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A set tiles the integers if and only if the integers can be written as a disjoint union
of translates of that set. We consider the problem of finding necessary and
sufficient conditions for a finite set to tile the integers. For sets of prime power

Ž .size, it was solved by D. Newman 1977, J. Number Theory 9, 107]111 . We solve it
for sets of size having at most two prime factors. The conditions are always
sufficient, but it is unknown whether they are necessary for all finite sets. Q 1999

Academic Press

INTRODUCTION

Let A be a finite set of integers. A tiles the integers if and only if the
integers can be written as a disjoint union of translates of A; equivalently,
there is a set C such that every integer can be expressed uniquely a q c
with a g A and c g C. In symbols, A [ C s Z. In this case A is called a
tile, A [ C s Z a tiling, and C the translation set. For a survey of such
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w xtilings, see R. Tijdeman Tij . For connections with group theory and
w xfunctional analysis, see Haj, L-W .

We consider the problem of finding necessary and sufficient conditions
Žfor a finite set to tile the integers. For sets of prime power size cardinality,

. w xdenoted a , it was solved by D. Newman New . Newman remarked that
‘‘even for so simple a case as size six we do not know the answer.’’ We find
necessary and sufficient conditions for A to tile the integers when aA has

Ž .at most two distinct prime factors.
There is no loss of generality in restricting attention to translates of a

Ž . afinite set A of nonnegatï e integers. Then A x s Ý x is a polyno-ag A
Ž .mial such that aA s A 1 . Let S be the set of prime powers s such thatA

Ž . Ž .the sth cyclotomic polynomial F x divides A x . Consider the followings
Ž .conditions on A x .

Ž . Ž . Ž .T1 A 1 s Ł F 1 .sg S sA

Ž . Ž .T2 If s , . . . , s g S are powers of distinct primes, then F x1 m A s ? ? ? s1 m
Ž .divides A x .

Ž . Ž . Ž .THEOREM A. If A x satisfies T1 and T2 , then A tiles the integers.

Ž . Ž .THEOREM B1. If A tiles the integers, then A x satisfies T1 .

THEOREM B2. If A tiles the integers and aA has at most two prime
Ž . Ž .factors, then A x satisfies T2 .

COROLLARY. If aA has at most two prime factors, then A tiles the
Ž . Ž . Ž .integers if and only if A x satisfies T1 and T2 .

Ž . Ž .It is unknown whether the sufficient conditions T1 and T2 are
Ž .necessary for any finite set to tile the integers. Condition T1 is necessary

Ž .but not sufficient see the example after Theorem B1 in Section 2 .
Ž . Ž .However, if aA is a prime power, then T2 follows from T1 , so in this

Ž .case T1 is necessary and sufficient. An examination of Newman’s proof
w xNew, Theorem 1 essentially yields this result.

Our proof of Theorem B2 provides a structure theory for finite sets A
such that A tiles the integers and aA has at most two prime factors. We
sketch this in Section 4.

w .If A is a finite set which tiles the integers, then D a, a q 1 tilesag A
w xthe reals. J. Lagarias and Y. Wang L-W proved a structure theorem for

closed subsets T of the reals with finite Lebesgue measure and boundary
of measure zero such that the reals can be written as a countable union of
measure-disjoint translates of T. It describes such sets in terms of finite
sets which tile the integers.
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1. PRELIMINARIES

For A and B sets or multisets of integers, we denote the multiset
� 4a q b: a g A, b g B by A q B. We write A [ B when every element

�can be expressed uniquely a q b. For k an integer, we write kA for ka:
4 � 4a g A , we call k [ A a translate of A, and when k is a factor of every

� 4a g A, we write Ark for ark: a g A .
Ž .For s G 1, the sth cyclotomic polynomial F x is defined recursively bys

s Ž .x y 1 s ŁF x , where the product is taken over all factors t of s. Thet
factors of s are positive and include both 1 and s.

LEMMA 1.1. Let p be prime. Then

Ž . Ž .1 F x is the minimal polynomial of any primitï e sth root of unity.s

Ž . sy1 Ž .2 1 q x q ??? qx s ŁF x , where the product is taken o¨er allt
factors t ) 1 of s.

Ž . Ž . py1 Ž . Ž p a .aq13 F x s 1 q x q ??? qx and F x s F x .p p p

0 if s s 1¡~Ž . Ž .4 F 1 s q if s is a power of a prime qs ¢
1 otherwise.

F x if p is a factor of sŽ .p spŽ . Ž .5 F x ss ½ F x F x if p is not a factor of s.Ž . Ž .s p s

Ž . Ž t. Ž .6 If s and t are relatï ely prime, then F x s ŁF x , where thes r s
product is taken o¨er all factors r of t.

pŽ . Ž . Ž . Ž . � Ž .7 If A x is a polynomial and A x s A x , then t: F x dï idest
Ž .4 � Ž . Ž . 4 � Ž .A x s s: F x dï ides A x and p is not a factor of s j ps: F xs s

Ž .4dï ides A x .

Ž . Ž . Ž .Proof. Part 1 is a standard fact. Parts 2 and 3 follow from the
Ž . Ž . Ž . Ž . Ž .definition, 4 from 2 and 3 , and 5 from 1 because the roots of

Ž p. 2p i k r p s Ž .F x are e for k relatively prime to s. Repeated application of 5s
Ž . Ž . 2p i r t pyields 6 . For 7 , let v s e . Then v is a primitive sth root of unity

Ž . � X 4 Xfor some s and, from 5 , t g s , ps , where s s ps or s according to
pŽ . Ž .whether p is or is not a factor of s. F x divides A x if and onlyt

pŽ . Ž . Ž .A v s 0 if and only if F x divides A x .s

� 4A set C of integers is periodic if and only if C [ n s C for some
n G 1. Then C is a union of congruence classes modulo n and C s B [ nZ,
where B is any set consisting of one representative from each class. If
A [ C s Z is a tiling and C is periodic, the smallest such n is called the

Ž .Ž .period of the tiling. Note that n s aA aB and A [ B is a complete set
of residues modulo n. Conversely, if A [ B is a complete set of residues
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Ž .modulo n, then A [ B [ nZ s Z is a tiling of period n or less, as are
Ž . X X Ž .B [ A [ nZ s Z and A [ C s Z for any A ' A mod n .

w xThe following basic result is due to G. Hajos Haj and N. deBruijn´
w x w x w xdeB-1 , then C. Swenson Swe , then Newman New .

LEMMA 1.2. E¨ery tiling by translates of a finite set is periodic, i.e., if A is
finite and A [ C s Z, then there is a finite set B such that C s B [ nZ,

Ž .Ž .where n s aA aB .

Remark. Newman’s proof shows that the period of any tiling by A is
maxŽ A.yminŽ A. � 4bounded by 2 . The tiling j [ Z s Z has period 1. The tiling

� 4 � 4 � 4A [ C s Z, where A s j [ 0, k and C s 0, 1, . . . , k y 1 [ 2kZ, has
period 2k. We know of no other tilings whose period is as large as
Ž Ž . Ž ..2 max A y min A . See the remarks following Lemma 2.1.

The collection of all finite multisets of nonnegative integers is in
one-to-one correspondence with the set of all polynomials with nonnega-
tive integer coefficients. The correspondence is

A l A x s m x a ,Ž . Ý a
agA

where m is the multiplicity of a as an element of A. If B is another sucha
multiset and k G 1, then the polynomial corresponding to A q B is
Ž . Ž . Ž . Ž . Ž k .A x B x , to A j B is A x q B x , and to kA is A x . Using this

language we get

LEMMA 1.3. Let n be an integer and let A and B be finite multisets of
Ž . Ž .nonnegatï e integers with corresponding polynomials A x and B x . Then the

following statements are equï alent. Each forces A and B to be sets such that
Ž .Ž . Ž . Ž .aA aB s A 1 B 1 s n.

Ž . Ž .1 A [ B [ nZ s Z is a tiling.
Ž .2 A [ B is a complete set of residues modulo n.
Ž . Ž . Ž . ny1 Ž n .3 A x B x ' 1 q x q ??? qx mod x y 1 .
Ž . Ž . Ž .4 n s A 1 B 1 and for e¨ery factor t ) 1 of n, the cyclotomic

Ž . Ž . Ž .polynomial F x is a dï isor of A x or B x .t

There is no loss is restricting attention to conditions for a finite set of
nonnegatï e integers to tile the integers. We can further restrict to finite
sets whose minimal element is 0 and to translation sets which contain 0,
although we will not always do so. For if AX and CX are translations of A
and C, then A [ C s Z if and only if AX [ CX s Z.

Ž . Ž .Recall that T1 and T2 concern the set S of prime powers s suchA
Ž . Ž .that the cyclotomic polynomial F x divides A x . When A and as
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X Ž . XŽ .translate A are finite sets of nonnegative integers, A x and A x are
divisible by the same cyclotomic polynomials, so

v
XA tiles the integers if and only if A tiles the integers.

v
XŽ . Ž . Ž . Ž .A x satisfies T1 if and only if A x satisfies T1 .

v
XŽ . Ž . Ž . Ž .A x satisfies T2 if and only if A x satisfies T2 .

The next lemma allows us to further restrict attention to finite sets of
integers with greatest common divisor 1.

LEMMA 1.4. Let k ) 1 and let A s kA be a finite set of nonnegatï e
integers.

Ž .1 A tiles the integers if and only if A tiles the integers.
aq1 a bŽ . � 4 �2 If p is prime, then S s p : p g S j q g S : q prime,p A A A

4q / p .
Ž . Ž . Ž . Ž . Ž .3 A x satisfies T1 if and only if A x satisfies T1 .
Ž . Ž . Ž . Ž . Ž .4 A x satisfies T2 if and only if A x satisfies T2 .

Ž .Proof. For one direction of 1 , let A [ C s Z. Then kA [ kC s kZ
Ž� 4 .and hence A [ 0, 1, . . . , k y 1 [ kC s Z. For the other, let kA [ D s

� Ž .4Z. Then kA [ D s kZ, where D s d g D: d ' 0 mod k , and hence0 0
Ž . Ž .A [ D rk s Z. Part 2 follows from Lemma 1.1 7 .0
Ž . Ž . Ž .It suffices to prove 3 and 4 when k is prime, say k s p. Part 3

Ž . Ž .follows from 2 and Lemma 1.1 4 since aA s aA. It remains to prove
Ž . X4 . Let s s ps or s according to whether p is or is not a factor of s. Let
s , . . . , s be powers of distinct primes and s s s ??? s . Then sX , . . . , sX

1 m 1 m 1 m
X X X Ž .are powers of distinct primes and s s s ??? s . From 2 , every s g S if1 m i A

X Ž . Ž . Ž .and only if every s g S s S . From Lemma 1.1 7 , F x divides A x ifi A p A s

Ž . Ž . Ž .Xand only if F x divides A x . Putting all this together yields 4 .s

Ž . Ž .Remark. It follows from 2 that A is not contained in pZ when F xp
Ž .divides A x . The same statement holds for B.

Lemma 1.4 deals with A ; kZ. The related situation that A [ C s Z is
a tiling with C : kZ leads to an important construction. We defer it to
Lemma 2.5.

2. TILING RESULTS

THEOREM A. Let A be a finite set of nonnegatï e integers with correspond-
Ž . aing polynomial A x s Ý x and let S be the set of prime powers s suchag A A
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Ž . Ž .that the cyclotomic polynomial F x dï ides A x . Ifs

Ž . Ž . Ž .T1 A 1 s Ł F 1 .sg S sA

Ž . Ž .T2 If s , . . . , s g S are powers of distinct primes, then F x1 m A s ? ? ? s1 m
Ž .dï ides A x ,

then A tiles the integers.

Ž .Proof. We construct a set B such that condition 4 of Lemma 1.3 is
Ž . Ž tŽ s..satisfied. Define B x s ŁF x , where the product is taken over alls

Ž . Ž .prime power factors s of lcm S which are not in S and t s is theA A
Ž .largest factor of lcm S relatively prime to s. Since every such s is aA

Ž . Ž .prime power, B x has nonnegative coefficients. Since Lemma 1.3 4 will
be shown to hold, these coefficients are all 0 and 1.

Ž . Ž .Let s ) 1 be a factor of A 1 B 1 and write s s s ??? s as a product of1 m
Ž . Ž .powers of distinct primes. If every s g S , then by T2 , F x dividesi A s

Ž . Ž tŽ si.. Ž .A x . Suppose then that some s f S . Then F x divides B x ,i A si
Ž . Ž . Žr s srs is a factor of t s , and, by Lemma 1.1 6 with s s s andi i i

Ž .. Ž . Ž tŽ si.. Ž . Ž .t s t s , F x divides F x . Thus F x divides B x since rs s s.i r s s s ii i

Remarks. The set B constructed in the proof depends only on S s SA
Ž .and not on A. Defining C s B [ lcm S Z, A [ C s Z for all A withS S

Ž . Ž .S s S which satisfy T1 and T2 . Then C : pZ for every prime p g S,A S
Ž . Ž tŽ s.. Ž .since p is a factor of lcm S and every divisor F x of B x is as

p Ž . aq1polynomial in x . For either t s is a multiple of p, or s s p with
Ž tŽ s.. Ž tŽ s. p a . Ž tŽ s.. Ž .a G 1 and F x s F x , so every divisor F x of B x is as p s

polynomial in x p.

THEOREM B1. Let A be a finite set of nonnegatï e integers with corre-
Ž . asponding polynomial A x s Ý x and let S be the set of prime powers sag A A

Ž . Ž .such that the cyclotomic polynomial F x dï ides A x . If A tiles the integers,s
then

Ž . Ž . Ž .T1 A 1 s Ł F 1 .sg S sA

Ž .Remark. Condition T1 is not sufficient for A to tile the integers.
� 4 Ž . Ž . Ž .A s 0, 1, 2, 4, 5, 6 does not tile the integers, but A x s F x F x3 8

Ž .satisfies T1 .

Ž .Theorem B1 follows from Lemma 2.1 1 below.

Ž . Ž .LEMMA 2.1. Let A x and B x be polynomials with coefficients 0 and 1,
Ž . Ž . Ž .n s A 1 B 1 , and R the set of prime power factors of n. If F x dï idest

Ž . Ž .A x or B x for e¨ery factor t ) 1 of n, then

Ž . Ž . Ž . Ž . Ž .1 A 1 s Ł F 1 and B 1 s Ł F 1 .sg S s sg S sA B

Ž .2 S and S are disjoint sets whose union is R.A B
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Ž . Ž . Ž .Proof. For every factor t ) 1 of n, F x divides A x or B x , sot
Ž . Ž . Ž . Ž .R : S j S . Clearly A 1 G Ł F 1 and B 1 G Ł F 1 . ThusA B sg S s sg S sA B

A 1 B 1 G F 1 F 1 G F 1 s n ,Ž . Ž . Ž . Ž . Ž .Ł Ł Łs s t
sgS sgS tgRA B

Ž .the equality by Lemma 1.1 4 . Hence all the inequalities and containments
above are actually equalities, and S is disjoint from S .A B

Remarks. If a tiling A [ C s Z has period n and C s B [ nZ, then
Ž .n s lcm S j S , so the period of any tiling by A is a multiple ofA B

Ž . Ž .lcm S . A particular tiling by A may have period larger than lcm S ,A A
Ž . Ž . Ž . Žhowever, when A x satisfies T1 and T2 , the tiling A [ B [

Ž .Ž . .aA aB Z s Z constructed in the proof of Theorem A has period
Ž . Ž . Ž . Ž .lcm S . In all cases known to the authors both A x and B x satisfy T1A
Ž .and T2 .

We leave it to the interested reader to show that for any set A of
nonnegative integers,

p
v Ž . Ž Ž . Ž ..lcm S F max A y min A , where p is the smallestA p y 1

prime factor of aA.
v

a� 4 � 4The inequality is strict except when A s j [ p 0, 1, . . . , p y 1 .

We show in Lemma 2.3 that there is always a tiling whose period is a
product of powers of the prime factors of aA.

THEOREM B2. Let A be a finite set of nonnegatï e integers with corre-
Ž . asponding polynomial A x s Ý x such that aA has at most two primeag A

factors and let S be the set of prime powers s such that the cyclotomicA
Ž . Ž .polynomial F x dï ides A x . If A tiles the integers, thens

Ž . Ž .T2 If s , . . . , s g S are powers of distinct primes, then F x1 m A s ? ? ? s1 m
Ž .dï ides A x .

The following result is crucial to our proof of Theorem B2. We give an
alternate proof of it in Section 3.

w xLEMMA 2.2 Tij, Theorem 1 . Suppose that A is finite, 0 g A l C, and
A [ C s Z. If r and aA are relatï ely prime, then rA [ C s Z.

Remark. Translating A or C does not affect the conclusion. Thus the
condition 0 g A l C is not needed.

LEMMA 2.3. If a finite set A tiles the integers, then there is a tiling by A
whose period is a product of the prime factors of aA.
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Proof. If A [ C s Z is a tiling of period n and r ) 1 is a factor of n
relatively prime to aA, then by Lemma 2.2, rA [ C s Z. Therefore

� Ž .4rA [ C s rZ, where C s c g C: c ' 0 mod r , and hence A [ C rr0 0 0
s Z is a tiling of period nrr.

w xThe following result is essentially Theorem 4 of San . We prove a more
general result which implies it in Section 3.

w xLEMMA 2.4 San . Let A [ C s Z be a tiling of period n such that A is
finite, 0 g A l C, and n has one or two prime factors. Then there is a prime
factor p of n such that either A ; pZ or C : pZ.

Sands’ result is stated in the terms of direct sum decompositions of finite
cyclic groups, but it is easy to translate it into the terminology of this
paper.

LEMMA 2.5. Suppose A [ C s Z, where A is a finite set of nonnegatï e
�integers, k ) 1, and C : kZ. For i s 0, 1, . . . , k y 1, let A s a g A: a ' ii

Ž .4 Ž . � 4mod k , a s min A , and A s a y a : a g A rk. Theni i i i i

a k a k a k0 1 ky1Ž . Ž . Ž . Ž . Ž .1 A x s x A x q x A x q ??? qx A x .0 1 ky1

Ž .2 E¨ery A [ Crk s Z.i

Ž .3 The elements of A are equally distributed modulo k}e¨ery aA si
Ž .aA rk.

Ž .4 S s S s ??? s S .A A A0 1 ky1

Ž . � 4 Ž . Ž .5 When k is prime, S s k j S and if e¨ery A x satisfies T2 ,A k A i0
Ž . Ž .then A x satisfies T2 .

Ž . Ž . � 4 � 4Proof. Part 1 is clear. Part 2 follows from A [ C s i [ kZ s ai i
Ž .[ kZ. To prove 3 , note that the translation set Crk has some period n,

Ž .so there is a set B such that A [ B [ nZ s Z and every A [ B is ai i
Ž .complete set of residues modulo n. Thus the aA are equal, so 3 holds.i

Ž .Part 4 also follows since by Lemma 2.1, every S is the complement ofA i

S in the set of prime power factors of n.B
XŽ . Ž . �To prove 5 , write p in place of k. From Lemma 1.4 2 , S s s :p A iX4s g S , where s s ps or s according to whether p is or is not a factor ofA i pŽ . Ž . Ž .s. The polynomial corresponding to pA is A x , so from 1 and 4 ,i i

p a iiŽ .S : S . Also, p g S , since if F v s 0, then v s 1, v s v , andp A A A p0
py1 i py1 iŽ . Ž . Ž .A v s Ý v A 1 s aArk Ý v s 0, the next-to-last equality byis0 i is0

Ž . � 43 . We have thus shown that S = p j S . Since A and A tile theA p A 00
Ž . Ž . Ž . � 4integers, A x and A x satisfy T1 and S s p j S .0 A p A0

Ž . Ž . Ž . Ž .Now assume that every A x satisfies T2 . Condition T2 for A x isi
Ž .X Xthat if s , . . . , s g S are powers of distinct primes, then F x1 m A s ? ? ? s0 1 m

Ž . Ž . Ž . Ž . Ž .divides A x and F x divides A x . By T2 , F x dividesp s ? ? ? s s ? ? ? s1 m 1 m

Ž . Ž . Ž . Ž .X Xevery A x . Hence by Lemma 1.1 7 , F x and F x divide alli s ? ? ? s p s ? ? ? s1 m 1 mpŽ . Ž .the A x , so they divide A x as well.i
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COROLLARY. If A is a finite set of integers and C : kZ, then A [ C s Z
ky1 Ž� 4 . � 4if and only if A s D a [ kA for some complete set a , a , . . . , ais0 i i 0 1 ky1

Ž .of residues modulo k, and k sets A , each of which satisfies min A s 0 andi i
tiles the integers with translation set Crk.

Ž .The decomposition is unique. We can have gcd A s 1 although this
may not be true for the A . If the A are equal, then the union is a directi i

� 4sum, A s a , a , . . . , a [ kA . For some simple choices of translation0 1 ky1 0
set C, every tile has this form.

Proof of Theorem B2. From Lemma 1.4 and the comments before it
Ž .there is no loss of generality in assuming that gcd A s 1 and 0 g A.

By Lemma 2.3 there is a tiling A [ C s Z whose period n is a product
of powers of the prime factors of aA. We complete the proof by induction

� 4 Ž . Ž .on n. If n s 1, then A s 0 and A x ' 1 satisfies T2 vacuously. If
n ) 1, then by Lemma 2.4, there is a prime factor p of n such that

a p a p0 1Ž . Ž . Ž .C : pZ. Then by Lemma 2.5, A x s x A x q x A x q ??? q0 1
a ppy 1 Ž .x A x and every A [ Crp s Z is a tiling of period nrp. By thepy1 i

Ž . Ž . Ž . Ž .inductive hypothesis, every A x satisfies T2 , so by Lemma 2.5 5 , A xi
Ž .satisfies T2 .

Every set known to the authors, regardless of size, which tiles the
Ž . Ž .integers satisfies the tiling conditions T1 and T2 . However, our proof of

Theorem B2 cannot be extended to sets whose size has more than two
prime factors because Lemma 2.4 need not hold. For m a positive integer
with more than two prime factors, a very general construction due to S.

w x Ž . Ž .Szabo Sza gives sets A such that aA s m, min A s 0, gcd A s 1, and´
A tiles the integers, yet the members of A are not equally distributed

Ž .modulo k for any k ) 1. Hence, from Lemma 2.5 3 , every set C such that
Ž . Ž .0 g C and A [ C s Z satisfies gcd C s 1. All these sets A satisfy T1

Ž .and T2 .
w xThese examples also show that both Tijdeman’s conjecture Tij, p. 266

Ž .}if A [ C s Z, 0 g A l C, and gcd A s 1, then C : pZ for some
prime factor of aA}and the weaker conjecture}if A tiles the integers,

Ž . Ž .min A s 0 and gcd A s 1, then there is some translation set of the
desired type}are false without further conditions. Tijdeman’s conjecture
would have implied an inductive characterization of all tilings A [ C s Z.
The weaker conjecture would have implied an inductive characterization
of the finite sets which tile the integers. We established the weaker
conjecture in Lemma 2.4 for those A such that aA has one or two prime

w xfactors. We show how to use it in Section 4. Tijdeman Tij, Theorem 3
proved his conjecture when aA is a prime power. We do not know
whether it holds when aA has exactly two prime factors.
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3. ALTERNATE PROOFS OF TIJDEMAN’S AND
SANDS’ THEOREMS

Ž .Tijdeman’s Theorem Lemma 2.2 follows from Lemma 1.3 and

LEMMA 3.1. Let A and B be finite sets of nonnegatï e integers with
Ž . Ž . Ž . Ž .corresponding polynomials A x and B x and let n s A 1 B 1 . If

A x B x ' 1 q x q ??? qx ny1 mod x n y 1Ž . Ž . Ž .

Ž .and p is a prime which is not a factor of A 1 , then

A x p B x ' 1 q x q ??? qx ny1 mod x n y 1 .Ž . Ž . Ž .

Ž p. Ž Ž .. p Ž .Proof. Since p is prime, A x ' A x mod p , i.e., when the
Ž . ny1coefficients are reduced modulo p. Let G x s 1 q x q ??? qx . Thenn

py1 py1pA x B x s A x A x B x ' A x G x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . n

where ' means the exponents are reduced modulo n and then the
i Ž . Ž . Ž n .coefficients are reduced modulo p. Every x G x ' G x mod x y 1 ,n n

so

py1 py1 nA x G x ' A 1 G x mod x y 1 .Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n

Ž Ž .. py1 Ž .By Fermat’s Little Theorem, A 1 ' 1 mod p . Therefore

A x p B x ' G x ,Ž . Ž . Ž .n

where the exponents are reduced modulo n and then the coefficients are
Ž p. Ž . Ž .reduced modulo p. Both A x B x and G x have nonnegative coeffi-n
Ž . Ž . Ž .cients whose sum is n since A 1 B 1 s G 1 s n. Consider the followingn

reductions.

Ž . Ž p. Ž . nR1 A x B x is reduced modulo x y 1, yielding a polynomial
U Ž .G x .

Ž . U Ž .R2 The coefficients of G x are reduced modulo p, yielding
Ž .G x .n

Ž . Ž .Reduction R1 preserves the sum of the coefficients, but R2 reduces the
sum by some nonnegative multiple of p. Because the sum of the coeffi-

U Ž . Ž .cients of both G x and G x is n, that multiple is 0. Thereforen
U Ž . Ž .G x s G x .n

Ž .We use the following result to prove Sands’ Theorem Lemma 2.4 . Let
� 4A y A be the difference set a y a : a , a g A .1 2 1 2
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� 4LEMMA 3.2. Let A and B be finite, A, B / 0 , and A [ B a complete set
Ž .Ž .of residues modulo aA aB . Then at least one of the following is true.

Ž .1 No member of A y A is relatï ely prime to aB.
Ž .2 No member of B y B is relatï ely prime to aA.

Ž .Ž .Proof. Let n s aA aB . By Lemma 1.3,

A x B x ' 1 q x q ??? qx ny1 mod x n y 1 .Ž . Ž . Ž .

Suppose 0 - a y a s d X is relatively prime to aB and 0 - b y b s d Y
1 2 1 2

is relatively prime to aA. Lemma 2.2 shows that

A x d
Y

B x d
X

' 1 q x q ??? qx ny1 mod x n y 1 ,Ž . Ž . Ž .

so by Lemma 1.3 again, d YA [ d XB is a complete set of residues modulo n.
But

b y b a q a y a b s b y b a q a y a b .Ž . Ž . Ž . Ž .1 2 1 1 2 2 1 2 2 1 2 1

Thus the same number can be expressed d Ya q d X b in two ways, which is
impossible.

w xLEMMA 2.4 San . Let A [ C s Z be a tiling of period n such that A is
finite, 0 g A l C, and n has one or two prime factors. Then there is a prime
factor p of n such that either A ; pZ or C : pZ.

Proof. Let C s B [ nZ and the prime factors of n be p and possibly q.
Ž . Ž .Then at least one of Lemma 3.2 1 and Lemma 3.2 2 holds.

Ž .If Lemma 3.2 1 holds, then A : A y A ; pZ j qZ, the first contain-
ment because 0 g A. If neither pZ nor qZ contains A, then there exist
a ,a g A such that a g pZ_ qZ and a g qZ_ pZ. But then a y a is1 2 1 2 1 2
relatively prime to aB.

Ž .If Lemma 3.2 2 holds, the same argument shows that B : pZ or
B : qZ. Then the same is true for C s B [ nZ.

LEMMA 3.3. Suppose A is finite, 0 g A, A tiles the integers with period n,
Ž . Ž .and n has exactly two prime factors, p and q. If neither F x nor F x is ap q

Ž .dï isor of A x , then A ; pZ or A ; qZ.

Ž .Proof. Let A [ B [ nZ s Z be a tiling of period n. By Lemma
Ž . Ž . Ž . Ž .1.3 4 , F x and F x are divisors of B x . From the remark afterp q

Lemma 1.4, neither pZ nor qZ contains B. Then the conclusion follows by
Lemma 2.4.
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4. A STRUCTURE THEORY

In this section we describe the structure of those finite sets A such that
A tiles the integers and aA has at most two prime factors. Equivalently,

Ž .the set S of prime powers s such that the cyclotomic polynomial F xA s
Ž .divides A x consists of powers of at most two primes. For S such a set of

� Ž .prime powers, let TT be the collection of all subsets A of 0, 1, . . . , lcm SS
4 Ž .y 1 which tile the integers and satisfy min A s 0 and S s S. Note thatA
� 4 Ž . aq1TT s 0 because lcm B s 1, and that TT is the set whose onlyB � p 4

a� 4member is p 0, 1, . . . , p y 1 . We have seen that there is no loss in
Ž . X Ž X.requiring min A s 0. We claim that a finite set A with min A s 0 and

X Ž .XS s S tiles the integers if and only if A is congruent modulo lcm S to aA
X Ž Ž .. Xmember of TT . For if A ' A mod lcm S , then S s S s S, and asS A A

noted after the proof of Lemma 1.1, AX [ C s Z if and only if A [ C sS S
Z. Recall that C is the universal translation set corresponding to S:S
A [ C s Z for every A such that A tiles the integers and S s S.S A

For purposes of comparison we recall the simpler structure of all finite
� 4sets which tile the nonnegative integers N s 0, 1, . . . , due to deBruijn0

w xdeB-3 . Note that every such set has a unique translation set, so the
� 4unique associated tiling has a period. One such set is A s 0, 1, 2, 3, 4 [

� 4 � 40, 10, 20, 30 [ 0, 120, 240 , which tiles N with period 360. A can be0
� 4written A s 0, 1, 2, 3, 4 [ 5 A, where A tiles N with period 72 s 360r50

˜ ˜� 4and it can be written A s A [ 120 0, 1, 2 , where A tiles N with period0
� 440. If A / 0 is any finite set which tiles N , then there are always these0

� 4two types of direct sum decompostions, A s k 0, 1, . . . , q y 1 [ qA and
˜ Ž .� 4A s A [ nrp 0, 1, . . . , p y 1 , where p and q are prime factors of the

˜Ž .period n of the tiling, k s gcd A , and A and A are shorter tiles.
Iterating either decomposition, every tile is a direct sum, in one or more

� 4ways, of tiles of the form m 0, 1, . . . , p y 1 . If the order is as above, then
˜qA is the direct sum of all but the first of the summands and A is the

Ž . Ž m pdirect sum of all but the last. A x is thus a product of terms x y
. Ž m . Ž m. Ž . Ž .1 r x y 1 s F x and can easily be shown to satisfy T1 and T2 .p

We return to TT for the case that S consists of the powers of at mostS
two primes. Both direct sum decompositions above generalize to disjoint
union decompositions, the first more usefully than the second.

Corresponding to the first decomposition, we will show that when
S / B, every tile A g TT is, as in Lemma 2.5, a union of translates ofS

py1 Ž� 4 .multiples of p or q smaller tiles: A s mD a [ pA , where m sis0 i i
Ž . � 4gcd A , a s 0, a , a , . . . , a is a complete set of residues modulo p,0 0 1 py1

� 4 � Ž . 4every a [ pA ; 0, 1, . . . , lcm S y 1 , and for some smaller set S, everyi i
A g TT . We need not get a direct sum, as the A need not be equal. Everyi S i

A in turn is a union of p or q translates of multiples of even shorter tiles.i
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Iterating the procedure until S s B, every member of TT is a disjointS
Ž .� 4 Ž .� 4union of translates of nrp 0, 1, . . . , p y 1 and nrq 0, 1, . . . , q y 1 ,

Ž .where n s lcm S . This is most useful when every A g TT uses translatesS
of only one of the two sets. Then we do have a direct sum of this set and a

˜set A which also tiles the integers. This occurs when S contains only
� a b 4powers of p and also when S s p , q . The latter because pq cannot be

written as a positive integral combination of p and q. An example with
˜� 4 � 4 � 4S s 2, 4, 32 is 0, 1, 2, 11 [ 16 0, 1 . Note that here A is not a direct sum.

The simplest case where translates of both sets must be used is S s
� 3 24 w x � 4p, p , q , An important example deB-2 with S s 2, 8, 9 is given below.

Ž .Suppose that S contains powers of only p, so that lcm S is a power of p.
If A g TT , then A [ C s Z and either p g S and C : pZ, or p f SS S S

a aq1� 4and A ; pZ. Let S s p : p g S . If p f S, then aS s aS and, as in
� 4Lemma 1.4, TT s pA: A g TT . If p g S, then by the Corollary to LemmaS S

py1 Ž� 42.5, the members of TT can be constructed by taking all unions D aS is0 i
. � 4[ pA with A g TT , a s 0, a , a , . . . , a a complete set of residuesi i S 0 0 1 py1

� 4 � Ž . 4modulo p, and every a [ pA ; 0, 1, . . . , lcm S y 1 . This procedurei i
gives all of TT and nothing else.S

Suppose now that S contains powers of both p and q and let

a aq1 b bS s p : p g S j q : q g S ,� 4 � 4
X a a b bq1� 4S s p : p g S j q : q g S .� 4

We consider the three cases: p g S, q g S, and p, q f S. If p g S, then
C : pZ and TT can be constructed as above by taking all unionsS S

py1 Ž� 4 . � 4D a [ pA with A g TT , a s 0, a , a , . . . , a a complete setis0 i i i S 0 0 1 py1
� 4 � Ž . 4of residues modulo p, and every a [ pA ; 0, 1, . . . , lcm S y 1 . Ifi i

Xq g S, then the analogous procedure, with the roles of p, S and q, S
interchanged, gives TT . If both p and q are in S, then C : pqZ and eitherS S
procedure gives TT . If neither p nor q is in S, then by Lemma 3.3, everyS

Xmember of TT is contained in pZ or qZ. Then aS s aS s aS , andS
� 4 � 4 � 4 �A g TT : A ; pZ s pA: A g TT , while A g TT : A ; qZ s qA: A gS S S

4XTT . In all three cases, this procedure gives all of TT and nothing else.S S
Ž .a bEvery A g TT is, as noted above, a direct sum}A x is a product� p , q 4

˜ q b p aŽ . Ž . Ž . � Ž .a bof some A x with either F x or F x . Thus k: F x dividesp q k

Ž .4 � a4 � b b 2 b a b 4 � b 4 � aA x contains either p j q , pq , p q , . . . , p q or q j p ,
a a 2 a b 4p q, p q , . . . , p q . If a ) 1 and b ) 1, there are cyclotomic polyno-

Ž . Ž .mial divisors of A x in addition to the three required by T2 . We leave it
to the interested reader to show that every member of TT is eitherS

ay1 X a by1� 4p A [ p q 0, 1, . . . , q y 1
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X � by1 4for A ; 0, . . . , pq y 1 a complete set of residues modulo p contain-
ing 0, or is an analogous set with the roles of p and q interchanged.

The situation when S has at least three elements is different. In this
case TT has members whose corresponding polynomial has only theS

Ž .cyclotomic polynomial divisors required by T2 . We illustrate this with the
�promised example. Among the members of TT are A s 0, 3, 6, 18, 21,�4, 94 0

4 � 424 and A s 0, 2, 12, 14, 24, 26 . Each is a direct sum. Consider1

� 4 � 4A s 0 [ 2 A j 1 [ 2 AŽ . Ž .0 1

� 4s 0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53 g TT .�2, 8, 94

2 2Ž . Ž . Ž . Ž .The cyclotomic polynomial divisors of A x s A x q xA x are F x0 1 2
2 2Ž . Ž . Ž .and those F x which divide both A x and A x , i.e.,k 0 1

� 4 � 4 � 4k : F x divides A x s 2 j 8, 9, 18, 36, 72 l 8, 9, 18, 24, 72� 4Ž . Ž . Ž .k

� 4s 2, 8, 9, 18, 72 ,

Ž . Ž .exactly the set required by T2 . Then as in Theorem A, A [ B [ 72Z s
� 4 Ž� 4Z for B s 0, 8, 16, 18, 26, 34 . deBruijn’s example was actually 12 [

. Ž� 4 .2 A j 17 [ 2 A . It was the first example where A [ B is a complete0 1
set of residues modulo n but neither A nor B is periodic modulo n.
Equivalently, neither A nor B is a disjoint union of translates of
Ž .� 4nrp 0, 1, . . . , p y 1 for a single prime factor p of n.
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