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We determine the leading-order nonrelativistic quantum chromodynamics (NRQCD) matrix element
〈O1〉Υ and the ratio 〈q2〉Υ , for Υ = Υ (nS) with n = 1, 2, and 3 by comparing the measured values
for Γ [Υ → e+e−] with the NRQCD factorization formula in which relativistic corrections are resummed
to all orders in the heavy-quark velocity v . The values for 〈q2〉Υ , which is the ratio of order-v2 matrix
element to 〈O1〉Υ , are new. They can be used for NRQCD predictions involving Υ (nS) and ηb(nS) with
relativistic corrections. As an application, we predict the two-photon decay rates for the spin-singlet
states: Γ [ηb(1S) → γ γ ] = 0.512+0.096

−0.094 keV, Γ [ηb(2S) → γ γ ] = 0.235+0.043
−0.043 keV, and Γ [ηb(3S) → γ γ ] =

0.170+0.031
−0.031 keV.

© 2011 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The pseudoscalar bottomonium ηb(1S), which is the spin-
singlet S-wave ground state, was first observed in the photon
energy spectrum of the radiative Υ (3S) decay [1] and confirmed
in the radiative Υ (2S) decay [2] by the BABAR Collaboration.
The state was also confirmed by the CLEO Collaboration again in
Υ (3S) → γ ηb(1S) [3]. So far, only the mass for the ηb(1S) is
known as mηb(1S) = 9390.9 ± 2.8 MeV [4], and any of its exclusive
decay modes has not been observed, yet. Among its various decay
modes, recent theoretical studies have been concentrated on rel-
atively clean channels like ηb → J/ψ J/ψ [5–8], ηb → J/ψγ [9],
and others [10,11].1 On the other hand, the most elementary ex-
clusive decay channel is ηb → γ γ , although it has a large back-
ground. With the decay mode Υ → e+e− of the spin-triplet part-
ner, ηb → γ γ must be well described by the nonrelativistic quan-
tum chromodynamics (NRQCD) factorization formulas for the elec-
tromagnetic decay of heavy quarkonia [12]. If one makes use of
the heavy-quark spin symmetry, then one can make a rough esti-
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mate of the decay rate, whose branching fraction is ∼ 10−5, which
is relatively greater than other channels listed above.

Available predictions for the decay rate Γ [ηb → γ γ ] are based
on the potential model [13–19], the Salpeter method [20–22], or
the heavy-quark spin symmetry [23]. Some of them include the
effects of the relativistic corrections and binding effects and most
of the predictions rely on the heavy-quark spin symmetry between
the spin-singlet and -triplet states. One can estimate the spin de-
pendence of the rate systematically by making use of the poten-
tial NRQCD [24,25]: In Ref. [26], the decay rate was computed to
the next-to-next-to-leading logarithmic accuracies as Γ [ηb(1S) →
γ γ ] = 0.659 ± 0.089(th.)+0.019

−0.018(δαs) ± 0.015(exp.) keV. Recently,
an updated potential-NRQCD prediction for the decay rate became
available: 0.54±0.15 keV [27], in which leading relativistic correc-
tions are included.

In the mean time, there has been a significant progress in the
NRQCD calculations for S-wave charmonium production and decay,
in which relativistic corrections of all orders in the heavy-quark
velocity v are resummed [28]. Precise determination of the wave-
function at the origin for the J/ψ was made based on this method
[29–32]. This method has been applied to reconcile the large dis-
crepancy between the theoretical prediction and the experimental
results for the cross section σ [e+e− → J/ψ + ηc] at the B fac-
tories [33–35]. Therefore, it is worthwhile to improve the NRQCD
prediction for Γ [ηb → γ γ ] by taking into account the relativistic
corrections to all orders in v . In order to carry out such an analysis,
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one needs to know the values for the color-singlet NRQCD matrix
elements and those involving relativistic corrections. The NRQCD
matrix element for the S-wave bottomonia can be determined by
making use of the measured values for Γ [Υ → e+e−] up to cor-
rections of spin-symmetry breaking effects. Unfortunately, available
order-v2 NRQCD matrix element that has been fixed from lattice
QCD simulations [36,37] suffers from large uncertainties originated
from slow convergence of the cut-off regularization method.

In this Letter, we first determine the NRQCD matrix elements
for the S-wave bottomonium states that are required to com-
pute the relativistic corrections with considerably less uncertain-
ties than available values, extending the method in Refs. [28,30].
As an application, we compute Γ [ηb → γ γ ], in which corrections
of order the strong coupling αs and relativistic corrections of all or-
ders in α0

s q2n are included. Here, q is half the relative momentum
of b and b̄ in the bottomonium rest frame. The remainder of this
Letter is organized as follows: In Section 2, we estimate the NRQCD
matrix elements for the S-wave bottomonium states by making
use of the resummed NRQCD factorization formula against empiri-
cal data for the spin-triplet states. Our prediction for Γ [ηb → γ γ ]
is presented in Section 3 with the comparison with available pre-
dictions and we summarize in Section 4.

2. NRQCD matrix elements for the Υ (nS)

In this section, we briefly review the method to determine the
NRQCD matrix elements for Υ at leading and subleading order
in q2 based on the strategy for the charmonium counterpart in
Ref. [30]. The results are compared with those of lattice QCD cal-
culations.

The NRQCD factorization formula for the electromagnetic de-
cay of the S-wave quarkonium H is a linear combination of non-
perturbative NRQCD matrix elements 〈On〉H that are classified in
powers of v , where On is the NRQCD operator. The factorization is
achieved at the amplitude level and the ratio 〈q2n〉H of the order-
q2n matrix element to the leading one are all, in general, indepen-
dent. In addition, the ratios 〈q2n〉H have power-ultraviolet diver-
gences that must be regulated and, therefore, the values can even
be negative under subtraction. In lattice QCD calculations, this sub-
traction is made by making use of the hard-cut-off regularization
whose convergence is slow, resulting in large uncertainties [28].
However, in an electromagnetic decay, in which the color-singlet
contributions dominate, one can calculate the quarkonium wave-
function of the leading heavy-quark–antiquark (Q Q̄ ) Fock state
up to corrections of relative order v2 if one knows the static,
spin-independent Q Q̄ potential exactly. The authors of Refs. [28,
30] have constructed the generalized version, 〈q2n〉H = [〈q2〉H ]n ,
of the Gremm–Kapustin relation [38] to resum a class of rela-
tivistic corrections. The method has been devised to be consistent
with dimensional regularization of these power-ultraviolet diver-
gent matrix elements.

The resultant formula for the decay rate of Υ → e+e− , in which
relativistic corrections of all color-singlet Q Q̄ operator matrix ele-
ments are resummed, is given by [29,30]

Γ
[
Υ → e+e−] = 8πα2

27m2
Υ

[
1 − f

(〈
v2〉

Υ

) − 8αs

3π

]2

〈O1〉Υ , (1)

where mΥ is the Υ mass, 〈O1〉Υ is the color-singlet NRQCD matrix
element for the electromagnetic decay of the Υ at leading order
in v , and 〈v2〉Υ ≡ 〈q2〉Υ /m2

b with the bottom-quark mass mb . The
resummed relativistic corrections to all orders in v at order α2α0

s
are contained in the function f (x) = x/[3(1 + x + √

1 + x )] with
x = 〈v2〉Υ and in the factor 1/m2 implicitly.
Υ
The order-α2
s corrections to Γ [Υ → e+e−] (Refs. [39,40]) con-

tain a strong dependence on the NRQCD factorization scale. If one
were to include those corrections in Eq. (1) and use it to determine
〈O1〉Υ , then 〈O1〉Υ would also contain a strong dependence on the
NRQCD factorization scale, which would cancel in other quarko-
nium decay and production processes only if the short-distance
coefficients were calculated through relative order α2

s . Generally,
short-distance coefficients for quarkonium processes have not been
calculated beyond relative order αs . For this reason, we omit the
order-α2

s corrections to the leptonic width in Eq. (1). Nevertheless,
if one includes the order-α2

s corrections and take the factorization
scale to be mb , the resultant NRQCD matrix elements are increased
by about a factor of 40%.

We briefly discuss the method employed in this Letter to com-
pute 〈O1〉Υ and 〈q2〉Υ . We follow the method given in Ref. [30]
and make use of the Cornell potential model [41]. By using the
Schrödinger equation we can express 〈O1〉Υ and 〈q2〉Υ as func-
tions of the parameters of the Cornell potential model, which
are the mass parameter in the Schrödinger equation, the string
tension, and the Coulomb strength of the Cornell potential. The
mass parameter can be expressed in terms of the 1S-2S mass
splitting [30], which we compute from the masses of Υ (1S) and
Υ (2S). The value of the string tension, which is universal, is taken
from lattice measurements as 0.1682 ± 0.0053 GeV2 [42–45]. Fi-
nally, the Coulomb strength parameter is determined by constrain-
ing the rate (1) to be consistent with the experimental value [4]
and solving the resulting nonlinear equation numerically. Because
of this, the value of the Coulomb strength parameter is chosen dif-
ferently for each quarkonium. From the fixed values of the model
parameters we obtain the numerical values of the matrix elements.
For details of the method, we refer the readers to Ref. [30] and ref-
erences therein.

We list the numerical values and uncertainties of the param-
eters used in Eq. (1). The measured leptonic widths of Υ (nS)

are Γ [Υ (1S) → e+e−] = 1.340 ± 0.018 keV, Γ [Υ (2S) → e+e−] =
0.612±0.011 keV, and Γ [Υ (3S) → e+e−] = 0.443±0.008 keV [4].
The masses for the Υ (nS) states are taken to be mΥ (1S) =
9.46030 GeV, mΥ (2S) = 10.02326 GeV, and mΥ (3S) = 10.3552 GeV
[4], where the errors (� 5 × 10−3%) are neglected. The factoriza-
tion formula (1) depends on mb implicitly through 〈v2〉Υ , where
we use the one-loop pole mass mb = 4.6 ± 0.1 GeV. We evalu-
ate α(μ) and αs(μ) at the scale, the momentum transfer at the
quarkonium-photon vertex. The values are α(μ) = 1/131 in every
case, αs[mΥ (1S)] = 0.180 ± 0.032, αs[mΥ (2S)] = 0.177 ± 0.031, and
αs[mΥ (3S)] = 0.176 ± 0.031, where the uncertainties of relative or-
der αs are included in the strong coupling. The main difference
between this analysis and that for the S-wave charmonium in
Ref. [30] is that there are no measured data for Γ [ηb → γ γ ].
Therefore, we use the spin-triplet data only.

By carrying out these calculations, the Coulomb strength pa-
rameter is fixed as 9.955 for Υ (1S), 10.960 for Υ (2S), and 11.127
for Υ (3S), respectively. From these we obtain our results for
〈O1〉Υ and 〈q2〉Υ , which are tabulated in Table 1. The correspond-
ing values for the quantity 〈v2〉Υ are 〈v2〉Υ (1S) = −0.009+0.003

−0.003,

〈v2〉Υ (2S) = 0.090+0.011
−0.011, and 〈v2〉Υ (3S) = 0.155+0.018

−0.018. These values
are in rough agreements with the typical estimate v2 ∼ 0.1 for
the bottomonium except that 〈v2〉Υ (1S) is tiny. The error bars in
Table 1 reflect the uncertainties arising from mb , Γ [Υ → e+e−],
string tension, αs , and the ignorance of the spin-dependent in-
teractions of the potential in the Schrödinger equation [30], all
of which are added in quadrature. The values for the leading-
order matrix elements 〈O1〉Υ in Table 1 have been used to predict
the inclusive charm production in Υ decays [46] and the heavy
quarkonium production associated with a photon in e+e− annihi-
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Table 1
The NRQCD matrix element 〈O1〉Υ at the leading order in v in units of GeV3 and ratios 〈q2〉Υ in units of GeV2 for Υ = Υ (1S), Υ (2S), and Υ (3S).

Sources of errors 〈O1〉Υ (1S) 〈q2〉Υ (1S) 〈O1〉Υ (2S) 〈q2〉Υ (2S) 〈O1〉Υ (3S) 〈q2〉Υ (3S)

�mb 3.069+0.000
−0.001 −0.193+0.000

−0.000 1.623+0.002
−0.002 1.898+0.001

−0.000 1.279+0.003
−0.003 3.283+0.003

−0.002

others 3.069+0.207
−0.190 −0.193+0.072

−0.073 1.623+0.112
−0.103 1.898+0.210

−0.210 1.279+0.090
−0.083 3.283+0.353

−0.352

total 3.069+0.207
−0.190 −0.193+0.072

−0.073 1.623+0.112
−0.103 1.898+0.210

−0.210 1.279+0.090
−0.083 3.283+0.353

−0.352
lation [47]. The values for 〈q2〉Υ in Table 1 are new. The value
for Υ (1S) has errors significantly less than those of the avail-
able lattice QCD calculations [36,37]. One can reduce theoretical
uncertainties by considering the dependence on mb that also ap-
pears in the short-distance coefficients of factorization formulas.
Therefore, we present the sources of errors in Table 1. Unlike the
S-wave charmonium case in Ref. [30], the uncertainties of 〈O1〉Υ
and 〈q2〉Υ due to the errors of the heavy-quark mass are insignifi-
cant.

Our results are now compared with those for the ground-
state S-wave bottomonium obtained from a lattice QCD simula-
tion. The results from the quenched approximation are given in
Ref. [36]. We quote the updated results of the unquenched anal-
ysis in Ref. [37]: The leading-order NRQCD matrix element is
〈O1〉1S = 4.10(1)(9)(41) GeV3 and the ratio 〈q2〉1S ranges from
about −5 GeV2 to about 2 GeV2 [37]. Here, the subscript 1S in-
dicates the average of ηb(1S) and Υ (1S). Our central value for the
〈O1〉Υ (1S) is about 25% smaller than that of Ref. [37], which is
greater than the quenched case [36] by about a factor of 2. In the
case of 〈q2〉Υ (1S) , our result is consistent with that in Ref. [37] but
ours has uncertainties significantly smaller than that of the lattice
result.

3. Two-photon widths for the ηb

In this section, we predict Γ [ηb → γ γ ] by making use of
the NRQCD matrix elements determined in Section 2. In fact, the
NRQCD matrix element 〈O1〉ηb that appears in the factorization
formula for Γ [ηb → γ γ ] might be different from 〈O1〉Υ by a rel-
ative order v2, which breaks the approximate heavy-quark spin
symmetry [12]. We recall that the effect of spin-symmetry break-
ing in the low-lying S-wave charmonia J/ψ and ηc is not signif-
icant [30]. Therefore, the errors in the approximation 〈O1〉ηb(nS) ≈
〈O1〉Υ (nS) may be insignificant based on the fact that 〈v2〉Υ 

〈v2〉 J/ψ = 0.22 [30].

As in the leptonic decay of the Υ , we include the relativistic
corrections to Γ [ηb → γ γ ] to all orders in v . The resultant factor-
ization formula is given by [30,31]

Γ [ηb → γ γ ] = 2πα2

81m2
b

[
1 − g

(〈
v2〉

ηb

) − (20 − π2)αs

6π

]2

〈O1〉ηb ,

(2)

where the relativistic corrections are incorporated into the func-
tion g(x) = 1 − {log[1 + 2

√
x(1 + x) + 2x]}/[2√

x(1 + x) ] with x =
〈v2〉ηb ≡ 〈q2〉ηb /m2

b . The input parameters for the numerical calcu-
lations are chosen in a similar way in Ref. [30] for Γ [ηc → γ γ ].
The scale μ for the couplings α and αs are taken to be the
momentum transfer at the photon-heavy-quark vertex, namely,
mηb /2: α = 1/132 for every case, αs[mηb(1S)/2] = 0.216 ± 0.046,
αs[mηb(2S)/2] = 0.212 ± 0.045, and αs[mηb(3S)/2] = 0.210 ± 0.044,
where the uncertainties of the strong coupling are of relative or-
der αs . For the meson masses, we use mηb(1S) = 9390.9 ± 2.8 MeV
[4], mηb(2S) = 9.97 GeV, and mηb(3S) = 10.3 GeV, where we have
assumed that mΥ (nS) − mηb(nS) = 0.5 MeV for n = 2 and 3. While
this value for the hyperfine mass splitting is smaller than the mea-
Table 2
Two-photon widths of the ηb(nS) in units of keV.

State ηb(1S) ηb(2S) ηb(3S)

Γγγ 0.512+0.096
−0.094 0.235+0.043

−0.043 0.170+0.031
−0.031

sured value for the 1S states mΥ (1S) −mηb(1S) = 69.3±2.8 MeV [4],
it is comparable to that for the 2S charmonia, mψ(2S) − mηc(2S) =
49 MeV [4]. Note that the uncertainties from mηb(2S) and mηb(3S)

are insignificant because the factorization formula (2) does not
depend on them but on mb . Like the leptonic width of the Υ

[Eq. (1)], we omit the order-α2
s corrections to the two-photon

width of the ηb , whose result is available in Ref. [48].
The resultant predictions for Γ [ηb → γ γ ] are tabulated in Ta-

ble 2. The errors include the uncertainties of αs , mb , and the values
for 〈O1〉Υ and 〈q2〉Υ in Table 1. We also include the errors of us-
ing 〈O1〉Υ and 〈q2〉Υ , which are of relative order v2 set to be
0.1. From the order-α2

s corrections to the electromagnetic widths
of the Υ and ηb [39,40,48], we find that the order-α2

s corrections
account for −2.64α2

s in the ratio Γ [ηb → γ γ ]/Γ [Υ → e+e−], if
we choose the NRQCD factorization scale to be mb . Therefore, we
include the errors of omitting the order-α2

s corrections in using
Γ [Υ → e+e−] to determine Γ [ηb → γ γ ] as 2.64α2

s . This implies
that the large correction to the leading-order NRQCD matrix ele-
ments arising from inclusion of the order-α2

s corrections, as briefly
shown in the previous section, almost cancels the order-α2

s correc-
tions to the two-photon width of the ηb . All of the errors listed
above are added in quadrature. We can compare our results with
previous predictions. In the case of ηb(1S), available predictions
range from 0.170 keV to 0.659 keV. The results in Refs. [15–18,
20–23] agree with our prediction within errors, while some mod-
els [13,14,19], which does not use the heavy-quark spin symmetry,
apparently underestimate the rate in comparison with ours. Our
result Γ [ηb(1S) → γ γ ] = 0.512+0.096

−0.094 agrees with the most re-
cent potential-NRQCD prediction 0.54 ± 0.15 keV in Ref. [27] in
which the leading relativistic corrections are included, while it is
smaller than another potential-NRQCD prediction in Ref. [26]. Note
that we have borrowed 〈O1〉Υ and 〈q2〉Υ for 〈O1〉ηb and 〈q2〉ηb

in Eq. (2) after taking into account the errors of spin-symmetry
breaking effect as v2 ∼ 0.1 because Γ [ηb → γ γ ] are not mea-
sured. Once Γ [ηb(nS) → γ γ ] are measured in the future, one can
determine 〈O1〉ηb(nS) and 〈q2〉ηb(nS) (or eventually 〈v2〉ηb(nS)) with
an improved accuracy in combination with the measured values
for Γ [Υ → e+e−].

4. Summary

In summary, we have determined the leading-order NRQCD ma-
trix element 〈O1〉Υ and the ratio 〈q2〉Υ , for Υ = Υ (nS) with n = 1,
2, and 3 by comparing the measured values for the leptonic de-
cay rates of the Υ with the NRQCD factorization formula in which
relativistic corrections to all orders in v are included. The values
for 〈q2〉Υ are new and can be used for various phenomenolog-
ical predictions for Υ and ηb including relativistic corrections.
The values for 〈q2〉Υ are consistent with the naive expectation
of the velocity-scaling rules except that 〈q2〉Υ (1S) is tiny. By as-
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suming approximate heavy-quark spin symmetry with the uncer-
tainties of relative order v2 ∼ 0.1, we used 〈O1〉Υ and 〈q2〉Υ to
estimate Γ [ηb(1S) → γ γ ] = 0.512+0.096

−0.094 keV, Γ [ηb(2S) → γ γ ] =
0.235+0.043

−0.043 keV, and Γ [ηb(3S) → γ γ ] = 0.170+0.031
−0.031 keV. Our pre-

diction for Γ [ηb(1S) → γ γ ] is consistent with a recent potential-
NRQCD prediction in Ref. [27], in which the leading relativistic
corrections are included.

By making use of the ratio Γ [ηb(1S) → γ γ ]/Γ [ηb(1S) → gg],
one can make a rough estimate of the branching fraction for
ηb(1S) → γ γ as ∼ 6.9 × 10−5. The BABAR Collaboration reported
19200 ± 2000 ± 2100 ηb(1S) events out of (109 ± 1) × 106Υ (3S)

samples [1]. They also obtained 12800 ± 3500+3500
−3100ηb(1S) events

from (91.6 ± 0.9) × 106Υ (2S) samples [2]. These are not suffi-
cient to observe the mode ηb(1S) → γ γ . However, we expect that
this channel can be observed at the superKEKB or superB factory if
more data are accumulated. The CERN Large Hadron Collider is ex-
pected to produce about 5×109ηb ’s with the integrated luminosity
∼ 300 fb−1 [6], with which one can probe about 45000 events of
ηb(1S) → γ γ . We anticipate such a stage against which our pre-
dictions can be tested.
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