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The following problem arises in connection with certain multidimensional
stock cutting problems :

How many nonoverlapping open unit squares may be packed into a large
square of side a?

Of course, if a is a positive integer, it is trivial to see that a2 unit squares can be
successfully packed . However, if a is not an integer, the problem becomes much
more complicated . Intuitively, one feels that for a = N + (1/100), say (where
Nis an integer), one should pack N' unit squares in the obvious way and surrender
the uncovered border area (which is about a/50) as unusable waste . After all,
how could it help to place the unit squares at all sorts of various skew angles?

In this note, we show how it helps . In particular, we prove that we can always
keep the amount of uncovered area down to at most proportional to a 1111

which for large a is much less than the linear waste produced by the "natural"
packing above .

If two nonoverlapping squares are inscribed in a unit square, then the
sum of their circumferences is at most 4, the circumference of the unit
square. As far as we know, this was first published by P. Erdos and
appeared as a problem in a mathematical paper for high shool students in
Hungary. Beck and Bleicher [1] proved that if a closed convex curve ' has
the property that for every two inscribed nonoverlapping similar curves
WI and W z , the sum of the circumferences of WI and W2 is not greater than
the circumference of ', then ' is either a regular polygon or a curve of
constant width .
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It is clear that one can inscribe k 2 squares into a unit square so that the
sum of their circumferences is 4k . Erdos conjectured 40 years ago that if
we inscribe k2 + 1 squares into a unit square, the total circumference
remains at most 4k . For k = 1, this is true as we have just stated .
D. J . Newman [2] proved the conjecture for k = 2 but the general case is
still unsettled.

Denote by f (1) the maximal sum of circumferences of l nonoverlapping
squares packed into a unit square . The conjecture we cannot prove is
just f (k 2 + 1) = 4k. In this note we show f (1) > 4k for 1= k2 + o(k) (in
fact, for l = k2 + [ck7I"] using just equal squares) . We do not know as
f (1) increases from 4k to 4k + 4 how large the jumps are and where they
occur.
Instead of maximizing the circumference sum of packings of a unit

square by arbitrary squares, we shall work with the closely related problem
of maximizing the area sum of packings of an arbitrary square by unit
squares .

For each positive real a, define

W(a) = A2 - sup I Y

where 9 ranges over all packings of unit squares into a given square S(«)
of side a and 1 .91 denotes the number of unit squares in 9.

THEOREM .

W(a) = O(a"ll) (1)

Proof. We sketch a construction which will prove (1) . As usual, the
notation f (x) = Q(g(x)) will denote the existence of two positive constants
c and c' such that cg(x) < f(x) < cg(x) for all sufficiently large x .
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FIGURE I
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We begin by packing S(a) with N 2 unit squares which form a subsquare
S(N) in the lower left-hand corner of S(a) as shown in Fig. 1, where
N = [a - x8 111 ] and a is large . The remaining uncovered area can be
decomposed into two rectangles, each having width /3 = a - N and
lengths >, N.

R(f3,y)

FIGURE 2

Next, we pack a rectangle R(fl, y) of sides /3 and y with y = S2(a),
= S2(a 8 /11) as follows . Let n = [/]. Place adjacent parallel rectangles

R(l, n + 1), each formed from n + 1 unit squares, tilted at the appro-
priate angle 0 so that all R(l, n + 1)'s touch both the top and bottom
edges of R(/3, y) . Furthermore, place these so that D = S2(a 2 / 11) (see
Fig . 2) . Note that D' = S2(a4 / 11) An easy calculation shows that 0 =
S2(a-411) and so, each of the small shaded right triangles on the border of
R has area S2(a-4 / 11) The total area of the triangles is therefore Q(o 7 /hl) .

There are, in addition, two right trapezoids T with base /3 and vertical
sides D and D' which have not been covered up to this point . We next
describe how to pack T.

Let m = [a 4/11 ] . Starting from the right-hand side of T, partition T into
as many right trapezoids T1 , T2 , . . ., T,, as possible, where the base of each
Tk is m (see Fig . 3) . Thus, r = S2(a4111) and X has area 0(a6 /11 ) . If the
vertical sides of Tk are 71k and y1k+1 , let hk = [fk - x2/11] . Pack the bottom
subrectangle R(m, hk) of Tk with mhk unit squares in the natural way (as
shown in Fig. 4) and let Tk * denote the remaining uncovered subtrapezoid
of Tk .

D'

FIGURE 3
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Now, for Sk = [qkl - h k , pack Tk* with rectangles R(1, sk. + 1) as
shown in Fig. 4. Here, each R(1, sk + 1) touches both the top and bottom
edges of Tk as well as the adjacent R(1, sk + 1)'s . As before, the uncovered
border right triangles on Tk * have total area mS2((x -1 / 11) = S2(a3 / 11) . The
total area of the triangular regions between adjacent R(l, sk -I- 1)'s is also
just Q(a3 / 11) since the sum of the angles at the top vertices is
Finally, the uncovered triangle X* has area Q(a3 / 11 ) . Since r = S2(a4 /11)
then the total uncovered area in T is just rQ(a.3I11) + Q(a6 1 11) = Q(a'/ 11 )

m
Tk

FIGURE 4

Hence the total uncovered area of S((X) is just Q(a'/11) and the theorem
is proved. I
The previously mentioned assertion that f(k2 + ck 7 /11) > 4k follows

immediately. It is rather annoying that we do not at present have any
nontrivial lower estimate for W(a) . Indeed we cannot even rule out the
possibility that W(a) = O(1) . Perhaps the correct bound is 0(a1/2)
In the same spirit the following questions can be asked. Let W be a

closed convex curve of circumference 1 . Inscribe k nonoverlapping curves
in' which are all similar to W. Denote by f (', k) the maximum of the
sum of the circumferences of these curves . If `e is a parallelogram or a
triangle then clearly f(',1 2 ) = 1. All that is needed is that ' can be
covered with 1 2 copies of ' . We do not know for which figures other cases
of exact coverings are possible for other values of k although for every k,
there are ms's which have an exact covering into k parts, e.g ., a rectangle .
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The following questions can be posed . For which V is the growth of
f(', k) the slowest? Could this le be a circle? Which 'f permit exact
coverings? Which V permit exact coverings with congruent curves similar
to '? For such', let 1 < n I < n2 < . . . be the integers for which such
an exact covering is possible . What can be said about these sequences?
For example, can nk = o(k 2)?
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