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The notion of a generalised filter is extended to the setting of a GL-monoid. It is
shown that there exists a one-to-one correspondence between the collection of
generalised filters on a set X and the collection of strongly stratified L-filters
on X. Specialising to the case where L is the closed unit interval [0, c] viewed as a
Heyting algebra, we show that any strongly stratified [0, c]-filter on X can be
uniquely identified with a saturated filter on I with characteristic value c. In this
way, the notion of a generalised filter unifies various filter notions. In particular,
necessity measures and finitely additive probability measures are specific examples
of generalised filters.  © 1999 Academic Press

1. INTRODUCTION

In the context of general topology, the notion of a filter on a set
facilitates the study of convergence. In [10-12] filters on [0, 1]%, called
prefilters, are used as a fundamental tool. In [3], the notion of a gener-
alised filter is introduced and the relationship between prefilters and
generalised filters is discovered. It is shown that there is a one-to-one
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correspondence between the collection of saturated prefilters on a set X
and the collection of generalised filters on X. In [9], HGhle and Sostak
introduce the concept of an L-filter and establish a theory of convergence
for L-topological spaces. We intend to show that this theory unifies these
various filter notions in the sense that they are each specific realisations of
a generalised L-filter. Furthermore, the crucial notion saturation is inves-
tigated.

2. PRELIMINARIES

2.1. Definitions

A triple (L, <, =) is called a quantale iff (L, <) is a complete lattice
and

(Q1D) (L, =) is a semigroup;
(Q2) = is distributive over arbitrary joins. In other words,

(V)= Viap). B+ Val=V(sra.
iel iel iel iel

Obviously the universal lower bound L (viewed as the join of the
empty set) is the zero element with respect to *.

A quantale (L, <, *) is commutative iff, (L, *), the underlying semi-
group is commutative.

A quantale (L, <, ) is strictly two-sided iff the universal upper bound
T is the unit element with respect to *.

A quantale (L, <, =) is divisible iff for every inequality 8 < « there
exists v € L such that B8 = «a * .

A GL-monoid is a commutative, strictly two-sided, divisible quantale.

Examples of GL-monoids are given by continuous semigroup structures
on the real unit interval [0, 1] satisfying the following boundary conditions,

ax T=T *a=«a, ax L=1xa=_1.

In the context of probabilistic metric spaces, continuous semigroups satis-
fying the previous condition are also called continuous ¢-norms.

2.2. DEFINITION. A quantale (L, <, *) has square roots iff there exists
a unary operator S: L. — L provided with the properties

(S1) Vael, S(a)+*S(a) = a;
(82) Va,Bel,BxB<a = B<S(a)

Because the unary operator S is uniquely determined by (S1) and (S2) we
also write «/? instead of S(a).
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2.3. LEMmA (H6hle and Sostak [9D. Let Q = (L, <, =) be a quantale
with square roots. If Q satisfies the additional property,

(S Va,BEL, (ax B)?=(a?xpY2) v LV?

then the formation of square roots preserves arbitrary, nonempty joins. In
other words, for any nonempty subset {a;: i € J} of L the relation,

Vel Vi

iel iel
holds.

Sometimes it is convenient to enrich the structure of the quantale with
an additional binary operation ®.

2.4. DEFINITIONS. A co-premonoid is a triple (L, <, ® ) with the fol-
lowing properties:

(D (L, <) is a lattice;
an a; ® B; < a, ® B, whenever a; < a,, B; < B, (isotonicity);

() VaeLl, a<a® T,a<T ®qa.
A co-premonoid (L, <, ® ) is a cl-premonoid iff it satisfies the addi-
tional property:
(IV) ® is distributive over nonempty joins.
In other words,
(Vai)®[3=\/(ai®,8), B®(Vai)=V(B®ai).
ieJ ieJ ieJ ieJ

A cl-premonoid is said to be bisymmetric iff it satisfies the additional
property,

(2, ®By) ®(a,;®B;) =(a;© ay) ® (B ®By),
for all a4, a,, B, B,.

AN enriched cl-premonoid is a quadruple (L, <, ® , ) such that the
following conditions hold:

(CLP) (L, <, ®)isa cl-premonoid,;
(Q) (L, <, =)is aquantale;
(V) = is dominated by ®.

In other words,

(a;®B)*(a; ® By) < (ayxay) ® (By*B,y), forall ay, ay, By, B;.
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In particular we have the following definition.

2.5. DEFINITION.  Let Q = (L, <, *) be a quantale with square roots.
Then the monoidal mean operator ® on L is defined for each «, B € L by

a®B=a1/2*,81/2.

2.6. Remark. Let Q = (L, <, =) be a commutative quantale with
square roots satisfying (S3). Then the quadruple (L, <, *,®) is a bisym-
metric enriched cl-premonoid.

2.7. EXAMPLE. Any continuous z-norm T induces on the real unit
interval [0, 1] the structure of a GL-monoid with square roots. Significant,
continuous #-norms are the following:

(Min) Min(a, B) = min(a, B);
(r,) T,(a,B)=max(a+ B—1,0);
(Prod) Prod(a, B) = a- B.
The formation of square roots with respect to Min is given by the identity

map of [0, 1], square roots with respect to Prod are the usual ones and
square roots with respect to 7,, are determined, for each « € [0, 1], by

a+1

B
For each one of these three z-norms the axiom (S3) is satisfied. The
monoidal mean operator is defined in the previous cases as follows:

(Min) a® B = min(a, B);
(T,) a®B=(a+ B)/2;
(Prod) a® B =ya-B.

The importance of these, as noted by Hohle and Sostak in [9], is that
every continuous ¢-norm can be written as an ordinary sum of Min, T,,,
and Prod. Further we note that Min and 7,, play a special role in the field
of many-valued logics: Min is used by Gddel in his [0, 1]-valued intuitionis-

tic logic, while 7, is the arithmetic conjunction in Lukasiewicz [0, 1]-valued
logic.

al/? =

3. L-FILTERS

In the following we consider an enriched ci-premonoid (L, <, ® , ).
Foreach @ € L and u € LY we define u, by

e = {x €X: u(x) > a}.



RELATIONSHIP OF FILTERS ON GL-MONOID 295

For each A € X let 1, denote the fuzzy subset satisfying,

T, ifxed;
1A(x)_{J_, if x & A.

3.1. DEFINITION. Let X be a set. A map §: L* —» L is called an
L-filter on X if and only if § has the following properties:
(LFO) F(1y) =T ;
(LFD) if uy < u, € L* then F( ;) < F( u,);
(LF2) F(py) @ F(pp) < F(py ® py) forall py, p, € LY,
(LF3) #(1y=1.

3.2. DerINITION. A map B: LY - L is a base for §: L* — L if and
only if for each u € L,

F(w) = V B(»).

v<=pu

A map B: L* - L is an L-filter base on X if and only if B has the
following properties:
(LFBO) V,cpxB(p) =T,
(LFB1) ®B(py) ® B(pw,) <V
(LFB2) By = 1.

Evidently a map B: LY — L is an L-filter base on X if and only if it is
a base for some L-filter.

B(w) for all wy, u, € LY;

M= g ®py

3.3. DEfFINITION.  An L-filter is said to be weakly stratified if and only if
it satisfies the additional axiom,

[(WS)]|Va € L, a<F(a-ly).
Equivalently,

Yuel, A w(x)<F(n).

xeX

It is said to be tight if and only if it satisfies

[(T)]Va € L, a=%F(a1ly).

3.4. DEFINITION.  An L-filter is said to be stratified if and only if it
satisfies the additional axiom,

[($H]VaeL, Vuel¥,  a*F(p)<F(a*p).
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3.5. DerINITION.  An L-filter is said to be strongly stratified if and only
if it satisfies the additional axiom,

[(S)HIVeel®, Fw) =V a®F(,)

acl

3.6. PROPOSITION. If § is a strongly stratified L-filter then it is stratified.
Proof. Let a € L and p € L*. Then

a*g’(/.,t)=6\’.*( V B®%(1uﬁ))

BEL
= \/ a*(ﬁ@%’(l%))
BeL
< V (01*:8) ®g°(l(a*u)w5)
BeL
<F(a*p).

4. GENERALISED FILTERS

In the following, (L, <, ® , =) is an enriched cl-premonoid such that
the universal lower bound L is the zero element with respect to ®.

4.1. DEFINITION.  Let f: 2¥ —> L be a map. Then f is said to be a
generalised filter on X iff f satisfies the following axioms:
(GLFO) f(X)=T;
(GLF1) if A, €A, C X then f(A4,) < f(A4,);
(GLF2) f(A4,) ® f(A,) < f(A4, N A,) forall 4;, A, C X;
(GLF3) f(@)=1.

4.2. DEFINITION. A map b: 2% — L is a base for f: 2% — L if and only
if for each 4 € 2%,

f(4) =V b(B).
BcA
A map b: 2% > L is a generalised filter base on X if and only if b
satisfies the following properties:
(GLFBO) V ,  yb(A4) =T,
(GLFB1) b(A,) ® b(A,) < Vg 4 4, b(B)forall 4, 4, CX;
(GLFB2) b(@) = L.
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Evidently a map b: 2% — L is a generalised filter base on X if and only
if it is a base for some generalised filter.

We can introduce a partial ordering, =<, on the set of all generalised
filters on X by

f=<g o VACX, f(A) <g(A).

The infimum of two generalised filters, f and g, with respect to <
always exists and it is defined by

(FAg)A) =f(A4) Ag(A).

On the other hand, the supremum, f Vv g, of two generalised filters, does
not always exist. In fact it is not difficult to prove that: f Vv g exists iff

VA, A, c X, ANA, =8 = f(A)®g(A,)=1.
In this case the supremum is defined by
(fve)A) =V {f(A4,) ®g(A4,): A, N A, cA}.

One of our main objectives is to prove that there exists a bijection
between the collection of all generalised filters and the collection of all
strongly stratified L-filters.

4.3. THEOREM. Let (L, <, ® , %) be a bisymmetric enriched cl-pre-
monoid such that the universal lower bound 1 is the zero element with
respect to ®. Let X be a set and let G(X) denote the collection of generalised
filters on X and let S(X) denote the collection of strongly stratified L-filters
on X.

Forfe G(X) let §': LX — L be defined by

F(w)=V aof(pm).

a€EL
For & € S(X), let f5: 2% — L be defined by
f3(A4) = F(Ly).
Let
y:G(X) - S(X),  f-3
and

e:S(X) - G(X), X fo.
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Then
1. ¥ e S(x).
2. % e GX).

3. lp‘ogp= 15(}() and hence ng = %
4' ®° l//= 1G(X) andhencef‘\‘, =f
5. ¢ is a bijection.

Proof. 1. We first note that for all 4 C X and for all « € L, because
L is the zero element with respect to ®, it follows from (GLF3) that

F(a-1)=V Bef((a 1)) = V B®f(A)=af(A).

BeL B<La

The axioms (LF0) and (LF3) follow from previous observation. Axiom
(LF1) follows from (GLF1).
(LF2). Let u,v € L*. Foreach a, 8 € L, it is easy to check that

Mo NV S (1 ® V)asp.

Therefore, it follows from (GLF1) and (GLF2) and the bisymmetry axiom
that

(¢®f(1e) ® (B f(1g)) = (a®B) @ (f( 1) ®f(1))
<(a®B)®f(p, N )
(a®B)®f((1®v)asp)

(o).

IA

IA

Therefore F/(u) ® F/(v) < F(u ® v).
(SS). Foreach u € L* we have

F(w)y=V aof(um,)

acL

V ao %f(lﬂa).

a€L

2. The axioms (GLFO0), (GLF1), and (GLF3) follow from (LFO0),
(LF1) and (LF3), respectively. Axiom (GLF2) follows from (LF2) because
L is the zero element with respect to ®,

FR(A) ® 3 (A,) <F(La, © 14,) = F(Layna,) =F5(A41 N A).
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3. Because & is strongly stratified, it follows that

B = Vaefi(u) =V ao,)=5(x.

aclL acsL

4. If f is a generalised filter on X then

YA =3 (1) = V a®f((Ly),) =f(A).

acel

5. This follows immediately from the foregoing results. |

5 THE CASE (L, <,®,*)=(0,c], <, A ,T,), c €(0,1]

We consider now the case in which L is the interval [0,c] and ® = A
and = = T, . That is, the unit interval viewed as a Heyting algebra.

In this case the definition of a generalised filter reduces to the case of a
generalised filter with characteristic value ¢ in the sense of [3].

5.1. DEFINITION. A map f: 2% — [ is a generalised filter with charac-
teristic value ¢ if it is a map satisfying the following properties:
(GF0) f(X) =c;
(GF1) if A, €A, C X then f(A,) < f(A,);
(GF2) f(A) A f(A,) <f(A, N A, forall 4,, A, C X;
(GF3) f(@) =0.
5.2. DEFINITION. A map b: 2¥ - I is a generalised filter base with
characteristic value c if it is a map satisfying the following properties:
(GLFBO) V ,_xb(A) =c;
(GLFB1) VA;, A, € X, b(A) AD(A,) < Vg na,b(B)
(GLFB2) b(@) = 0.
We can obtain the following corollary of Theorem 4.3.

5.3. COROLLARY. Let f: 2% — I be a generalised filter with characteristic

value c. Then the mapping §': [0, c]¥ — [0, c] defined by,
(w)y= 'V anrf(u,)
a€(0,c]

is a strongly stratified [0, c]-filter on X.

Congersely, if §:10,cl¥ — [0, clis a strongly stratified [0, clfilter, then the
map f5: 2% — I defined by,

f3(A) =8(c1y)

is a generalised filter on X with characteristic value c.
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Finally, it is easy to see that given any generalised filter with characteristic
value c, f we have

Y=
Furthermore, given any strongly stratified [0, c]-filter, 3§, we have
g =3

In [3] it was proved that there exists a bijection between the collection of
all saturated prefilters with characteristic value ¢ and the collection of all
generalised filters with characteristic value ¢. Now this corollary allows us
to conclude that there also exists a bijection between the collection of all
saturated prefilters with characteristic value ¢ and the collection of
all strongly stratified [0, c]-filters (when we consider [0, c] as a Heyting
algebra).

In the case ¢ = 1 generalised filters are exactly necessity measures on
P(X) (cf. [13]) and the bijection between the collection of all saturated
prefilters with characteristic value 1 (1-filters) and the collection of all
necessity measures is proved in [8].

In [14] Ramadan introduces the concepts of fuzzifying filter and smooth
filter which are, in terms of our notation, respectively, generalised filters
with characteristic value 1 and [0, 1]-filters. However, in Theorem 2.1, he
proves that for any [0, 1]-filter ¥ and any u € I,

Fw)= V aAFl,)
a<s(0,1]

This is evidently false because it would mean that any L-filter is strongly
stratified.

In fact we can consider the following counterexample:

Let 1, # u € I have the properties:

e inf ., u(x) =0,
def
o W ={xeX: ux)>0=X.
Such functions do exist, as the reader can verify. Now we define for each
vel,
N 1, ifu<vw;
S =\o ifugw
It is easy to check that % is a [0, 1]-filter. On the other hand, for each

a # 0 we have p, # X and hence u « 1, . Therefore (1, ) = 0 for each
a # 0 and so,

Vand(1,)=0+Fu) =1

acl
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Consequently Theorem 2.1 in [14] is false. Furthermore, we have provided
an example of a I-filter which is not strongly stratified.

In the same paper [14] the statement in Proposition 3.6 is also false.
Given two [0, 1]-filters ¥ and & then the supremum & Vv & exists if and
only if whenever u; A u, = 1; either F(u,) =0 or &(pu,) = 0. In this
case, it is defined for each u € I by

(FV ) ()= V(F(r) AG(1): g A pp < p).
For example, if x #y € X let us define, for each u € I,

Loifp(x) =1 ‘ Loifu(y) =1
8i(m) = - o 8w = :

0, if u(x) <1; 0, ifu(y) <Ll
It is clear that they are [0, 1]-filters on X but there is no [0, 1]-filter finer
than both ¥, and 3.

6. THE CASE (L, <,®,x*)=(0,1], <,T,,T,)

v = s Ly Ly

We consider now the case in which L is the unit interval and ® = A
and ® = = =T, . That is, the unit interval viewed as a Ml -algebra.

In this case the definition of a generalised filter reduces to the following
definition.

6.1. DEFINITION. A map f: 2% — I is a generalised filter if it is a map
satisfying the following properties:
(GF0O) f(Xx)=0;
(GF1) if A, €A, CX then f(A,) <f(A4,);
(GF2) f(A) +f(A,) <f(A, NA, + Lforall 4, A, C X;
(GF3) f(@) =o.

In this case, finitely additive probability measures on (X), [8], are
generalised filters.
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