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This paper investigates the growth of an entire function~~d estimates the error 
term when approximating S in the complex plane by Lagrange interpolation 
polynomials. In particular, Lagrange interpolation at the zeros of Hermite 
polynomials is considered. 

1. INTRODUCTION 

A nondecreasing, bounded function cx on R is called a moment- 
distribution (or m-distribution) if it takes infinitely many values and all 
integrals 

\ x” da(x), iz = 0, 1, 2 ,..., 
-‘Fi 

converge; a generates a Lebesgue-Stieltjes measure which we shall briefly 
call “the ~-distribution da.” 

For any m-distribution do there exists a unique sequence of orthonormal 
polynomials { p,(da; x)} (see 13, Sect. 1.11) with the properties: 

(a) p,(da; x) = ynx” + v-a , is a polynomial of degree n and yn > 0; 

(b) jIR p,(da)p,(&) dcr = 6,, , the Kronecker symbol. 

The zeros x,,(k = 1,2,,.., n) of pn(da; x) are real, simple, and are 
contained in the smallest interval overlapping the support of da. We shall 
assume, as usual, that x,, > xZn > a.. > x,,. If, in addition, da is an 
absolutely continuous m-distribution, then da(x) = a’(x) dx and a’(x) is a 
weight function. In this case, a’(x) will be denoted by W(X) and pn (da) by 
PAW>. 
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For a given function f the Lagrange interpolation polynomial L,(du:f’) 
corresponding to the m-distribution da is defined to be the unique algebraic 
polynomial of degree at most II - I which coincides with f at the nodes sI.,, 
Thus 

L,(dwfis) = ;" f(s,,,) I,,,(S). 
h-1 

where Ikn(.y) are the fundamental polynomials of Lagrange interpolation 
defined by 

Iffis an entire function, the estimate of the rate of approximation ofJ’(<) 
by Lagrange polynomials L,,(du:J: <) is based on the following formula (see 
13. 111.8.4 I). 

where c E I . C,, c 2 c- 8:. and i/ is a simply connected domain containing 
the zeros of p,,(drr) in its interior. 

2. MAIN RL:SULTS 

Let W be the class of all weight functions of the form I\‘~,(.Y) ~7 
exp( -2Q(x)}. s E I)3 where 

(i) Q(X) is an even differentiable function. except possibly at .V = 0. 
increasing for s > 0; 

(ii) there exits 11 < I such that s”Q’(s) is increasing; and 

(iii) the unique positive sequence (q,,} determined by 

satisfies the condition 

q,,Q'(q,,) = ‘7 (2.1) 

42n --cc,>1 for n = I. 2..... (2.2 1 
qn 

for some constant C, independent of II. 
Observe that whenever Q(x) = Q,(X) = i 1x1” (u > l), then u’~ E W. Letf 

be an entire function, and denote max,I, x If(z z E c,. by M(R). We will 
establish 
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THEOREM 2.1. Let wo E W. Then, there exists a constant A E (0, l), 
depending on Q only, such that whenever 

lim sup log M(R) <A 
R-rCC 2QP) ’ 

(2.3) 

we have, for any r E @, 

lim w(lf(t) - L,(w, ;f; 01)“” -c 1. n-m (2.4) 

Moreover, (2.4) holds uniformly on compact subsets of C. 

THEOREM 2.2. Let wo E Wand 

logM(R) = 0 
?% 2Q(R) ’ (2.5) 

then we have for any <E 6, 

)J% (If(r) - L,(w, ;f; r>l>“” = 0. 

This holds uniformly on compact subsets of C. 

The next theorem is an application on Theorem 2.1 when we(x) is chosen 
to be the Hermite weight function exp(-x2). In this case, a more precise 
estimate on the number A of Theorem 2.1 is given. 

THEOREM 2.3. If 

r= lim sup l”gM(R) < (3a + ‘)(l -a’ =p 
R -+CL R2 16a 

(/3 z 0.35270883), then we have, for any C E G, 

lim sup(lf’“‘(<) - L,(w;fCm’; <)I)“” < 1, (2.6) 
n-too 

where a is the solution of (( 1 -x)/4) exp(( 1 -x)/2x) = 1, w(x) = exp(-x2), 
and m = 0, 1, 2 ,... . 

3. PRELIMINARY RESULTS 

In proving our main results, the following will be used: 

LEMMA 3.1 (see [4]). For every even weight function w(x), we have 

max Yk-1 Yk-1 -<xl,<2 max -. (3.1) 
l<kCn-1 Yk I<k<n-l Yk 
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LEMMA 3.2 (see 15 J). Let wo(.y) = expj-2Q(x)l, s t Ii. be a weight 
function, where Q(x) is an even differentiable function, except possibljl at 
.Y = 0, increasing for x > 0, for which x“Q’(x) is increasing for p < 1, then 
we hate 

LEMMA 3.3 (see ( 1 I). For ever>* ecen uyeightJunctio,l H’(S), rr’e hare 

In:‘1 
\‘ (3.3) 
A-r 

LEMMA 3.4. Let ~~(w~;z)~ z E I, be the nth ortho~orn~a~ poi~nomia~ 
generated bJ> the weight fu?~~tio~ icy E W. We hate then 

/ p,,( WY ; z)l < jj,, 2” G;,, for all z such that 12 / < s, ,, . (3.4) 

and 

(3.5 ) 

for ail : such that /z/ > xl,,. 

Proof: Since 11‘~ is an even weight function, it follows that (see 16. 
Sect. 2.312) 1) 

which proves (3.4). 
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On the other hand, 

A(w,; 2) = YS” ew 

so, 

for IzI > xlrt, which proves (3.5). 

LEMMA 3.5. Let h,(x) be the rtth ortho~or~al H~~~ite po~no~ial 
generated by the weight function w(x) = exp(-x2). We have then 

I h,(z)l G K(z) s 
r(n + 1) 

j/F2 r~(n/~) + 1) 
e expj(2n + 1)“2 /z/j, (3.6) 

for z E C and sufficiently large n, where K(z) is a constant that depends on z 
only, and 

(3.7) 

Proof: Since h,(x) is the nth orthonormal Hermite polynomial, it is well 
known (see 16, Sect. 5.5 and Theorem 8.22.71) that 

(3.8) 

(3.9) 

and for z E Cc, 

H,(z) = r(n + 1) 

r(w2) + 1) 
exp(--$J. jcos((2n+ l)“‘.Z-y) 

+;(*a+ I)-“*sin (2n+ l)‘:‘r-T) 
i 

+ exp((2n + 1)li2 / Im(z)I) O(n-‘) 1 . (3. IO) 
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From (3.8) we can see that 
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(3.11 1 

It is also known that, for z E !Z and jz j < r, 

Thus from (3.9), (3.10), and the last two inequalities. it follows, for 2 E 1 
and a sufficiently large tz, that the inequality (3.6) holds. 

Moreover, from (3.11) and (3.1) we obtain 

ST,, 6 \jm - 11, 

and from (3. I 1) and (3.3) we obtain 

(3.12) 

(3.13) 

and (3.7) follows from (3.51, (3.81, and (3.13). 

4. PROOFS OF THEOREMS 2.1-2.3 

Proof of Theorem 2.1. In proving this theorem and the remaining ones. 
we are going tu estimate the error form given by the formula (1.1). 

First, we obtain two more inequalities. By combining (3.4) and (3.2) we 
get, for any z E is with /z[ <xl,,, 

and from assumption (ii) of Section 2, we can easily see that there exists an 
absolute constant C, such that 

a-~) < c 

Yp(zp j 
for all x > x,, > 0. (4.2) 

Suppose now that (2.3) holds with A = 2 U’ ’ ’ ), where A4 is equal to (or 
greater than) the greatest integer not exceeding 1 + (I i- log L!? ‘i- 2C, $ 
log C,)/log C, (1 with C’, , C,, and C, as in (2.2), (3.2), and (4.21, respectively. 
Let us also choose R, such that 

R,Q’(R,) = 2” ' I1 for r? = 1. 2. 3 ,... . (4.3 1 
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From (2.1) (4.3), and (2.2) we conclude 

R,Xik, for Iz = 1, 2, 3 ,... . (4.4) 

We now turn to (1.1). Let E,(r)=f(r)--L,(wo;f;r), <EC, be as in 
(1.1) and take the path of integration C, to be the circle ]z ] = R, . By 
combining (l.l), (2.3), (4.1), (3.5), and the choice of A, we conclude that 
there exists a positive number N, depending on <, such that 

for all n 2 N. By using (3.1), (3.2), (4.2~(4.4), we get for sufficiently large 12 

where 

< 2{& C,CFM exp(2 C, + 1))” 

<2B”, 

B = \/z C, C;“’ exp(2 C, + 1) < 1, 

by the choice of the constant A4. 
Therefore, 

lim SUP 1 E,(l)1 ‘In < B < 1, 
n-u2 

(4.5) 

which proves (2.4). The uniformity of (2.4) on compact subsets of @ can 
easily be seen from this proof. Hence the proof of Theorem 2.1 is complete. 

For the proof of Theorem 2.2, we mainly need to observe that the number 
B in (4.5) can be chosen as small as we like if we assume (2.5). Hence, the 
details of the proof are omitted. 

Proof of Theorem 2.3. We are going to prove this theorem for the case 
m = 0 only. For other values of m see [2, Theorem 2.4.11 and this case. 

Since w(x) = exp(-x2), then PJW; x) is the nth orthonormal Hermite 
polynomial h,(x). Since t = lim SUP~+~ (log M(R)/R*), then for any 6 > 0, 
we can find an N8 such that 

If( Gexpl(~ + 4 /zl*L 

for all z E C with ]z] >N,. Let r~ C, then 

(4.6) 
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and take the path of integration C, to be the circte /Z / = R,, such that 

So, for /z / = R,, and sufficiently large n. we 
(4.7) 

u < 1: < 1. 14.7) 

have from (3.6). (3.7). (4.6). and 

-. exp/(2n + 1)’ ’ Iii! 
1) 

7 

Xexp)(ii&)R~-+-&i’-. 
4r: R, \ 

where K,{<) and K?(r) are constants that depend on 5” only. 
Next, we are going to choose R,, which will minimize the right-hand side 

of this last inequality and. which will at the same time, satisfy (4.7). To do 
so, we consider the function 

7 

T(R)=&exp i(r+&)R? .+f2_i. 
4s R, \ 

By differentiating T(R) and setting T’(R) = 0, we get 

4c(r + 6)RJ - 2cn R’ - 11’ = 0. (4.8) 

Hence, we now choose R, to be the positive solution of (4.8). We can see 
from this choice of R, and (3.12) that 

Consequently, (4.7) will be satisfied if 

r++ (3c..+ 1x1 -cl ( (3a+ 1x1 -a) + 
16~ 16a 

Since R,, satisfies (4.8). we find that 

(4.9 1 
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and it follows, assuming (4.9), that 

IE,(t)l <K,(t). n . ewI@n + I)“* It 

x (J-)““. (LIJ”/’ . exp 

<lu,(O. n - exp((2n + V ITI) 

1 
;+A 

n I 

1 - e nl’ 

.- 

i i 4e 

X exp + + (I - ‘)’ 1 . 
I 48 

Hence, 

and, hence, 

Since g(e) = (( 1 - .5)/4) exp(( 1 - &)/2 ) F is a decreasing function on (0, 1) 
and g(a) = 1, we have 0 < g(E) < 1 for ~1 < E < 1. 

Therefore, (2.6) is satisfied, which completes the proof of Theorem 2.3. 
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