, it appears that
these changes were not responsible for the performance
variations observed in our study.

To conclude, for successful interaction with the visual
environment it would be desirable if the saccadic eye move-
ment system could flexibly select and combine outputs
from visual mechanisms upstream (e.g. at the level of stri-
ate cortex). Only then could visual sampling be perfectly
adapted according to the behavioural goals of the observer.
We have established that the spatial integration window is
indeed under considerable control, and can be flexibly
adjusted according to the task demands across a large part
of the visual field. Nevertheless, there are clear limits to this
flexibility. These limits reflect the coding of visual informa-
tion by early mechanisms and the extent to which the neu-
ral circuitry involved in programming saccadic eye
movements is able to appropriately weigh and combine
the outputs from these mechanisms.
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