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Monotone runs of uniformly distributed integer
random variables: A probabilistic analysis
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Abstract

Using a Markov chain approach and a polyomino-like description, we study some asymptotic
properties of monotone increasing runs of uniformly distributed integer random variables. We analyze
the limiting trajectories, which after suitable normalization, lead to a Brownian motion, the number of
runs, which is asymptotically Gaussian, the run length distribution, the hitting time to a large length k
run, which is asymptotically exponential, and the maximum run length which is related to the Gumbel
extreme-value distribution function. A preliminary application to DNA analysis is also given.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider i.i.d. integer random variables with the distribution I (s) given by p(i) =
1/s, i = 1 . . . s. Assume that we have a sequence x[i], i = 1 . . . n, constructed from
independent I (s) random variables. A run is a maximal (contiguous) increasing monotone
subsequence. A maximum is a position i such that x[i − 1]�x[i] > x[i + 1]. For instance,
with s = 4, the sequence 23241321224421321242 has 10 runs, with a maximal run length
of 5. A first approach to the runs analysis was given in Crescenzi et al. [5]. We observe that a
Markov chain approach can lead to asymptotic results on the runs. In this paper, continuing
an approach we had started in [15,17–20], we consider the runs either as a stochastic
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process or as a polyomino. This allows the derivation of several asymptotic distributions
of random variables and processes such as: the limiting trajectories, which after suitable
normalization, lead to a Brownian motion, the number of runs, which is asymptotically
Gaussian, the run length distribution, the hitting time to a large length k run, which is
asymptotically exponential, and the maximum run length, which is related to the Gumbel
extreme-value distribution function. Our results are in some sense similar to what we have
obtained in [18] where we analyzed geometrically distributed random variables, and [19],
where we considered Carlitz compositions.

Let us already mention that, as s → ∞, all properties related to the ranked I (s) random
variables have the same distributions as in the model of random permutations.

For more details on the analysis of algorithms on sequences, the interested reader should
consult Szpankowski [23].

The paper is organized as follows: in Section 2, we present the associated Markov chain
and the limiting trajectories. Section 3 is devoted to some simulations and the maximum
run length distribution. Section 4 provides a preliminary application to DNA analysis.
Section 5 concludes the paper. Appendix A–C provide some technical tools which are
useful in Section 3.1.

This work emaned from the fruitful discussions we had with A. Del Lungo, during the
2003 summer. The paper was nearly completed when Alberto suddenly died on June 1,
2003. We present this work as a tribute to his memory.

2. Associated Markov chain and limiting trajectories

In this section, we first describe the runs process as a Markov chain. We then study the
run length distribution. We finally analyze the limiting trajectories and the number of runs
distribution.

2.1. Stochastic analysis

It is immediately checked that we can see the runs as a Markov chain, the states of which
are given by the possible values i of the I (s) random variables starting a run, together with
the run length. The following notations will be used in the sequel:

L(i) := length of an ascending run starting with value i,

�(i, l, j) := Pr[L(i) = l, x[l + 1] = j ]
=

∑
i � i2 � ···� il>j

(
1

s

)l

,

�(i, l) := Pr[L(i) = l] =
∑
j

�(i, l, j)

=
∑

i � i2 � ···� il

(
1

s

)l−1
il − 1

s
, note that

∑
l

�(i, l) = 1,
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�
[[i, l], [j, �]] := Pr[next run starts at j, has length �,

given that the previous run was starting at i

and had length l]
= �(i, l, j)�(j, �)/�(i, l).

Two other transition matrices are given by

�
[[i, l], j] := Pr[next run starts at value j,

given that the previous run was starting at i

and had length l]
=
∑
�

�
[[i, l], [j, �]]

= �(i, l, j)/�(i, l),

hence

�
[[i, l], [j, �]] = �

[[i, l], j]�(j, �),

�[i, j ] := Pr[next run starts at j,

given that the previous run was starting at i]
=
∑

l

�(i, l, j).

The stationary distribution of �[i, j ] will be denoted by �(j).
Note that �(i, l) can be computed directly. Indeed set, 1

�1(i, l) :=
∑
w� l

�(i, w) =
∑

i � i2 � ···� il

(
1

s

)l−1

= [zl−1]
(

1

1 − z/s

)s−i+1

= 1

sl−1

(
s − i + l − 1

l − 1

)
. (1)

We derive

�(i, l) = �1(i, l) − �1(i, l + 1) = 1

sl−1

(
s − i + l − 1

l − 1

)(
1 − s − i + l

ls

)
. (2)

Also, for further use, we define

�2(i, l) :=
∑
w� l

�1(i, w),

�3(i, l) :=
∑
w� l

�2(i, w).

These expressions are easily seen to converge. Also, by Stirling formula, or better, by
singularity analysis, (see [9]), with the well-known formula

[zn]
(

1

1 − z

)�

∼ n�−1

�(�)

(
1 + O

(
1

n

))
, n → ∞,

1 We use the notation [zk]f (z) to denote the coefficient of zk in the power expansion of f (z).
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we obtain

�1(i, k) ∼ (k − 1)s−i

(s − i)!sk−1

[
1 + O

(
1

k

)]
. (3)

Let us denote by Fj (z) the generating function of �j (i, l). We know already that

F1(i, z) = z

(
1

1 − z/s

)s−i+1

. (4)

The generating function of �2(i, l) is given by

F2(i, z) = z
F1(i, z) − F1(i, 1)

z − 1

and, by singularity analysis (the dominant singularity of F2 is at z = s), we obtain

�2(i, k) ∼ (k − 1)s−i

(s − 1)(s − i)!sk−2

[
1 + O

(
1

k

)]
. (5)

Similarly, we derive

�3(i, k) ∼ (k − 1)s−i

(s − 1)2(s − i)!sk−3

[
1 + O

(
1

k

)]
. (6)

2.2. Some generating functions and their applications

In this subsection, we first construct the generating functions of some probability tran-
sition matrices and stationary distributions. Next, we compute some stationary parameters
distributions related to run lengths. Then we analyze the asymptotics of m successive runs.

2.2.1. One ascending run
We build a corresponding polyomino as follows: we choose a starting integer i, and

construct a monotone sequence of l integers, i = i1 � · · · � il , followed by a last integer j
with j < il . We mark each integer by z, the last monotone integer il is marked by �, and j
is marked by �. (For this kind of construction, see, for instance, [16].)

The trivariate generating function 	(�, �, z|i) that comprises all such polyominoes,
labelled as described, can be computed as follows: set

g1 := z�i , and, for k�1,

gk+1(�, �, z) =
s∑


=1

[�
]gk(�, 0, z)z

⎡
⎣ s∑

r=


�r +

−1∑
j=1

�j

⎤
⎦

= gk(1, 0, z)z�
1 − �s

1 − �

+
s∑


=1

[�
]gk(�, 0, z)z

[
�
 �s−
+1 − 1

� − 1
− �
 �s−
+1 − 1

� − 1

]
.
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This sequence describes the effect of “adding a new slice.” The generating function gk

corresponds to a polyomino of k integers (each integer marked by z), where the last integer
is marked either by �, if it is still monotone, or by �, if it is smaller than the previous integer.
Hence

	(�, �, z|i) :=
∞∑

k=1

gk(�, �, z)

= g1 + 	(1, 0, z|i)z� 1 − �s

1 − �
+ z

�s+1

� − 1
	(1, 0, z|i)

− z

� − 1
	(�, 0, z|i) − �s+1

� − 1
	(1, 0, z|i) + z

� − 1
	(�, 0, z|i).

Set A1 := 	(1, 0, z|i). (To ease the notation, we usually drop the variables list, except
when the context is not sufficiently clear). Setting � = 0, � = 0, we immediately check that
	(0, 0, z|i) = 0. Set now � = 0. We obtain

	(�, 0, z|i) = z

[
�i + �s+1

� − 1
A1

]
− z

� − 1
	(�, 0, z|i),

which gives

	(�, 0, z|i) = z
� − 1

� − 1 + z

[
�i + �s+1

� − 1
A1

]
(7)

and

	(�, �, z|i) = z

[
�i + �s+1

� − 1
A1 + 1

� − 1
	(�, 0, z|i)

]

+ A1�z

1 − �
− z2

� − 1 + z

[
�i + �s+1

� − 1
A1

]
. (8)

We also derive from (7)

	(�, 0, z|i) = z(� − 1)

� − 1 + z

[
�i + �s+1

� − 1
A1

]

and, finally

	(�, �, z|i) = z

[
�i + �s+1

� − 1
A1

]
− z2

� − 1 + z

[
�i + �s+1

� − 1
A1

]

+ z2

� − 1 + z

[
�i + �s+1

� − 1
A1

]
+ A1�z

1 − �

= z(� − 1)

� − 1 + z

[
�i + �s+1

� − 1
A1

]

+ z2

� − 1 + z

[
�i + �s+1

� − 1
A1

]
+ A1�z

1 − �
. (9)
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It remains to compute A1. But the first part of (9) has a singularity in the denominator at
� = 1 − z. This leads to[

�∗i + (1 − z)s+1

1 − z − 1
A1

]
= 0

or

A1 = z(1 − z)i−s−1 (which leads again to (1)),

and 	 is completely determined.
Set now

�(�, z|i) = 	(0, �, z|i)
= A1�z

1 − �
+ z2

� − 1 + z

[
�i + �s+1

� − 1
A1

]
(10)

and, as � → 1, this leads to

�(1, z|i) = z + (zs − 1)A1.

The generating function � “contains” the quantities of interest, as described in the next
proposition which gives all useful distributions in terms of �

Proposition 1.

�(i, l, j) = 1

sl

[
zl+1�j
]
�(�, z|i),

�(i, l) = 1

sl

[
zl+1
]
�(1, z|i),

�[i, j ] =
[
�j
]
s�(�, 1/s|i).

It is convenient to set

A2(�|i) := (1 − �/s)i−s−1,

A3(�, �|i) := A2
��/s

1 − �
+ �/s

� − 1 + �/s

[
�i + �s+1

� − 1

�

s
A2

]
,

A4(�|i) := A3(1, �|i) = 1 + (� − 1)A2.

This leads to

�(i, l, j) = [�l�j ]A3(�, �|i),
�(i, l) = [�l]A4(�|i) (which leads again to (2)),

�[i, j ] = [�j ]A3(�, 1|i),
A3(�, 1|i) = (1 − 1/s)i−s−1 �

s(1 − �)

+ 1

s(� − 1 + 1/s)

[
�i + �s+1

s(� − 1)
(1 − 1/s)i−s−1

]
.
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It is an easy check to derive that
∑

j �[i, j ] = 1, which follows from
∑

j �[i, j ] =
s�(1, 1/s|i).

To obtain �(i), we start from the stationary equation

�(j) =
∑

i

�(i)[�j ]A3(�, 1|i).

We now compute the generating function of �(i), (�) :=∑s
j=1 �(j)�j , and (1) = 1

(�) =
∑

i

�(i)A3(�, 1|i) = (1 − 1/s)−s−1((1 − 1/s))
�

s(1 − �)

+ 1

s(� − 1 + 1/s)

[
(�) + �s+1

s(� − 1)
(1 − 1/s)−s−1((1 − 1/s))

]
. (11)

Solving (11) w.r.t. (�) and letting � → 1; we obtain

((1 − 1/s)) = 2(1 − 1/s)s

and, finally,

(�) = 2�
�s − �s + s − 1

s(1 − �)2(s − 1)
, (12)

from which we derive

�(i) = 2
s − i

s(s − 1)
.

Of course, �(s) = 0 and
∑s−1

1 �(i) = 1.

2.2.2. Some stationary parameters distributions related to the run length
As in [18], we need to compute the following averages and second moments:

L̄(i) =
∑

l

�(i, l)l,

L2(i) =
∑

l

�(i, l)l2,

L̄ =
∑

i

�(i)L̄(i).

For instance (differentiation is w.r.t. �), we obtain the following results:

Proposition 2.

L̄(i) = A′
4

∣∣
�=1 = (1 − 1/s)i−s−1,

L2(i) = A′′
4

∣∣
�=1 + L̄(i) = (1 − 1/s)i−ss(−2i + 3s + 1)

(s − 1)2 , (13)
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and

L̄ =
∑

�(i)L̄(i) = 2/(1 − 1/s),

L2 =
∑

�(i)s2(i) = 2s(2(1 − 1/s)−s − 3)

s − 1
.

The expression for L̄ is easy to check: this corresponds, by examining couples of random
variables, to s2/

∑s
i=2(i − 1).

The stationary generating function of the run length is given by

H(�) =
∑

�(i)A4 = 1 + (� − 1)(1 − �/s)−s−1(1 − �/s), (14)

from which we derive, for instance, the following first three values of the stationary run
length distribution:

Proposition 3.

Pr[L = 1] = s − 2

3s
,

Pr[L = 2] = 5s2 − s − 6

12s2 ,

Pr[L = 3] = (11s − 12)(s + 1)(s + 2)

60s3 .

The stationary run length probability is geometrically decreasing. Note that, as s → ∞,
L̄ ∼ 2, L2 ∼ 4e−6. This is clear from the following result: as s → ∞, our model turns into
the model of random permutations, with the stationary expressions L̄ = 2, L2 = 4e − 6.
(see [20] for details).

For further use, let us define the truncated mean run length, starting from i:

L̄(i, l) :=
∑
w<l

w�(i, w).

By partial summation and (2), we obtain

L̄(i, k) = L̄(i) − G(i, k), with G(i, k) :=
∑

w>k−1

w�(i, w),

G(i, k) =
∑

l>k−2

(l + 1)�1(i, l + 1) −
∑

l>k−1

l�1(i, l + 1)

= (k − 1)�1(i, k) + �2(i, k)

= k�1(i, k) + �2(i, k + 1). (15)
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A next useful quantity is given, with (12) and (4), by

H1(k) :=
∑

�(i)�1(i, k) = [zk−1]
(

1

1 − z/s

)s+1

(1 − z/s) (16)

= [zk+1]2s

[
1 + (z − 1)

(
1

1 − z/s

)s]/
(s − 1)

= 2

(s − 1)sk

[
s

(
s + k − 1

k

)
−
(

s + k

k + 1

)]

= 2k

(s − 1)sk

(
s + k − 1

s − 2

)
. (17)

Asymptotically, singularity analysis leads to

H1(k) ∼ 2

(s − 1)!sk
ks−1
[

1 + O
(

1

k

)]
, k → ∞. (18)

A last useful equivalent concerns∑
l≥k

�(i, l, j)/�1(i, k), k → ∞,

i.e. the asymptotic distribution of a run starting value, J, after a long run. Setting

A5(�, �|i) := �(A3(�, �|i) − A3(�, 1|i))
� − 1

,

we see that∑
l≥k

�(i, l, j) = [�k�j ]A5(�, �|i).

But it is readily checked that neither � = s(1 − �) nor � = 1 are singularities of A5, the
only singularity is at � = s. Hence we obtain the equivalent

A5(�, �|i) ∼ s(�s − �)

(s − 1)(� − 1)
(1 − �/s)i−s−1, � → s.

Now,

�1(i, k) ∼ [�k−1]�(1 − �/s)i−s−1, k → ∞
and the generating function of J is asymptotically given by

�s − �

(s − 1)(� − 1)

[
1 + O

(
1

k

)]
. (19)

But this intuitively evident: the long runs are followed by an integer asymptotically uni-
formly distributed on [1 . . . s − 1]. We could continue the asymptotics: the next correction
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term is given by a matrix (we do not need its explicit value here):

εN(i, j) (20)

with ε := ((k − 1)s−1)/sk−1 (the choice of ε is justified in Section 3.1). Note that N1 = 0.

2.2.3. m ascending runs
We will analyze the total length X(m) (number of I (s) random variables) of m runs.

We have

X(m) =
m∑

k=1

L(ik),

where ik is the starting value of run k. This corresponds to the length of a word where each
letter is a I (s) random variable.

By the ergodic theorem, we know that

E(X(m)) ∼ mL̄,

VAR(X(m)) ∼ m
[
L2 − L̄ 2

]
+ 2mS = m�2, say

(see, for instance, [3, p. 172]), where

S :=
∞∑

v=1

∑
i,l,j,�

�(i)�(i, l)(l − L̄)�v[[i, l], [j, �]](� − L̄)

=
∑
v,i,l

�(i)�(i, l)(l − L̄)
∑

w1,w2,...,wv−1

�[[i, l], w1]�[w1, w2] · · · �[wv−2, wv−1]

×
∑
j

�[wv−1, j ](L̄(j) − L̄).

To compute S, we first analyze

f0(�) :=
∑
k,i,l

�(i)�(i, l, k)l�k =
∑

�(i) A′
3

∣∣
�=1 .

To simplify further expressions, we set � = �(1 − 1/s). This leads to

f̃0(�) = 2�

s((1 − 1/s)� − 1)

[(
�
�s−1 − 1

� − 1
+ s

)/
(s − 1) − (1 − 1/s)−s

]
.

The first term of S is related to∑
k

[�k]f̃0(�)L̄(k)/(1 − 1/s)k = (1 − 1/s)−s−1f̃0(1).
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Now define

f̃1(�) :=
∑

k,i,l,j

�(i)�(i, l, k)l�(k, j)�j

= (1 − 1/s)−s�

s(1 − �(1 − 1/s))
f̃0(1)

+ 1

s(1 − 1/s)(� − 1)

[
f̃0(�) + �s+1

s(�(1 − 1/s) − 1)
f̃0(1)

]
,

by (11). The second term of S is now related to (1 − 1/s)−s−1f̃1(1).
We see now how to proceed: S is given by

S = lim
w→1

[
(1 − 1/s)−s−1�̃(w, 1) − L̄2/(1 − w)

]
,

where

�̃(w, �) :=
∞∑
0

wif̃i(�).

�̃(w, �) can be computed as follows. We obtain

�̃(w, �) = f̃0(�) + w(1 − 1/s)−s�

s(1 − �(1 − 1/s))
�̃(w, 1)

+ w

s(1 − 1/s)(� − 1)

[
�̃(w, �) + �s+1

s(�(1 − 1/s) − 1)
�̃(w, 1)

]

or

�̃(w, �)
(1 − 1/s)(� − 1) − w/s

(1 − 1/s)(� − 1)

= f̃0(�) + w�

s((1 − 1/s)� − 1)

[
�s

s(1 − 1/s)(� − 1)
− (1 − 1/s)−s

]
�̃(w, 1).

To compute �̃(w, 1), we note that the denominator of the expression for �̃(w, �) has a
singularity at � = 1 +w/(s(1 − 1/s)), hence the numerator must be 0 for this value, which
leads to

�̃(w, 1) = 2
−(1 − 1/s)s + w(1 − 1/s)s + ((s + w − 1)/s)s − w

w[w − ((s + w − 1)/s)s] .

This gives

(1 − 1/s)−s−1�̃(w, 1) = L̄2/(1 − w)

−2s[3(1 − 1/s)−s(s − 1) − 8s + 4]
3(s − 1)2 + O(1 − w),
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and the singularity (at w = 1) in S is removed. Finally,

�2 =
[
L2 − L̄ 2

]
+ 2S = 2s(s + 1)

3(s − 1)2 .

Again, as s → ∞, we obtain the limiting value 2/3 which corresponds to a permutation.

2.3. Limiting trajectories

Let us denote by M the number of runs. Let us first fix M to m and let us consider the total
length X(m) (the number of I (s) random variables, i.e. the length of the word) of m runs

X(m) =
m∑

k=1

L(ik),

where i1, . . . , im are the successive starting values of the runs. We can check that our
Markov chain is �-mixing (see, for instance, [3, p. 168] and the Appendix) and we apply
the Functional Central Limit Theorem [3, p. 174, Theorem 20.1]. We obtain the following
result, where B(t) is the standard Brownian Motion and ⇒ denotes the weak convergence
of random functions in the space of all right-continuous functions that have right limits and
are endowed with the Skorohod metric. This gives the limiting trajectories corresponding
to a fixed number of runs.

Theorem 4.

X(�mt	) − L̄mt

�
√

m
⇒ B(t), m → ∞, t ∈ [0, 1]. (21)

Let us now condition on X(m) = n. M becomes a random variable. A realization of X
for fixed n is given by Theorem 4, where we stop at a random time m such that X(m) = n.
Proceeding as in [15] it is easy to check that this amounts to fix m = n/L in the denominator
of (21), and we obtain the following result related to n random variables, with m runs.

Theorem 5. Conditioned on X(m) = n,

X(�mt	) − L̄mt

�
√

n/L̄

⇒ B(t).

Moreover, from [22], the random variable M := number of runs satisfies the following
Gaussian property:

Proposition 6.

M ∼ N (n�1, n�2
1), (22)
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Fig. 1. Run length distribution (observed = circle, asymptotic = line).
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Fig. 2. Unnormalized X(·).

where

N := a Gaussian (normal) random variable,

�1 = 1/L̄ = s − 1

2s
,

�2
1 = �2/L̄3.

This is actually an application of the generalized Renewal Theorem: the hitting time of
the Brownian Motion B(t) of (21) to the barrier n(1 − t)/(�

√
n/L̄) is easily seen to lead

asymptotically to a Gaussian random variable.
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Fig. 3. Normalized X(·), with run length.
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Fig. 4. Unnormalized X(·), with run length (zoom).

When s → ∞, we obtain �1 ∼ 1/2, �2
1 ∼ 1/12.

We have done a simulation of U = 2000 sequences of n = 10 000 I (10) random vari-
ables (this simulation will be extensively used in Section 3), leading to 9 002 231 runs.
The observed and limiting run length distributions are given in Fig. 1. (The limiting dis-
tribution is given by Proposition 3). The fit is quite good. A typical trajectory for X(i) for
n = 10 000, s = 10 has given M = 4499 runs. The unnormalized trajectory is given in Fig.
2, which shows a “filament silhouette.” The normalized trajectory for (X(i) − L̄i)/�

√
M

and (X(i − 1) − L̄i)/�
√

M , showing the run length is given in Fig. 3. Of course, both tra-
jectories are asymptotically equivalent for n → ∞. A zoom on i = [100 . . . 120] is given in
Fig. 4. We have also checked the asymptotic Gaussian property of M as given by (22). This
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Fig. 5. Observed and limiting Gaussian M distribution function.

is shown in Fig. 5. The asymptotic mean and variance �1, �
2
1 are given by 0.4500, 0.0825 . . .

and the observed mean and variance by 0.4501 . . . , 0.0840 . . . .

3. Hitting time and maximum run length distribution

In this section, we study the hitting time to a large length k run and the maximum run
length distribution. All vectors and matrices will be written in bold.

3.1. Large run in a sequence constructed from independent I (s) random variables, for
fixed s

Let us define Tk := the time (counted in terms of number of I (s) random variables, i.e.
the length of the word) necessary to obtain a run of large length k. We set hi := Ei (Tk),
(when possible, we drop the k for ease of notation). We derive

hi = [L̄(i, k) + k�1(i, k)] +
∑
l<k

∑
u

�(i, l, u)hu

= [L̄(i, k) + k�1(i, k)] +
∑
u

�(i, u)hu −
∑
l �k

∑
u

�(i, l, u)hu

= [L̄(i, k) + k�1(i, k)] +
∑
u

�(i, u)hu

−�1(i, k)
∑
l �k

∑
u

�(i, l, u)

�1(i, k)
hu. (23)

By (3), we observe that �1(i, k) = O(ε), ε := ((k − 1)s−1)/sk−1, k → ∞, uniformly on
i, (for some reasons that will be clear later on, it is better to use the given form for ε), and
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by standard properties of Markov chains (see [2,12]), we know that the hitting time to k is
such that (we write Di for Di(k)):

hi = Di

ε
+ �(i) + O(ε)

(Actually a Laurent series exists for ε sufficiently small),

Pri[Tk �x] ∼ e−x/hi , x → ∞. (24)

We will soon check that D is independent of i. First we note that, by (15) and (5),

L̄(i, k) + k�1(i, k) = L̄(i) + O(ε).

Eq. (23), with (3), leads to

Di + ε�(i) = εL̄(i) +
[∑

u

�(i, u)[Du + ε�(u)]
]

−�1(i, k)
∑
l �k

∑
u

�(i, l, u)

�1(i, k)
[Du + ε�(u)] + O(ε2)

= �D(i) + O(ε). (25)

Identification of ε powers in (25) leads to [I−�]D = 0, which confirms that D is independent
of i. Now we premultiply (23) by �. This leads to

�h = L̄ + �h −
∞∑
i=1

�(i)�1(i, k)
D

ε
+ O(ε)

or, with (17)

0 = L̄ − H1(k)
D

ε
+ O(ε).

Set

G3(k) := H1(k)/ε = 2k

s(s − 1)(k − 1)s−1

(
s + k − 1

s − 2

)
. (26)

This leads to

0 = L̄ − DG3(k).

Therefore, we obtain

D = s2(k − 1)s−1
/[

k

(
s + k − 1

s − 2

)]
. (27)

We proceed now as in [17].
Let M(n) := maximum run length based on n I (s) random variables. We know that

Pr[M(n) < k] = Pr[Tk �n + 1].
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Fig. 6. Observed and limiting M distribution function.

We start our asymptotic analysis by first using (24)

Pr[M(n) < k] ∼ exp[− exp[log n + (s − 1) log(k − 1)

−(k − 1) log(s) − log D]],
when n → ∞.

Set now k := j + 1 (which explains the choice of ε), D(j) := s2j s−1
/[

(j + 1)
(
s+j
s−2

)]
.

We derive the following proposition, which gives the asymptotic distribution of the maxi-
mum run length.

Proposition 7. Let

� := j log(s) − [log n + (s − 1) log j − log(D(j))].
Then, with integer j and � = O(1),

Pr[M(n)�j ] ∼ G1(�), n → ∞,

where G1(�) := exp[− exp[−�]]. We also have

Pr[M(n) = j ] ∼ f1(�),

where f1(�) := G1(�) − G1(� − 1).

G1(.) is actually the Gumbel extreme-value distribution function. (See, for instance, Kotz
and Nadarajah [14].) The observed and limiting distribution functions are given in Fig. 6
(observed = circle, asymptotic = line).



G. Louchard / Theoretical Computer Science 346 (2005) 358–387 375

Let us make a few remarks:
• As j → ∞, which is a consequence of n → ∞, we have, by (18), D(j) → D1 =

s2(s − 2)!.
But n = 10 000 is not large enough to entail this limit: in Fig. 6, we have kept the true
D(j) value.

• Again, as n → ∞, log j ∼ log log n − log log s, but n must be large enough.
• We have a linear dependence on j in �. This is also found, for instance, in column-

convex animals [17], Carlitz compositions [19], and runs of geometrically distributed
random variables [18]. A quadratic dependence is found in ascending runs of sequences
of geometrically distributed random variables [20], and in diagonally convex animals
(see [17]), leading to a quite different behavior.

So we finally obtain the following theorem, which presents another form of the limiting
distribution:

Theorem 8. Let

�1 := j − [log n + (s − 1)(log log n − log log s) − log(D1)
]
/ log s.

Then, with integer j and �1 = O(1),

Pr[M(n)�j ] ∼ G2(�1), n → ∞,

where G2(�1) := exp[− exp[−�1 log s]]. Let

�1(n) := [log n + (s − 1)(log log n − log log s) − log(D1)]/ log s

and �1 = j − ��1(n)	 − {�1(n)}. Asymptotically, the distribution is a periodic function of
�1(n) (with period 1), which can be written as

log Pr[M(n)���1(n)	 + l]e−{�1(n)} log s −→
n→∞

− e−l log s .

We also have

Pr[M(n) = j ] ∼ f2(�1),

where f2(�1) := G2(�1) − G2(�1 − 1).

3.2. The moments

If we had a rate of convergence property for Theorem 8, the asymptotic moments of M(n)

would also be given by periodic functions of �1(n). They could be written as Harmonic sums
which are usually analyzed with Mellin transforms: see Flajolet et al. [8]. The asymptotic
non-periodic term in the moments of M(n) would be given by the following conjecture.

Conjecture 9. The constant term Ē in the Fourier expansion (in �1(n)) of the moments of
M(n) is asymptotically given by

Ē[M(n) − �1(n)]i ∼
∫ +∞

−∞
�i[G2(�1) − G2(�1 − 1)] d�1.
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Indeed, the analysis of this type of Harmonic sums is detailed in Flajolet [7], where the
author uses bounds for tail estimates. In our case, if our Markov chain were reversible, we
would obtain, from Keilson [12], that

∣∣∣Pri[Tk �x] ∼ e−x/hi

∣∣∣ �C

[
h

(2)
i

2h2
i

− 1

]1/4

for some constant C, uniformly on x and h
(2)
i := Ei (T

2
k ). Now, by (A.1), (A.8) and (A.5),

h
(2)
i

2h2
i

− 1 = O(ε).

For k log s, respectively, given by log n − log log n, log n and 2 log n, the error bounds
are ((log n)s/n)1/4, ((log n)s−1/n)1/4 and (2 log n)(s−1)/4/n1/2, which would be sufficient
to establish our conclusions, following the lines of Flajolet [7]. It is well known that the
extreme-value distribution function e−e−x

has mean � and variance �2/6. From this, we
would for instance derive

Ē[M(n)] ∼ �1(n) + 1

2
+ �

log s
.

The other periodic terms have very small amplitude (see [8]).
From Hitczenko and Louchard [11], we would also derive

VAR[M(n)] ∼ �2

6(log s)2 + 1/12.

If we fix s to some given integer, then we can numerically derive a suitable rate of conver-
gence. Indeed, from Aldous [1], we know that, if we define a time measure � for the chain
to approach stationarity:

� := min

⎧⎨
⎩n :
⎡
⎣1/2

s−1∑
j=1

∣∣�n[i, j ] − �(j)
∣∣
⎤
⎦ �1/e, ∀i

⎫⎬
⎭ ,

then

sup
x

∣∣∣∣∣
∑

i

�(i)Pri[Tk �x] − exp

(
−x

/∑
i

�(i)hi

)∣∣∣∣∣ ��,

where

� = C1�

/[∑
i

�(i)hi

[
1 + log+

(∑
i

�(i)hi/�

)]]

and C1 is a numerical constant.
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As our chain is finite, � is related to 1/|�2|, where �2 is the second (in module) largest
eigenvalue of �. For instance,

for s = 4, �2,1 = −7/81 + 4/81
√

2, �2,2 = −7/81 + 4/81
√

2, |�2| = 1/9;
for s = 20, |�2| = 0.1179696324....

Here we have hi ∼ D/ε and (Ci denote constants)

� ∼ C2

/[
D

ε

{
1 + ln

[
C3

D

ε

]}]
∼ C4ε/(− ln(ε)) ∼ C5ε/(k ln(s)) ∼ C6k

s−2/sk

and now, we have suitable error bounds and convergence of the moments. This is considered,
in a much more general setting, in [21]

3.3. Maximum run length starting with value u

Let us now consider the maximum run length of type u (i.e. starting with value u).
We derive

hi(u) = L̄(i) +
∑
j

�(i, j)hj (u), i = u,

hu(u) = [L̄(u, k) + k�1(u, k)] +
∑
j

�(u, j)hj (u)

−�1(u, k)
∑
l �k

∑
j

�(u, l, j)

�1(u, k)
hj (u).

Proceeding as above, with now

ε := (k − 1)s−u

(s − u − 1)!sk−1 ,

we obtain

D(u, j) = s2(k − 1)s−u

(s − u)!(s−u+k−1
k−1

) ,
and

� := j log(s) − [log n + (s − u) log j − log[(s − u − 1)!] − log(D(u, j))
]
.

Note that, as n → ∞, D(u, j) → s2. For u = 1, the limiting distribution is given by
Theorem 8. This means that the maximum run length is asymptotically only made of runs
of type 1. For u = 2, the simulation is given in Fig. 7.

3.4. Large run in a sequence constructed from independent I (s) random variables,
s → ∞

Let us first consider (14). As s → ∞, we obtain the stationary generating function

lim
s→∞ H(�) =

[
2�2e� + �2 − 4�e� + 2� + 2e� − 2

]
/�2,

which is exactly the corresponding formula for permutations (see [20]).
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Fig. 7. Observed and limiting M distribution function, u = 2.

Also lims→∞ L̄ = 2 and, from (17), we easily derive, with Stirling,

lim
s→∞ H1(k) = 2k

(k + 1)! .
Note that this can also be obtained from (16): as s → ∞, this leads to a generating function

G4(�) = 2(1 + �e� − e�)

�2 ,

and

[�k−1]G4(�) = 2k

(k + 1)!
which, again corresponds to the random permutation model: as in [20], we obtain

D/ε ∼ (k + 1)!
k

.

4. Application: A preliminary analysis of a DNA sequence

As a simple example of DNA genome, we have first taken AL445469 (Human genomic
DNA sequence from clone RP11-254N18), from which we have extracted a string S of
lt = 129 480 letters. We use the arbitrary transcription to integers: a → 1, c → 2, g →
3, t → 4. To obtain enough samples, we have divided S into 10 substrings of 12 948 integers
each. Moreover, we have used all the 4! = 24 permutations of letters order, leading to 240
strings, which give a reasonable estimate of the histograms we need.

First of all, on the complete string S, we have computed the observed distribution of
integers, which is not uniform: this gives p∗(1) = 0.34 . . . , p∗(2) = 0.19 . . . , p∗(3) =
0.18 . . . , p∗(4) = 0.29 . . . . Moreover, the integers are not independent: an estimated
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Fig. 8. Genome: observed correlation coefficient.
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Fig. 9. Genome: limiting (line) and observed (circle) run length distribution.

correlation coefficient �[k] on the string S is given in Fig. 8, with �[1] = 0.088 . . . , �[2] =
0.055 . . . . The other values are rather small. Next we have analyzed the run length: this
leads to a total of 1 07 3964 runs. The fit with the limiting distribution is given in Fig. 9.
The fit is reasonable.

Now we look at the maximal run length, based on the 240 substrings. The fit with the
limiting distribution is given in Fig. 10, with a shift of 12 units!. The fit is very bad. Now
we must try to analyze this discrepancy.

First we have checked whether it could come from the non-uniformity of the letters
distribution. So we have generated lt independent, random integers with distribution p∗.
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Fig. 10. Genome: limiting (line) and observed (circle) maximal run length distribution, shift = 12.
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Fig. 11. i.i.d.: limiting (line) and observed (circle) run length distribution.

This leads to a total of 1 134 888 runs. The fit of the run length with the limiting distribution
is given in Fig. 11. The fit is good: our asymptotic equivalents are robust.

Next we look at the maximal run length, based on the 240 substrings. The fit with the
limiting distribution is given in Fig. 12, with a small shift of 0.3 units. The fit is rather good.

So the bad fit in the genome is not due to the non-uniformity. Then we have checked
whether it could come from a first-order correlation. So we have computed from S a Markov
chain P [i, j ] based on observed couples S[k − 1], S[k]. We have then constructed a ran-
dom string of lt random variables with this Markov chain. The observed first correlation
coefficient is given by �[1] = 0.082. The fit of the run length with the limiting distribution
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Fig. 12. i.i.d.: limiting (line) and observed (circle) maximal run length distribution, shift = 0.3.
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Fig. 13. Markov chain(order 1): limiting (line) and observed (circle) maximal run length distribution, shift = 1.9.

is again reasonable. The fit of the maximal run length with the limiting distribution is given
in Fig. 13, with a shift of 1.9 units. The fit is rather good.

Finally, we have we have checked whether the discrepancy could come from a second-
order correlation. So we have computed from S a Markov chain P [i, j, l] based on observed
triples S[k − 2], S[k − 1], S[k] giving the probability that S[k] = l, given S[k − 2] =
i, S[k − 1] = j . We have then constructed a random string of lt random variables with
this Markov chain. The observed first two correlation coefficients are given by �[1] =
0.064, �[2] = 0.028. The fit of the run length with the limiting distribution is reasonable.
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Fig. 14. Markov chain(order 2): limiting (line) and observed (circle) maximal run length distribution, shift = 2.9.

The fit of the maximal run length with the limiting distribution is given in Fig. 14, with a
shift of 2.9 units. Again the fit is rather good.

So it seems that the discrepancy is due to some long range dependency, which is not
observable from the correlation coefficients nor from the run length distribution, but dis-
cernable from the maximal run length. The biological explanation of this discrepancy will
be investigated in some further work. Let us mention some related work: in [6], Denise
et al. have analyzed the random generation of structured genomic sequences.

We have analyzed several other genomes: 6 470 333, 2 944 426, 2 627 293, 2 443 900,

15 620 559, 15 281 412. The results are very similar.

5. Conclusion

Using a Markov chain approach and a polyomino-like description, we have studied some
asymptotic properties of monotone runs of uniformly distributed integer random variables.
Some preliminary application to DNA analysis has revealed a long-range dependency. The
biological explanation of this phenomena will be the object of some future work.
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Appendix A. A detailed analysis of hi and h(2)

i

We must first be more precise in the analysis of hi . With (3), (5), (6), we obtain, when
l = k + O(1),

�1(i, l) = g1(i, l)ε with g1(i, l) ∼ (k − 1)−i+1

sl−k(s − i)!
[

1 + O
(

1

k

)]
,

�2(i, l) = g2(i, l)ε with g2(i, l) ∼ (k − 1)−i+1

sl−k−1(s − 1)(s − i)!
[

1 + O
(

1

k

)]
,

�3(i, l) = g3(i, l)ε with g3(i, l) ∼ (k − 1)−i+1

sl−k−2(s − 1)2(s − i)!
[

1 + O
(

1

k

)]
.

Set

hi = D(i)

ε
+ �(i) + ε�(i) + O(ε2). (A.1)

We will now compute the dominant term of �(i). We note that

L̄(i, k) + k�1(i, k) = L̄(i) − �2(i, k + 1).

We obtain, from (23), (19), (20),

D(i) + ε�(i) + ε2�(i)

= εL̄(i) − ε2g2(i, k + 1) + �D(i) + ε��(i) + ε2��(i)

−�1(i, k)

[
D + 1

s − 1

s−1∑
1

ε�(u)

[
1 + O

(
1

k

)]
+ εND(i)

]
+ O(ε2).

(A.2)

The ε term leads, for large k (apart from D, we neglect all O(1/k) error terms) to

�(i) = L̄(i) + ��(i) − Dg1(i, k)

or

[I − �]� = �, (A.3)

where when k → ∞,

�(1) = L̄(1) − Dg1(1, k),

�(i) = L̄(i), i > 1.

Now we premultiply (A.2) by �. This leads, with G3 defined by (26), to

L̄ = DG3(k),

which conforms to (27). Next (A.3) leads to

� = M� + �1, where �1 := ��

and M :=∑n�0(�
n −1×�). M is the Drazin inverse of I −�. We refer to Campbell and

Meyer [4] for a detailed definition and analysis of the Drazin inverse. We have M = Z−1×�
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where Z := [I − � + 1 × �]−1 = ∑n�0[� − 1 × �]n is the potential used in Kemeny
et al. [13]. First, by (B.1) (see the next appendix), we know that M� is finite.

Next, to derive �1, we premultiply again (A.2) by �. When k → ∞, this leads to

D + ε�� + ε2�� = εL̄ − ε2�(1)g2(1, k + 1) + D + ε�� + ε2��

−εg1(1, k)�(1)

[
D + 1

s − 1

s−1∑
1

ε�(u) + O(ε2)

]
+ O(ε3).

The ε term leads of course again to D . The ε2 term leads to

0 = −�(1)g2(1, k + 1) − g1(1, k)�(1)
1

s − 1

s−1∑
1

�(u)

which allows the determination of �1.
We must now compute the first terms in the expansion of h

(2)
i := Ei (T

2
k ). We derive

h
(2)
i = k2�1(i, k) +

∑
w<k

�(i, w)w2

+2
∑
u

∑
w

�(i, w, u)whu +
∑
u

�(i, u)h(2)
u

−2
∑
u

∑
w≥k

�(i, w, u)whu −
∑
u

∑
w≥k

�(i, w, u)h(2)
u . (A.4)

We obtain, after some algebra, for large k,

k2�1(i, k) +
∑
w<k

�(i, w)w2 = L2(i) + ε [−2kg2(i, k + 1) − 2g3(i, k + 1)

+g2(i, k + 1)] + O(ε2),

where L2(i) is given by (13). We set

h
(2)
i = D(2)(i)

ε2 + �(2)(i)

ε
+ �(2)(i) + O(ε). (A.5)

The next terms of (A.4) lead to (again, apart from D, we neglect all O(1/k) error terms)

2L̄(i)D/ε + 2
∑
u

∑
w

�(i, w, u)w�(u)

+�D(2)(i)/ε2 + ��(2)(i)/ε + ��(2)(i)

−2DG(i, k)/ε − 2G(i, k)
1

s − 1

s−1∑
1

�(u) − 2εG(i, k)N(2)1(i)D/ε

−�1(i, k)

[
1

s − 1

s−1∑
1

[
D(2)(u)/ε2 + �(2)(u)/ε

]
+ εND(2)(i)/ε2

]
,
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where G(i, k) is given by (15) and N(2) is again a correction matrix related to
∑

w≥k �(i, w,

u)w. Eq. (A.4) leads, for large k, to

D(2)(i) + ε�(2)(i) + ε2�(2)(i)

= ε2L2(i) + 2εDL̄(i) + 2ε2
∑
u

∑
w

�(i, w, u)w�(u)

+�D(2)(i) + ε��(2)(i) + ε2��(2)(i) − 2εD[�1(i, k) + �2(i, k + 1)]

−�1(i, k)
1

s − 1

s−1∑
1

[
D(2)(u) + ε�(2)(u)

]
+ O(ε3). (A.6)

The constant term leads to [I − �]D(2) = 0, which confirms that D(2) is independent of i.
The ε term leads, for large k, to

�(2)(i) = 2L̄(i)D + ��(2)(i) − D(2)g1(i, k)

or

[I − �]�(2) = �(2), (A.7)

where when k → ∞, (again, apart from D(2), we neglect all O(1/k) error terms)

�(2)(1) = 2L̄(1)D − D(2)g1(1, k),

�(2)(i) = 2L̄(i)D, i > 1.

Now we premultiply (A.6) by �. This leads to

0 = 2L̄D − D(2)G3(k).

Hence

D(2) ≡ 2D2 (A.8)

as it should. Next (A.7) leads to

�(2) = M�(2) + �2, where �2 := ��(2).

First, by (B.1), we know that M�(2) is finite.
Next, to derive �2, we premultiply again (A.6) by �. This leads to

D(2) + ε��(2) + ε2��(2)

= ε2L2 + 2εDL̄ + 2ε2
∑

i

�(i)
∑
u

∑
w

�(i, w, u)w�(u)

+D(2) + ε��(2) + ε2��(2) − 2ε2D

[
kG3(k) +

∑
i

�(i)g2(i, k + 1)

]

−εG3(k)D(2) − ε2G3(k)
1

s − 1

s−1∑
1

�(2)(u) + O(ε3).
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The ε term leads of course again to D(2) = 2D2. The ε2 term leads, when k → ∞, to

0 = s2 + 2
∑

i

�(i)
∑
u

∑
w

�(i, w, u)w�(u) − 2D�(1) [kg1(1, k) + g2(1, k + 1)]

−�(1)g1(1, k)
1

s − 1

s−1∑
1

�(2)(u),

which allows the determination of �2.

Appendix B. An explicit expression for M

We proceed as in Section 2.2.3. We must compute M := ∑n�0(�
n − 1 × �). We see

that

S :=∑n�1(�
n − 1 × �) can be written as

S(i, j) = lim
w→1

⎡
⎣∑

n�1

wn�n(i, j) − w

1 − w
�(j)

⎤
⎦ .

But this amounts to compute

S(i, j) = lim
w→1

[
�i[�j ](�̃(w, �) − �i )/w + 1

1 − w
�(j)

]
,

where �̃(w, �) (see Section 2.2.3) is now computed with the starting value f̃0(�) = �i .
After all computations, and resubstituting � = �/�, this gives a first term (�)/(1 − w)

(see (12)), which cancels the singularity at w = 1, and finally, we obtain

S(i, j) = [�j ]R(�),

where

R(�) = −3�i/(s(1 − �) − {2�s+1[(−s − 4 + 3i) + (1 + s − 3i)�]
+2�[[4 + 3i(s − 1) − s(s + 3)] + [−1 + 3i + s(2s − 6i + 4)]�
+s(3i − 1 − s)�2]}/[(s − 1)s2(1 − �)3].

And finally, 2

M(i, j) = S(i, j) + [[i = j ]] − �(j). (B.1)

Appendix C. The �-mixing property

Let . . . , x−1, x0, x1, . . . be a strictly stationary sequence of random variables. For a�b,
define Mb

a as the �-field generated by the random variables xa, . . . , xb. Consider a non-
negative function � of positive integers. We shall say that the sequence xn is �-mixing if,

2 Here we use the indicator function notation proposed by Knuth et al. [10].



G. Louchard / Theoretical Computer Science 346 (2005) 358–387 387

for each k, −∞ < k < ∞, and for each n, n�1, E1 ∈ Mk−∞ and E2 ∈ M∞
k+n together

imply

| Pr(E1

⋂
E2) − Pr(E1 − Pr(E2)|��(n) Pr(E1).

If the Markov chain is finite, irreducible and aperiodic, then xn is �-mixing, with �(n) =
a�n, � < 1.
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