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Hôpital Saint-Louis, AP-HP, Paris, France;
6Department of Bone Marrow Transplant,
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Human Basal Cell Carcinoma Tumor-Initiating Cells Are
Resistant to Etoposide
Journal of Investigative Dermatology (2014) 134, 867–870; doi:10.1038/jid.2013.377; published online 17 October 2013

TO THE EDITOR
Human basal cell carcinoma (BCC), the
most common cancer prevailing in the
United States of America, is resistant to
conventional chemotherapy, although
early surgical excision typically results
in cure (Pfeiffer et al., 1990). An in vivo
human BCC xenograft model led to
the recent identification of CD200þ
CD45�BCC tumor-initiating cells
(TICs) (Colmont et al., 2013), one of
only 16 human cancer TIC populations
characterized by an in vivo assay
(Colmont et al., 2012). The reproducible
propagation of human BCC in a
xenograft model was dependent upon
the generation of a ‘‘humanized’’

fibrovascular stromal bed in athymic
nude mice, similar to the human
squamous cell carcinoma in vivo assays
(Patel et al., 2012), but additionally
required administration of intraperitoneal
etoposide 1 day before BCC grafting.
We hypothesized that etoposide in this
assay might (1) kill BCC TICs leading
to an underestimation of the true TIC
frequency and/or (2) might result in an
in vivo selection bias favoring resistant
BCC cells including non-TICs.

BCC cells in tissue culture formed
spheroidal colonies that when enumer-
ated correlated with the in vivo TIC
frequency, allowing us to assess the
effect of etoposide on BCC TICs

(Supplementary Material online). Col-
ony numbers and average sizes were
measured before and after etoposide
treatment for 1 hour, 24 hours, and 3
days (n¼6 per condition; Figure 1).
Etoposide exposure for 24 and 72 hours
led to reductions in colony numbers
at 1 mM etoposide (8.5þ 5.2, P¼ 0.01,
t¼4, d.f.¼ 5, r¼0.8 and 4.3þ5.7,
Po0.01, t¼4.6, d.f.¼ 5, r¼ 0.4) but
not at 60mM (P¼0.45 and P¼ 0.12) or
100mM (P¼ 0.05 and P¼ 0.12). There
was no overall difference in mean colony
sizes before, 0.029þ 0.007 mm2 (BCC1
0.0295þ0.0097 mm2, BCC2 0.0295þ
0.0052mm2, BCC3 0.028þ 0.0066mm2),
and after etoposide treatment, 0.028þ
0.006 mm2 (BCC1 0.031þ0.0083 mm2,
BCC2 0.030þ0.0030 mm2, BCC3
0.024þ 0.0040 mm2) (P¼0.65). Hence,
etoposide at clinically relevantAccepted article preview online 11 September 2013; published online 17 October 2013

Abbreviations: BCC, basal cell carcinoma; TIC, tumor-initiating cell
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concentrations (60mM) had little impact
on BCC colonies, although prolonged
exposure at 1 mM led to the detachment
of fibroblasts and loss of some BCC
colonies.

In response to etoposide, BCC colo-
nies mounted a DNA-damage response,
with serine 139 histone H2A variant
H2AX phosphorylation (Supplementary
Figure S1a and S1b online) and p53
activation (Supplementary Figure S1c
and S1d online). This was associated
with a rapid induction of PIG8, a
P53-regulated early response gene, and
a transient expression of genes involved
in G1 cell cycle arrest (p21) and DNA
repair (p48) (Supplementary Figure S2a
online). In contrast to U2OS control
cells, BCC cells failed to express
p53-regulated proapoptotic genes (Fas,

Bax, and GADD45a), genes involved in
G2 and S-phase cell cycle arrest (14-3-
3-s and GADD45a), or the p53-negative
feedback gene MDM2 (Supplementary
Figure 2a online). Thus, exposure to
etoposide led to a transient DNA-
damage response that favored cell
survival over apoptosis or senescence.

Cellular resistance to etoposide is
typically mediated by ABC transporters,
in particular ABCB1 (p-glycoprotein,
multidrug-resistance protein 1), ABCC1
(multidrug resistance–associated protein-1),
and ABCG2 (breast cancer–resistance
protein) (Gillet and Gottesman, 2012).
Primary human renal cells (HEPTC,
positive control), human BCC tissue,
and BCC cultured cells were analyzed
by reverse transcriptase–PCR, revealing
constitutive expression of only ABCB1

in both BCC tumor tissue and cultured
cells (Supplementary Figure S2b online),
with an increased expression after
etoposide treatment (Supplementary
Figure S2c online). As ABCB1 is not
expressed by normal human keratino-
cytes (Pfützner et al., 1999; Baron et al.,
2001; Therrien et al., 2010) and has
not been described in human BCC,
we confirmed protein expression by
FACS analysis (Figure 2a) and func-
tional activity by the rhodamine dye
extrusion assay (Supplementary Figure S3
online).

We hypothesized that BCC cell
suspensions, similar to those used in
xenografts (Colmont et al., 2013),
would also be resistant to etoposide.
Dissociated BCC cells (105) had similar
colony-forming efficiencies, with and
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Figure 1. Etoposide treatment of established basal cell carcinoma (BCC) colonies. Freshly dissociated BCC samples (n¼3) were plated and colonies establish after 2

weeks in culture were photographed using an inverted microscope with a �2 lens immediately before and after exposure to etoposide for 1, 24, and 72 hours. Only

colonies adherent to the tissue culture plate were photographed. (a) Representative images are shown of one of six replicates for etoposide concentrations

60mM, 100mM, and 1mM. Scale bars¼ 1mm. (b) Colony numbers and sizes (average area) were enumerated using ImageJ software (NIH, Bethesda, MD) for each well

(18 wells per BCC sample) before and after treatment and compared by a paired t-test using GraphPad Prism software (GraphPad, San Diego, CA) for each BCC sample.
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without etoposide exposure for 1 hour at
increasing concentrations, when plated
in fresh media (Supplementary Figure S4
online). The mean colony number in the
absence of pre-treatment was 66þ 8.9
(BCC4 69þ2.9, BCC5 72þ 8, BCC6
57þ6.5) compared with that after
etoposide pre-treatment (64.7þ12.0
(BCC4 74.4þ8.4, BCC5 65.9þ8.4,
BCC6 53.7þ 8.9)) (P¼0.67). Similarly,
the mean colony sizes were also simi-
lar, 0.034þ0.011 mm2 (BCC4 0.022þ
0.0012, BCC5 0.045þ0.0063, BCC6
0.038þ0.0062) and 0.034þ0.01 mm2

(BCC4 0.023þ0.003, BCC5 0.038þ

0.0066, BCC6 0.042þ0.0079), respec-
tively (P¼0.85). There was also no
reduction in colony number when
freshly dissociated BCC cells were
continuously treated with a 20–100mM

etoposide concentration over a period of
2 weeks (Supplementary Figure S5
online). In aggregate, our in vitro data
suggest that BCC cells resist etoposide
killing at concentrations relevant for (1)
clinical practice where the standard
chemotherapy dose is 100 mg m�2

body surface area resulted in an esti-
mated peak plasma etoposide concen-
tration of 64mM and (2) in our in vivo

model using a dose of 30 mg kg� 1 body
weight that has a maximum peak
plasma concentration of 0.5 mM.

Both CD200þCD45� and CD200�
CD45�flow-sorted human BCC popu-
lations were found to constitutively
express ABCB1 (Figure 2a and b), but
only the CD200þCD45�population
has tumor-initiating capacity. As all
BCC samples (n¼ 6) contained an
ABCB1�CD200þCD45� population,
representing 54–91% of CD200þ
CD45�BCC cells (Figure 2b), we next
tested the tumor-initiating capacity of
this subpopulation using an in vivo
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Figure 2. In vivo basal cell carcinoma (BCC) xenografts growth is not dependent upon ABCB1 expression. (a) Both CD200þCD45� and CD200�
CD45�BCC flow-sorted subpopulations express ABCB1 by reverse transcriptase–PCR of equal cDNA amounts. (b) FACS analysis of freshly dissociated

BCC cells showing both ABCB1þCD200þCD45� and ABCB1�CD200þCD45� subpopulations, representing 1.28 and 0.96%, respectively, of the

CD45�BCC tumor sample cell populations. (c) Schematic of the modified BCC xenografts model with concomitant administration of intraperitoneal

etoposide and implantation of BCC subpopulations. (d) H&E-stained and immunohistochemically stained sections of xenografts tumors from ABCB1þ
CD200þCD45� and ABCB1�CD200þCD45� subpopulation implantations using the modified BCC xenografts model. Similar to human BCCs,
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assay in which intraperitoneal etoposide
is simultaneously administered rather
than 1 day before grafting (Figure 2c).
Dissociated ABCB1þCD200þCD45�
and ABCB1�CD200þCD45�BCC
cells both gave rise to in vivo BCC
xenograft growth (n¼ 3), but ABCB1�
cells resulted in smaller tumors
(Figure 2d and Supplementary Figure S6
online). Both ABCB1þCD200þCD45–
and ABCB1�CD200þ CD45�deri-
ved xenograft tumors exhibited ABCB1
labeling (Supplementary Figure S7
online) (Pfützner et al., 1999,
Georges et al., 1992), suggesting that
ABCB1�CD200þCD45�BCC cells
upregulated ABCB1 acquiring resi-
stance to etoposide in vivo.

ABCB1 is both constitutively
expressed by a subpopulation of BCC
TICs and can be induced in ABCB1�
cells upon etoposide exposure, poten-
tially explaining why BCC does not
respond to etoposide (Coker et al.,
1983; Pfeiffer et al., 1990). The ability
of BCC cells to express ABCB1, a cell
surface transporter protein known to
extrude etoposide, may also explain
the transient nature of the DNA-
damage response observed after
etoposide exposure, as well as the
development of smaller tumors from
the ABCB1� subpopulation. We did
not test metastatic BCC cells or samples
from patients previously treated with
etoposide, and therefore we cannot
comment on drug-transporter expres-
sion or chemotherapy resistance of

these tumors. The ability of the in vivo
BCC xenograft model to faithfully
recapitulate BCC tumor growth, within
which etoposide has no effect on TIC
frequency, may allow exploration of
these and related questions in future
studies.
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