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Some rew constructions of mutuaily orthogonal Latin squ ares are shown. Moseover, if N(n)
denotes the maximum number of mutually orthogonal Latin squares of order n, then it is
proved that N(n)=7 for n>1750.

1. Introduction

Let k=2,t=1 be given. By a transversal design TD(k, t) we mean a triple
(X, %4, oA), where X is a set of points, 4 ={G;, ..., G} is a partition of X into k
subsets G;, called groups, and & is a class of subsets A; of X, called blocks., if (i)
|Gi| =1t for every G, e %, (ii) |4| =k, (iii) |G, N A;|=1 for every G;« ¥ and every
A, e o, (iv) every set {x, y}< X, such that x and y belong to distinct groups, is
contained in exactly one block of .

Note that a TD(k, t) contains t> blocks.

A parallel class of blocks is a subfamily of disjoint blocks the union of which
is X.

A resolvable transversal design RTD(k, t) is a transversal design TD(k, t) in
which the family &/ can be partitioned into ¢ parallel classes, t blocks in each class.

It is known [3] that a RTD(k, t) exists if and only if a TD(k +1, t) exists.

Let (X, %, o) be a TD(k, t). A sub-TD(k, ¢') is a triple (Y, 2, B) which is itself a
TD(k, ') with Yc X, P?={P,,..., P}, P,<G, 1<is<k and 3 <. Suppose
each (Y, P, B,), 1 <i=<uy, is a sub-TD(k, t,) of (X, G, o) which is a TD(k, t). The
sub-TD’s are said to be disjoint if Y;NY; =0 for i+

In what follows we make use of the following two remarks:

Remark 1.1. If k=<1, then transversal design TD(k,t) contains at least two
disjoint blocks [12].

Remark 1.2. The existence of a set of k —2 mutually orthogonal Latin squares of
order ¢ is equivalent to the existence of a TD(k, t) (see [1]).

Let N(n) denote the maximum number of mutually orithogonal Latin squares of
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order n. It is well known that N(n}<n—1 and the equality holds if n is a prime
power. '

Let n, denote the smallest integer such that N(n)=r for every n>n,. it was
proved that n,=6[2], ny<14[11], n,<52[5, 12], n;<62[4)], n,<76[9, 12, 14],
n,=2862[3, 9], ng=<7768(3,9].

Most presently known lower bounds for N(n) may be obtained by means of the
following six theorems:

Theorem 1.1. If n=p$p32- - - p™ is the factorization of n into powers of distinct
primes p;, then

N(n)= min (p5i—1)

1sisr

Theorem 1.2. Let- (X, %4, 4) be a TD(k+r 1), where 4$={G,,...,G,
H, ....H}. Let A, n=1,2,...,t%, be the blocks of the TD(k+r,t). Let Sc
H,U---UH,|S|=5 u,=|A,NSL, h,=|SNH;|,j=1,2,...,r,r11=0 and assume

(i) foreach j=1,...,r, there exists a TD(k, h;);

(ii) for each n=1,...,(* there exists a TD(k, m+u,) in which there may be
found u,, disjoint blocks.

Then there exists a TD(k, mt + s).

Theorem 1.3. If 0 <u<t, then
N(mt+u)=min{N(m), N(m + 1), N(t)— 1, N(u)}.

Theorem 1.4. If 0<u, v<t, then
N(mt+ u+v)=min{N(m), N(m + 1), N(m +2), N(t) —2, N(u), N(v)}.

Theorem 1.5. If t>4(r—1)(r—2), then
N(mt+r)=min{N(m), N(m -+ 1}, N(m +2), N(t)—-r}.

Theorem 1.6. If 0s<w-=<{, then
N(mt+w)=min{N(m), N(m + 1), N(m + w)—1, N(t) - w}.

Al the theorems remain valid if we put N(0) = N(1) =.

Theorem 1.1 is due to MacNeish [7] and Mann [8], Theorem 1.6 was proved by
Woijtas [13], che other theorems were proved by Wilson [12].

The purpose of this paper is to give some generalizations of the last five
theor .ms. New constructions of mutually orthogonal Latin squares obtained here
all- w to prove that n,<1750.
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2. A generalization of a theorem of Wilsoit

Before stating the main result of the parer we shall prove

Lemma 2.1, If there exist transversal designs TD(k +r, t), TD(k, m), TD(k, m + 1)
and TD(k, m +r), then there exists a TD(k, mt+r).

If there exist transversal designs TD(k,tj and TD(k, m) then there exists n
TD(k, mt).

Proof. Let (X, 94, of) be a TD(k+r, 1), wheie $={G,.....Gi, Hy,...,. H,}. Let
S={x;,...,x}=H,U--- UH, be formed by selecting one point x; from each
group H, 1<i=<r, in such a way that all the points of S are contained in one
block, say A,, of the TD(k +r, t). Denote X°=G,U - - - UG,. For each block
A,ed. we put A%=A NX°S,=A,USu,=|A,NS. We construct a
TD(k, irt +r) on the set of points X*=(X*x M)U (I xS) where M is a set of m
points, I={1,2,...,k}. As groups we take 4*={GT¥..... G¥} where G¥=
(GxM)U{i}xS), i=1,2,...,k Note that u,=r and for every A, such that
n#1. u,=0 or 1. The blocks are obtained as follows:

For each A, € 4, construct a transversal design TD, (k, m + u,) with point set
Y, =(A2xM)U(IXS,), groups

Pr=((ANG)xMU{i}xS.). i=1,2,...,k

and blocks @,. For n# 1 we may perform the construction so that I x{x}, x; € S,,,
is a block of A,. We delete this block and denote the remaining blocks of %, by
R, n=2,3,...,1*. We put B=|J%B!, where the summation is taken over
n=2,3,....0% Put A*=B,UAR.

Then (X*, 4%, £*) is a TD(k, mt +r).

The verification can be done along lines similar to those used in the proof of
Theorem 1.1 [12].

Let a TD(k +r, t) of Lemma 2.1 contain d disjoint blocks, say A,, A,,.... Ay
where A, is the distinguished block in the proof. Then u, =0 forn=2,3,....d.
Denote ?, ={P?,..., Py}. Considering triples (Y,, ?,, 8,), n=2,...,d, which
are TD(k, m) we get

Remark 2.1. If a TD(k+r,t) of Lemma 2.1 contains d disjoint blocks, then
there are d—1 disjoint sub-TD(k, m) of the TD(k, mt+r). Moreover, if r=0,
then there are d such sub-TD(k, m).

Now we shall prove the main result of the paper.

Theorem 2.1. Let (X, 4 A) be a TDk+rt) where 4={G,,..., Gy,
H,,...,H}. Let S and Q be disjoint subsets of H;U- -+ UH, and IS|=s5,|10|=gq,
|ISNH|=s,|QNH|=gq, i=1,2,....r. For each A€, put u,=|A. NS v, =
|A, N Q|. Let my, m,=0 be given and assume:

(i) there exists @ TD(k, m,) if v,# 0 for at least one block A, ed;
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(ii) there exists a TD(k,im,+1) if u,#0 and v,#0 for at least one block
A ed;

(iii) foreach i=1,2,...,r, there exists a TD(k, w;j, where w, =m,q; +s;;

(iv) for each block A, € o such that v, =0, there exists a TD(k, m,m,+u,) in
which there may be round u, disjoint blocks

(v) for each block A,esd such that v,#0, there exists a TD(k. m,+u,) in
which there may be found u, disjoint blocks

(vi) for each block A,e€s! such that v,#0 and u,#0, there exists a
TD(k + u,, my+ 10, in which there may be found v, + 1 disjoint blocks

(vii) for ezch block A,esd such that v,#0 and w,=0, there exists a
TD(k, m,+ v,) in which there may be found v, disjoint blocks.

Then there exists a TD(k, mymyt+m,q+s).

Proof. Let X°=G,U- - UG,. For each block A,csd, we put AS=A, NXE,
S.=A, NS, Q,=A,NQ. We construct a TD(k, m,m,t+ m,;q+s) on the set of
points X =(X°x MU (I x(M'x QUS)) where M and M’ are sets of m,m, and
m, points respectively and I={1,2,..., k}. As groups we take §*={G*,..., G}
where G¥=(G,xM)U{i}x(M'xQUS)), i=1,2,...,k The blocks are ob-
tained as follows: :

For each biock A, € & such that v, = 0 construct a TD(k, m,m,+ u,) with point
set (AOXM)U(IXS,), groups (A°NG)xMU{i}xS,, i=1,2....,k and
blocks B,,. If u,#0 and §, ={z,..... 2, }. we can do it, by (iv), in such a way that
Ix{z}, j=1,2,...,u, are blocks of B,. We delete these blocks and denote the
remaining blocks of 3, by %B’. We put 3 = | B’ where the summation is taken
over all i1 for which v, =0.

For each block A, €& such that v, #0, construct a TD(k, m;(m,+v,)+u,)
with point set (AJxMU(UIXx(M'xQ,US,)), groups (A°NG,)xMU
{}x(M'xQ,US,)}, i=1,2,...,k, and blocks %, By Remark 2.1 and (v), we
can construct a TD(k, m(m,+v,)+u,) which contains v, disjoint sub-
TDyk,m,), j=1,2,...,v, and disjoint from them u, disjoint blocks. The
sub-TD;(k, m,), j=1,2,..., v,, is constructed on the point set I x M'x{z!}. The
groups are {i}x M'x{z]}, j=1,2,..., n, where {2}, 25, ..., z;,}= Q,. The above
u, disjoint blocks are Ix{z}, j=1,2,...,u, where {z,,2,,...,2,}=8,. We
delete from &, t"e blocks of the sub-TD;(k, m,), j=1,2, ..., v, and the disjoint
from them blocks Ix<{z;}, j=1,2,..., u, and denote the remaining blocks by %"..
We put F = |J %], where the summation is taken over all n for which v, #0.

At last, by (iii). we construct a TD(k, w;) on the set of points Ix
{UM'xQUS)NH;} with groups {i}x{(M'xQUS)NH}, i=1, 2....,k, and
blocks €¢; for j=1,2,...,r.

Put A*=BUFUE,U%,U--- U¥%, We shall show that (X*, §*, *) is a
TD(k, mymyt+ m,q+s).

The points of X* are of the form (i) (g, a), g€ G, aeMor (i) (i, 2}, iel, ze S
or s (i,b,2'), icl, beM', 2’¢ Q.
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From the definition of %* it follows that to complete the proof it suffices to
show that the blocks of &* contain exactly once each pair of the form

(1) {(g> a1), (g, a2}, i#), g<G, geG,
(2) {(g: @), (i 2)}, i#], geG,

3) {g, a), (i, b, 2}, i#], geG,

) {Gs, by, 29), (i, by, 28)), iy # i,

(5) {Gi, b, 2. (i, 2)}, i1 # iy,

(6) G, 24), (s 220}, G # 0

To this effect, remark that:

(1) If g€G, g<G, i#]j, then for exactly one block A,e, {g, g}<= A,:
hence {(g;, a.), (g, a,)}, where a,, a, € M, occurs in exactly one block of B/, U %,

(2) If ge G, z€S, then for exactly one block A,e, {g,z}<=A,; hence
{(g;» ), G, 2)}, where i# ], ae M, occurs in exactly one block of B U %,

(3") If g;eG; z'€Q, then for exactly one block A, €4, {g; 2'}< A,; hence
{(g5 @), (i, b, ')}, where i# j, ac M and b e M', occurs in exactly one block of #;,.

(4) If z4eH,, z4€ H,, p#q, then for exactly one block A, e, {2}, z5}< A,
and hence {(iy, by, 21), (i, by, 25)}, i;# i,, occurs in exactly one block of %,; if
{z4, z5} < H,,, i;# i,, then {(i}, by, zY), (i», b,, z5)} occurs in exactly one block of €.

(5) ¥f ze H,, 2'e H,, p# g, then for exactly one block A, € ¥, {z,z'}= A, and
hence (i}, b, z), (i, 2)}, i # i,, occurs in exactly one block of #,; if {z, z'}<= H,,
i,# i, then {(i}, b, 2'), (i, 2)} occurs in exactly one block of €,.

(6") If z,e H,, z,€ H,, p#q, then for exactly one block A, e, {z,, z;}< A,
and hence {(i;, z,), (i», 22)}, i1# i, occurs in exactly one block of &B,UF;; if
{z41. 2} < H,, i)# i,, then {{i}. z,), (i, z,)} occurs in exactly one block of €.

The proof is complete.

If my=1and v,=0forn=1,2,..., we get Theorem 1.2.

3. Constructions
We shall derive a number of corollaries now.

Theorem 3.1 If 0w =<{, then

N(mt+ w)=min{N(m), N(m + 1), N(m + w), N(t) — w}.

Proof. In Lemma 2.1 let r=1w. Set k~2 to the indicated minimum. Then, by
Remark 1.2, transversal designs TD(k +w, t), TD(k, m), TD(k, m+1) and
TDi{k, m+w) exist. Therefore, by Lemma 2.1, a TD(k, mt+w) exists and
N(rt+w)=k-2.
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Theorem 3.2. If u,v=0, u+v<t n=mymyt+muu+v, then
N(n)=min{N(m,), N(m,+ 1), N(mym), N(mym,+ 1), N(t) - 1, N(mu + v)}.

Proof. Let k -2 be the indicated minimum. Then transversal designs TD(k, m,),
TD(k, m,+1), TD(k, mym,), TD(k, mym,+1), TD(k+1,t) and TD(k, m,u+v)
exist. In Theorem 2.1 let r=1. Since u +» =<t we can find disjoint subsets S and
Q of H,, where |S|=1, |Q| = u. Then for each block A, of the TD{k + 1, ¢t), either
v,=0 and u4,=0 or 1, or u,=0 and v,=0 or 1. Theorem 2.1 asserts the
existence of a TD(k, n). Hence N(n)=k —-2.

Theorem 3.3. If 0<u<t, n=m(myt+u), then
N(n)=min{N(m,), N(m,+ 1), N(m,m,), N(t)—1, N(m,u)}.

Proof. Follows from Theorem 2.1 if we let S =. Then for each block A, of the
TD(k+1,1), u,=0.

Theorem 3.4. If 0<u, v<t, n=m;(myt+u+v), then

N(n)=zmin{N(m,). N‘m,+ 1), N(m,+2),
N‘{mlmZ)’ N(t)—2¢ N(mlu)’ N(mlv)}-

Proof. Let k —2 be the latter minimum. Then a TD(k + 2, t) exists. In Theorem
2.1 let r=2,8=0 and choose Q so that {QNH,|=u, |QNH,|=v. For any
block A, of the TD(k+2,t), u,=0, v,=0,1 or 2 and transversal designs
TD{k, m,+1) and TD(k, m,+2) exist. Since k<m,+2 it follows that the
TD(k, m,+2) contains two disjoint blocks (Remark 1.1) so the condition (vii) is
satisfied. Further, transversal designs TD(k, m,), TD(k, m,m,), TD(k, m,u) and
TD(k, m,v) exist and, by Theorem 2.1, a TD(k, n) exists. Again N(n)=k —2.

Theorem 3.5. If t>4(r—1)(r—2), n=m;(myt+7r), then

N(n)zmin{N(m,),N(m,+ 1), N(m,+2), N(m;m,), N(t)—r}.

Proof. Set k—2 equal to the indicated minimum. Then a TD(k +r, t) exists. In
Theorera 2.1 let S=@. It is possible [12] to form the set Q={z4,..., 2z} by
selecting one point 2} from each group H,, 1=<j=r, in such a way that any block
A, of the TD{(k +r, t) contains at most two eiements of Q. Then v, =0, 1 or 2 and
transversal design TD(k, m,+1) and 1i)k, m,+2) exist. Since k<m,+2 it
follows that TD(k, m,+2) contains two disjoint blocks. Further, transversal
design: TD(k, m,) and TD(k, m,m,) exist and, by Theorem 2.1, a TD(k, n) exists.
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Theorem 3.6. If 0<sw<t, n=m,(myt+w), then

N(n)=Zmin{N(m,), N(m,+1), N(my+ w)— 1, N(m,;m,), N(t)— w}.

Proci. Set k—2 equal to the latier minimum. Then a TD(k +w, ) exists. In
Theorem 2.1 let r=w and S=§. We form the set Q={z/...., z.,} by selecting
one point z{ from each group H, 1=<<i=<w, in such a way that all the points
z%...., z!, are contained in one block of the TD(k + w, t). For any block A, of
the TD(k +w, 1), v, =0, 1 or w, and transversal designs TD(k, m,+ 1) and TD(k +
1, my+w) exist. Hence, a RTD(k, m,+w) exists and TD(k, m,+w) contains
m,+ w = w disjoint blocks. Thus the condition (vii) is satisfied. Finally, transversal
designs TD(k, m,) and TD(k, m,m,) exist and, by Theorem 2.1, a TD(k, n) exists.

Theorem 3.7. If n=mmyt+mu+v+w O0<suytovst Osws=<t, then
N(n)=min{ Nim,). N(m,+ 1), N(m,+ 1) -2,

N(mym,), N(mym,+1), N(m;m,+2), (1
N(m,u+v), N(w), N(1)~2}.

Proof. In Theorem 2.1 let r=2. Denote the latter minimum by k —2. Then a
TD(k +2,t) exists. Since 0su+v=<t and 0sw=t we can choose § and Q so
that s,=v, s;=w, q;=u, qg,=0. Further, condition (iii) is satisfied because
transversal designs TD(k, m,u +v) and TD(k, w) exist.

Let A, be any block of the TD(k +2, t). For each A, such that v, =0, we have
U, =0, 1 or 2 and transversal designs TD(k, m,m,+j), j =0, 1, 2, exist. Moreover,
since ksN(mm,)+2<mm,+2, the TD(k, m;m,+2) contains two disjoint
blocks. Hence, (iv) is satisfied. For each block A, such that v, = 1. we have u, =0
or 1 and TD(k, m,) and TD(k, m, + 1) exist.

From (1) it follows that N(m,+1)~2=k —2. Hence k <m, and transversal
designs TD(k + 1, m,+ 1), containing two disjoint blocks, and TD(k, m,+ 1) exist,
so conditions (vi) and (vii) are satisfied.

By Theorem 2.1. a TD(k, n) exists. Therefore N(n)=k —2.

Remark 3.1. If in Theorem 3.7 we have m, <m,, then the term N(m,+1)—-2 in
(1) may be replaced by N(m,+1)—1.

Proof. From (i) it follows that N(m,)=k —2. Hence, k <m;+1<m,+ 1 and the
TD(k +1, m,+ 1, contains two disjoint blocks.

Remark 3.2. If in Theorem 3.7 we have u+ v =1t then the tern: N(m;m,) in (1)
may be omitted.

Proof. If A, is a block of the TD(k +2,t) and v, =0, then u, =1 or 2.
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4. Seven squares

In [6] van Lint proved that n,=<5036. Later on, a number of papers has been
written on the evaluation from above of n, [9, 10, 13]. Recently Brouwer [3]
showed that n,=2862 and gave a lower bound for the maximum number of
mutually orthogonal Latin squares of order n for n <10 000. From the above it
foliows that N(n)=7 for n>1750, n# 2270, 2406, 2410, 2758, 2762, 2766,
2774, 2730, 2862.

In Table 1 we give some new constructions of seven mutually Latin squares
(cf.{3)). The necessary constructions can be found again in [3]. We add here that
N(82)=8, N(100)=8 [10] and N(135)=7 [3].

Combining results obtained in [3] and Table 1 gives N(n)=7 for n>1260,
n# 1718, 1722, 1726, 1734, 1740, 1750.

In particular, we get

Theorem 4.1. n,=<1750.

Table 1
n Theorem m;, m, ¢ u v w
2862 32 17 15 1 3 6
2780 37 ¢ 10 32 23 9 27
2774 33 19 7 19 13
2766 3.7 8 10 32 21 1 27
2762 3.7 8 10 32 21 11 23
2758 3.7 8§ 10 3 21 11 19
2419 37 8 10 29 6 23 19
2406 3.7 8 10 29 4 25 29
2270 3.7 8 10 27 8 19 27
1742 3.3 13 7 17 15
1724 3.2 8 7 29 12 4
1706 3.2 8 7 29 10 2
1630 3.7 g 10 19 13 5 1
1622 3.7 8 10 19 10 9 13
1614 27 g 10 19 10 1 13
1612 3.3 13 7 17 5
1570 3.7 8 10 19 6 1 1
1492 37 . 8 10 17 14 3 17
1478 3.7 8 10 17 12 5 17
1462 3.7 8 1w 17 12 5 1
1460 3.2 8 10 17 12 4
1454 37 8 10 17 10 1 13
1446 3.7 8 10 17 8 9 13
1442 3.2 8 10 17 10 2
1438 3.7 8 10 17 8 3 11
1430 34 13 7 13 8 11
1422 3.7 8 10 17 7 5 1
1420 3.7 8 10 17 6 11 1
1412 37 g8 10 17 5 3 9
1332 3.2 16 7 11 6 4
137¢ 33 13 7 13 11
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Table 1 (cont.)

n Theorem m, m, 14 u v w
1262 3.2 9 15 9 5 2
1254 33 19 7 9 3
1246 32 9 15 9 3 4
1242 33 9 15 9 3
1238 3.2 9 15 9 2 5
1132 3.7 8 10 13 10 3 9
1118 33 13 7 1 9
1114 3.7 8 10 13 8 1 9
1110 37 8 10 13 7 3 11
1094 3.7 8 10 13 4 9 13
1086 3.7 8 10 13 4 5 9
1084 3.7 8 10 13 3 7 13
1078 3.7 8 10 13 2 11 1
1076 3.7 & 10 13 2 1 9
958 3.7 8§ 10 1 8 3 01
950 3.7 8 10 1 7 3 1
914 32 8 8 13 10 2
884 33 13 7 9 5
810 32 8 7 13 10 2
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