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a b s t r a c t

Markovian process algebras, such as PEPA and stochasticπ-calculus, bring a powerful com-
positional approach to the performancemodelling of complex systems. However, themod-
els generated by process algebras, as with other interleaving formalisms, are susceptible to
the state space explosion problem. Models with only a modest number of process algebra
terms can easily generate somany states that they are all but intractable to traditional solu-
tion techniques. Previouswork aimed at addressing this problem has presented a fluid-flow
approximation allowing the analysis of systems which would otherwise be inaccessible.
To achieve this, systems of ordinary differential equations describing the fluid flow of the
stochastic process algebra model are generated informally.
In this paper, we show formally that for a large class of models, this fluid-flow analysis

can be directly derived from the stochastic process algebra model as an approximation to
the mean number of component types within the model. The nature of the fluid approxi-
mation is derived and characterised by direct comparison with the Chapman–Kolmogorov
equations underlying the Markov model. Furthermore, we compare the fluid approxima-
tion with the exact solution using stochastic simulation and we are able to demonstrate
that it is a very accurate approximation in many cases.
For the first time, we also show how to extend these techniques naturally to generate

systems of differential equations approximating higher order moments of model compo-
nent counts. These are important performance characteristics for estimating, for instance,
the variance of the component counts. This is very necessary if we are to understand how
precise the fluid-flow calculation is, in a given modelling situation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Continuous-time Markov chains (CTMCs) are often used to capture performance models, biochemical models, and other
state-transition systems that involve uncertain knowledge or random behaviour. Instead of directly constructing a CTMC
to model a system, it is often preferable to use a higher level compositional approach provided by, for instance, a stochastic
process algebra (SPA). In particular, our work is presented in the context of the popular stochastic process algebra PEPA [1],
but could be extended to other Markovian modelling formalisms, such as stochastic π-calculus [2], EMPA [3], IMC [4] or
sCCP [5].
Continuous-time Markov chains are relatively tractable for analysing due, in large part, to the memoryless property of

the exponential distribution. Despite this, stochastic process algebra models of realistic complexity can easily result in
underlying state spaces of computationally intractable size. Specifically, the generation of the state space and subsequent
computation of a set of transient or steady state probabilities of such CTMCs can easily become computationally infeasible.
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This phenomenon is known as the state space explosion problem and is a current bottleneck in the field of performance
analysis, limiting the size of models and thus the complexity of systems that can be analysed efficiently. This is especially
truewhen attempts aremade atmodellingmassively parallel systems, such as peer-to-peer networks [6], publish–subscribe
networks, and other massive client–server architectures.
There has been much research aimed at reducing this problem for stochastic process algebras. To some extent, it is

possible to draw on the compositional structure of the model to simplify the problem. Such techniques include state space
aggregation [7], component substitution for approximate analysis [8] and for some models, it is possible to find product
form solutions [9–11].
Of all these techniques, the use of lumpability to exploitmodel symmetry is one of themostwidely deployed approaches.

Examples of this include Buchholz’s direct application to theMarkov chain, with steady state and transient results [12]; also
the application to a hierarchically structured Markovian state space [7,13]. Additionally, lumpability can be mechanically
derived from models which display suitable component replication and are specified in higher level formalisms such
as stochastic Petri nets [14] and stochastic process algebras [15]. We exploit the last of these results, using Gilmore’s
numerical vector form [15] to capture an aggregated state space from a stochastic process algebramodel.While the lumping
aggregation is effective in reducing the state space,wewill show in Section 1.2.1, that the aggregated state space is still far too
large to enumerate and analyse for any detailed component description. Hence the need for so-called fluid-flow techniques.
Fluid-flow approximation [16] constructs a continuous-state-space representation of the underlying lumped discrete

state space and recasts the discrete model as a system of coupled ordinary differential equations (ODEs). This is extremely
powerful when the underlying model exhibits massive symmetry, such as is the case with large numbers of homogeneous
agents operating in parallel.
Differential equations are easily amenable to numerical analysis (for example, via the Euler method) and this method of

attack is very scalable. Indeed, it is much faster to solve the resulting small systems of coupled differential equations than to
solve the discrete model for its transient or steady state probabilities. It is also often quicker than performing stochastic
simulation [17] of the underlying stochastic process. In the context of PEPA, the existing transformations from process
algebra to differential equations [16,18] are currently informal. Indeed, there is still limited mathematical understanding
of how the solutions to the differential equations behind the fluid-flow approximation are related to the underlying CTMC
(see related work below). In a lot of cases, however, fluid-flow analysis appears empirically very promising. We show here
that the deterministic solutions to the ODEs give accurate approximations to discrete-model statistics, both in the steady
state and for transient behaviour.
We justify fluid-flow analysis as a first-order moment approximation to the Chapman–Kolmogorov equations which

govern the evolution of the underlying CTMC as derived from the PEPA model. Considering the fluid analysis in this
manner leads us to develop an extension of the existing approximation scheme to higher order moments. This allows the
approximation of key, but up to now inaccessible, higher order quantities such as the variance.We also obtain theoretical and
empirical estimates of the magnitude of the error terms. Further, in the course of this work, we have expanded the subset
of the PEPA language that can be analysed using fluid-flow approximation to include: action hiding; active cooperation
between components with differing rates; arbitrary cooperation sets between groups of components; and to allow the
presence of more than one component enabling the same action type on either side of a cooperation.
In terms of related work, Bortolussi [19] presents a formulation for the stochastic constraint programming language,

sCCP [5], a relative of stochastic π-calculus with asynchronous communication of variables via a central constraint store. In
his paper [20], he presents a fluid approximation of first and second order moments to internal program variables within
the sCCP model. The sCCP fluid approach differs from the fluid approximation of Hillston [16,18] and the one presented
here quite markedly since PEPA is based on CSP [21] in its style of communication and maintains local synchronous
communication between components. Also, in this paper,wepresent a structural transformation froma class of PEPAmodels
to the fluid approximation. This is in contrast to Bortolussi’s work which encodes the system parallelism in the program
variables and performs fluid approximation on the dynamics of the variables. Finally and distinctly, we present a higher
moment formulation (above and beyond the second moment) directly from the PEPA model structure.
Cardelli has previously presented various translations from stochastic process algebras [22,23], including stochastic π-

calculus and stochastic interacting processes, to systems of chemical reactions, and back. Furthermore, these translations are
shown to preserve the discrete (CTMC-based) semantics and continuous (ODE-based) semantics. In [24], Cardelli shows that
under a natural translation from a subset of CCS to a system of chemical reactions, the dynamics of the underlying CTMCs
are preserved by showing that the respective Chapman–Kolmogorov equations are equivalent. However, the relationship
between the discrete semantics of the CTMC and continuous semantics of the differential equations is not considered
explicitly. In fact, the ODEs generated [24] are an approximation to mean counts of stochastic π-processes, analogous to
the original work for PEPA [16], and no theoretical account of variance or accuracy of resulting analysis is made.
Other recent relatedwork by Geisweiller et al. [25] shows that a sequence of discretised CTMCs converges to a first-order

fluidmodel. They consider a distinct extension of PEPA in the context of biochemistry to include amass-action semantics. Such
scenarios consist of modelling the interactions betweenmolecules and these authors define a sequence of CTMCsmodelling
the biochemical scenario at increasing levels of granularity (with respect to the concentration level of each molecule). They
then proceed to showusing a theoremof Kurtz [26] that in the limit of increasing granularity, the CTMC solution corresponds
to that of a set of ODEs. This is clearly a directly relevant approach for biochemical scenarios. However, the result of Kurtz is
a limiting result, and as also noted in [25], no explicit relationship between the solution to the ODE system and a particular
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CTMC is yet known in general. Ourwork is best viewed as approaching the problem from this perspective:we aim to establish
a direct link between the system of ODEs (the fluid model) and the particular underlying CTMC; we also seek to quantify
the absolute errors in the fluid model as compared to the transient analysis of the underlying CTMC.
Recently, there has been related work on mean-field approximation of communication systems by Le Boudec

et al. [27,28]. The mean-field analysis (MFA) approach is similar to the first-moment approximation in this paper. However,
in [27] and subsequent publications, the mean-field approach is applied to a discrete-time process, in contrast to the
continuous-time approach of PEPA. The approach is not perhaps as systematic as one derived fromaprocess algebra, tackling
as it does a fixed structure of interaction between groups of cooperating components. Additionally, the MFA approach does
not provide access to higher moments of performance measures, as derived here.
Formalisms such as fluid stochastic Petri nets [29] and fluid queueing models [30,31] incorporate continuous modelling

elements explicitly in the initial model. This is commonly used to capture actual continuous components. Alternatively, as
in the case of fluid queueing nodes, continuous parameters are often used to approximate large discrete buffer sizes. In
such cases, no direct relationship is generally established between the fluid queue model and a purely discrete-state model.
However most closely related to our work are heavy traffic analysis techniques, in which sequences of discrete queueing
models are shown to converge to a continuous model [32]. By contrast, in our framework we derive approximations to
derived moments from process models as opposed to constructing a limiting stochastic process.
The paper is structured as follows. In Section 1.1, we introduce the stochastic process algebra PEPA formally and show

how it can be used to model a simple system. In Section 1.2, we present the existing work concerned with fluid analysis of
PEPA models, upon which we build later. Then in Section 2, we define a simple modification of the PEPA syntax (a grouped
PEPA model), which facilitates a far clearer presentation of both the existing work on fluid analysis and our contributions. It
also serves to identify structurally the class of PEPAmodels to which this kind of analysis can naturally be applied. Section 3
presents the existing first-order fluid analysis and our extensions tomore general PEPAmodels in the new framework of the
grouped PEPA model formalism. Section 4 details the first of our key contributions, where we show how the fluid analysis
is an approximation to the first-order moments of the process algebra component counts. We also identify explicitly the
simple nature of this approximation for a very large class of models. Following on from this, Section 5 defines a natural
extension of the fluid analysis to higher order moments. Finally, Section 6 shows how these techniques can be applied to a
more realistic worked example.

1.1. Introduction to PEPA

We begin by introducing PEPA [1], which is a simple stochastic process algebra, but one which has sufficient expressive-
ness to model a wide variety of systems, including multimedia applications [33], mobile phone usage [34], GRID schedul-
ing [35], production cell efficiency [36] and web-server clusters [37] amongst others.
As in all process algebras, systems are represented in PEPA as the composition of components which undertake actions.

In PEPA the actions are assumed to have a duration, or delay. Thus the expression (α, r).P denotes a component which can
undertake anα-action, at rate r to evolve into a component P . Hereα ∈ AwhereA is the set of action types and P ∈ Cwhere
C is the set of component types. The rate r is interpreted as a random delay sampled from an exponential distribution with
parameter r . This means that the stochastic behaviour of the model is governed by an underlying continuous-time Markov
chain, the explicit definition of which will be given later in this section.
PEPA has a small set of combinators, allowing system descriptions to be built up as the concurrent execution and

interaction of simple sequential components. The syntax of the type of PEPAmodel considered in this papermay be specified
formally using the grammar

S ::= (α, r).S | S + S | CS
P ::= P BC

L
P | P/L | C

where S denotes a sequential component and P denotes a model component which executes in parallel. C stands for a
constant which denotes either a sequential component or a model component as introduced by a definition. CS stands for
constants which denote only sequential components. The effect of this syntactic separation between the two different types
of constants is to constrain legal PEPA components to be cooperations of only sequential processes.
The structured operational semantics is shown in Fig. 1. A brief discussion of the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a system with a PEPA model is to give a component a
designated first action using the prefix combinator, denoted by a full stop, which was introduced above. As
explained, (α, r).P carries out an α-action with rate r , and it behaves thereafter as P .

Choice The component P+Q represents a systemwhichmay behave either as P or as Q . The activities of both P and Q are
enabled. The first activity to complete distinguishes one of them; the other is discarded. The system will behave
as the derivative resulting from the evolution of the chosen component.

Constant It is convenient to be able to assign names to patterns of behaviour associated with components. Constants are
components whose meaning is given by a defining equation. The notation for this is X def

= E. This also allows the
recursive definition of components; for example, X def

= (α, r).X performs α at rate r forever.
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Prefix

(α, r).E
(α, r)
−−→ E

Competitive Choice

E
(α, r)
−−→ E ′

E + F
(α, r)
−−→ E ′

F
(α, r)
−−→ F ′

E + F
(α, r)
−−→ F ′

Cooperation

E
(α, r)
−−→ E ′

E BC
S
F

(α, r)
−−→ E ′ BC

S
F

(α /∈ S)
F

(α, r)
−−→ F ′

E BC
S
F

(α, r)
−−→ E BC

S
F ′

(α /∈ S)

E
(α, r1)
−−−→ E ′ F

(α, r2)
−−−→ F ′

E BC
S
F

(α, R)
−−→ E ′ BC

S
F ′

(α ∈ S)

where R = r1
rα(E)

r2
rα(F)

min(rα(E), rα(F))
Hiding

E
(α, r)
−−→ E ′

E/H
(α, r)
−−→ E ′/H

(α /∈ H)
E

(α, r)
−−→ E ′

E/H
(τ , r)
−−→ E ′/H

(α ∈ H)

Constant

E
(α, r)
−−→ E ′

A
(α, r)
−−→ E ′

(A def= E)

Fig. 1. PEPA structured operational semantics.

Hiding The possibility of abstracting away some aspects of the behaviour of a component is provided by the hiding
operator, denoted as P/L. Here, the set L identifies those activities which are to be considered internal or private
to the component and which will appear as the hidden action type τ in the transition system of the model.

Cooperation We write P BC
L
Q to denote cooperation between P and Q over L. The set which is used as the subscript to

the cooperation symbol, the cooperation set L, determines those activities on which the components are forced to
synchronise. For action types not in L, the components proceed independently and concurrentlywith their enabled
activities. We write P ‖ Q as an abbreviation for P BC

L
Q when L is empty.

If a component enables an activity whose action type is in the cooperation set it will not be able to proceed with that
activity until the other component also enables an activity of that type. The two components then proceed together to
complete the shared activity. Once the activity has been enabled, the rate of a shared activity has to be altered to reflect the
slower component in a cooperation.
In some cases, when the rate of a shared activity is determined by only one component in the cooperation, then the

other component is defined as passivewith respect to that activity. This means that the rate of the activity is left unspecified
(denoted as>) and is determined upon cooperation, by the rate of the activity in the other component. All passive actions
must be synchronised in the final model.
Within the cooperation framework, PEPA assumes bounded capacity: that is, a component cannot be made to perform

an activity faster by cooperation, so the rate of a shared activity is the minimum of the apparent rates of the activity in the
cooperating components. This is discussed in more detail in [1].
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1.1.1. Apparent rate
We define the notion of apparent rate as the externally observed rate of activities of a particular type. For a given action

type α ∈ A, it is thus calculated by summing the rates of all enabled activities of this type:

rα(P) :=
∑

P
(α, λi)
−−−→

λi

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}, n> is shorthand for n×> and> represents the passive action rate that inherits the
rate of the coaction from the cooperating component. If there are many passive activities of a certain action type enabled
within the cooperation, each activity can be individually assigned a weight (defined in the operational semantics of Fig. 1)
for determining the relative probabilities of the possible outcomes for the various activities of that particular action type.
The following algebraic definitions and relations support this weighting and the use of> in the apparent rate function:

m> < n> : form < n andm, n ∈ Q
r < n> : for all r ∈ R, n ∈ Q
m>+ n> = (m+ n)> : m, n ∈ Q
m>
n>
=
m
n

: m, n ∈ Q.

Note that these algebraic rules leave (r +w>) undefined for all r ∈ R+ andw ∈ Q,w 6= 0. Such components which enable
both active and passive actions of the same action type at the same time are therefore disallowed in PEPA. An examplemight
be (a, λ).P + (a,>).P ′, where λ > 0.
Apparent rate can also be defined equivalently in a recursive manner over the PEPA grammar as follows:

rα((β, λ).P) :=
{
λ if β = α
0 if β 6= α

rα(P + Q ) := rα(P)+ rα(Q )

rα(P/L) :=

{
rα(P) if α /∈ L
0 if α ∈ L

rα(P BCL Q ) :=

{
min(rα(P), rα(Q )) if α ∈ L
rα(P)+ rα(Q ) if α /∈ L.

(1.1)

1.1.2. The execution strategy
For a given PEPA component C , we define its derivative set ds(C) as the set of components reachable from C by evolution

according to the operational semantics (Fig. 1). That is, ds(C) is the smallest set of components such that C ∈ ds(C) and if

for any C1 ∈ ds(C), C1
(α, r)
−−→ C2 then C2 ∈ ds(C).

For a given PEPA component C , we may then naturally construct its derivation graph, a labelled and directed multigraph.
The nodes of this multigraph are the derivative states of C , that is, the set of nodes is ds(C). Two nodes in the multigraph,

say C1 and C2 ∈ ds(C), have a directed arc between them for every transition C1
(α, λi)
−−−→ C2. The label of this arc is then the

activity corresponding to the transition, that is, (α, λi).
The derivation graph can then be interpreted naturally as a CTMC, whose states are given by the nodes (i.e. derivative

states), and each arc represents a transition at the rate of the activity labelling the arc. We term this the underlying CTMC of
the model.
This is described in more detail in [1, Chapter 3].

1.1.3. A simple example
We consider the ubiquitous situation of many processors running in parallel, but each in regular need of some resource

(perhaps for example, communications channels or storage media). We model each processor as a Processor0 component
and each resource as a Resource0 component. Each processor operates forever in a simple loop, completing two tasks in
sequence, task1 and then task2:

Processor0
def
= (task1, r1).Processor1

Processor1
def
= (task2, q).Processor0.

The resources on the other hand first complete a task1 action also, but then complete a reset action:

Resource0
def
= (task1, r2).Resource1

Resource1
def
= (reset, s).Resource0.
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The task1 action is a shared action between the processors and resources for modelling the situation of a processor having to
acquire a resource which it needs to complete its first task. The actions task2 and reset on the other hand will not be shared,
meaning that they are completed independently and without synchronisation by the processors and resources respectively.
In its simplest instance, with just one processor and resource, this system is defined in PEPA by

System def
= Processor0 BC

{task1}
Resource0.

Furthermore, we may easily exhibit models with larger numbers of processors and resources, such as

System(3, 2) def= (Processor0 ‖ Processor0 ‖ Processor0) BC
{task1}

(Resource0 ‖ Resource0) .

That is, there are three processors running in parallel, competing for resources, of which there are only two available. More
generally we might define

System(Np,Nr)
def
= (Processor0 ‖ . . . ‖ Processor0)︸ ︷︷ ︸

Np

BC
{task1}

(Resource0 ‖ . . . ‖ Resource0)︸ ︷︷ ︸
Nr

.

We take this opportunity to introduce a simple syntactic shorthand, rewriting the above as

System(Np,Nr)
def
= Processor0[Np] BC

{task1}
Resource0[Nr ].

Formally, we define the syntactic equivalence

C[n] := (C ‖ . . . ‖ C)︸ ︷︷ ︸
n

.

The motivating problem of intractable state space sizes is immediately evident even when considering the very simple
model System(Np,Nr). Since there are Np processor components and Nr resource components, each of which can be in one
of two states, the underlying CTMC of even this simplemodel has 2Np+Nr states, that is, exponential growth in the number of
processors and resources. This problem would of course be even more pronounced for models of distributed systems with
more realistic levels of detail.

1.2. Existing work

This section provides an introduction to the existing work in the field [16,18]. We also identify the current shortcomings
which we go some way towards addressing in this work.
The fluid-flow approach to analysis is not applicable for modelling all types of systems. In the case of stochastic process

algebra models, it is restricted to highly symmetric models, in the sense that we have groups of many homogeneous
components acting in parallel. Then instead of tracking the state of each individually, we simply count how many are in
each possible state for a given group and construct a continuous approximation to these counters.
In terms of the underlying CTMC, a desire to count the number of components in each state as opposed to tracking the

state of every component can be expressed through a natural aggregation of the state space.

1.2.1. State space aggregation
One possible approach to copingwithmassive state spaces is through state space aggregation. In certain situations, many

Markov chain states can be merged into one state to create an aggregated state space, with the same stochastic behaviour as
the original model. The reduced size of the state space is paid for of course in that the modeller has less information, since
it is no longer possible to tell which of the original unaggregated states the model is in if it is known only that it is in a given
aggregated state. This state space transformation does not solve the problem of state space explosion in general as we will
see, but it exposes clearly the sense in which we will define the fluid analysis in the next section. This is the reason for us
presenting it here.
In the case of CTMCs, it is well-known that the stochastic behaviour of the model is preserved if one takes a lumpable

partition as the aggregated state spacewith the aggregated rate being the sum of the instantaneous transition rates between
members of the partition [38].

Definition 1.1 (Lumpable Partition of a CTMC). A CTMC with finite state space {Xi}i∈I and instantaneous transition rate
between state Xi and Xj, q(Xi, Xj), is lumpable with respect to the partitionX = {X[j]}j∈J if and only if for any X[k], X[l] ∈ X
and Xi, Xj ∈ X[k] we have

q(Xi, X[l]) = q(Xj, X[l])

where q(Xi, X[l]) is the aggregated transition rate from Xi to all states in X[l], i.e. q(Xi, X[l]) :=
∑
Xm∈X[l]

q(Xi, Xm).
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Fig. 2. Aggregated state space of a simple two-processor/two-resource model.

In the context of PEPA, the strong equivalence relation defined on the process algebra naturally produces a lumpable
partition on the underlying CTMC of the model [1, Chapter 8]. We repeat this result here in the following definition and
proposition.

Definition 1.2 (Strong Equivalence). For a PEPA component P , we denote the conditional transition rate from derivative
state Pi ∈ ds(P) to Pj ∈ ds(P) via an action type α as q(Pi, Pj, α). This is the sum of the rates of all α transitions between Pi
and Pj, i.e. q(Pi, Pj, α) :=

∑
Pi

(α, λk)
−−−→Pj

λk. We then define the total conditional transition rate from Pi to S ⊆ ds(P), a set of

derivative states, denoted as q[Ci, S, α] :=
∑
Cj∈S
q(Ci, Cj, α).

An equivalence relation over derivative statesR ⊆ ds(P) × ds(P) is a strong equivalence if whenever (P,Q ) ∈ R then
for all α ∈ A and for all S ∈ ds(P)/R,

q[P, S, α] = q[Q , S, α].

Theorem 1.3. For any PEPA component P and strong equivalenceR ⊆ ds(P)× ds(P), ds(P)/R induces a lumpable partition on
the state space of the underlying CTMC.

Proof. See [1, Proposition 8.5.1]. �
We now illustrate how we might use strong equivalence to aggregate the state space of a simple PEPA model.

Example 1.4 (Aggregation of a Simple PEPA Model). Consider again the processor/resource model System(Np,Nr) of Sec-
tion 1.1.3, for Np = Nr = 2. The first action to be performed, for example, must be a task1, but it can happen in one of
four distinct ways (writing P0 for Processor0, R0 for Resource0 and so on):

1. (P0 ‖ P0) BC
{task1}

(R0 ‖ R0)
(task1,

1
4 min(2r1,2r2))

−−−−−−−−−−−−→ (P1 ‖ P0) BC
{task1}

(R1 ‖ R0),

2. (P0 ‖ P0) BC
{task1}

(R0 ‖ R0)
(task1,

1
4 min(2r1,2r2))

−−−−−−−−−−−−→ (P1 ‖ P0) BC
{task1}

(R0 ‖ R1),

3. (P0 ‖ P0) BC
{task1}

(R0 ‖ R0)
(task1,

1
4 min(2r1,2r2))

−−−−−−−−−−−−→ (P0 ‖ P1) BC
{task1}

(R1 ‖ R0),

4. (P0 ‖ P0) BC
{task1}

(R0 ‖ R0)
(task1,

1
4 min(2r1,2r2))

−−−−−−−−−−−−→ (P0 ‖ P1) BC
{task1}

(R0 ‖ R1).

Note that the PEPA components on the right hand sides, above, all have the same number of P0 and R0 components, perhaps
just occurring in different orders. If we were interested in counting just the number of components of each type on each
side of the cooperation, we might thus be wise to aggregate all of the states appearing on the right hand side of the above
transitions, summing the rates to give an aggregate rate of min(2r1, 2r2) in this particular case.
Indeed, if we define a relation on the derivative states of the originalmodel System(2, 2) by defining two derivative states

to be in this relation if and only if they have the same number of P0 and R0 components (or equivalently the same number
of P1 and R1 components), this is clearly an equivalence relation. It can also be shown that it is a strong equivalence, which
we do in a general setting in Section 2.
A state in the resulting aggregated state space is uniquely identified by the integer count of P0 and of R0 components,

that is, by two integer variables each with range from 0 to 2. Fig. 2 shows the full aggregated state space where (X, Y )[s]
represents the aggregated state of X × P0 components and Y × R0 components. The superscript indicates how many states
in the original state space have been merged into this particular aggregated state. This style of labelling was termed the
numerical vector form by Gilmore et al. [15]. �
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The above aggregation reduces a model of 24 = 16 states to one with 32 = 9 states. In exchange for this reduction
in complexity however we lose the ability to track the state of individual components; rather we are only able to track
the number of individuals in a particular component derivative state. In general, for large component counts, this style of
aggregation results in state spaces that experience exponential growth in the number of derivative states of the individual
components rather than the number of components operating together in parallel in each group. It is thus still very easy to
constructmodestmodels withmassive aggregated state spaces. Consider amore realistic model of processors and resources
each with 10 derivative states and 20 copies of each. The original state space would have of the order of 1040 states, which
is intractable when using traditional techniques. The aggregated state space would be of the order of(

(10+ 20− 1)!
20!(10− 1)!

)2
=

(
29!
20!9!

)2
= 100150052 ≈ 1014 states

which is a significant improvement, but still out of the reach of traditional analysis techniques.
It is clear that the technique of state space aggregation for groups of identical components cooperating in parallel

presented here is not sufficient alone to eliminate the state space explosion problem. It merely exchanges one form of
exponential growth for another. However, as we have discussed, when viewed as a transformation of the state space, it is
the first step in defining the fluid approximation.
It is worth considering by howmuch this aggregation alone actually reduces the size of the state space. Indeed, consider

a single component group consisting of N identical components in parallel, each with D derivative states. This is the best-
case scenario for this type of lumping aggregation, where there is going to be the potential for the greatest reduction in
state space. The size of its unaggregated state space is trivially DN states. The size of the aggregated numerical vector form
state space can be calculated by considering how many ways there are of choosing N elements from D possible types with
replacement where order is unimportant, that is (D+N−1)!N!(D−1)! states.
Clearly this is a substantial improvement on the explicit state space, and goes some distance towards addressing the state

space explosion problem for such models. Having said this, such a state space can still be far too large for standard CTMC
analysis techniques. Indeed, assuming D� N , then

(D+ N − 1)!
N!(D− 1)!

=
(D+ N − 1)(D+ N − 2) . . . (N + 1)

(D− 1)!
>

ND−1

(D− 1)!
∼ ND−1

so it is clear that this aggregation of the state space is insufficient alone if we wish to be able to analyse models with
reasonably large component groups.

1.2.2. Fluid-flow analysis with ODEs
The style of aggregation introduced in the previous section introduces explicit integer counters into the state space,

which can be subject to a fluid-flow approximation. Indeed, it has been shown how systems of coupled first-order ODEs
can be derived in terms of these counters (approximated by real variables) intuitively from such a PEPA model [16,18]. We
illustrate this by means of a simple example.

Example 1.5 (Fluid Analysis of a Simple PEPA Model). Consider again the simple model System(Np,Nr) introduced in
Section 1.1.3 and its aggregated state space (as shown in Fig. 2). Define integer-valued stochastic processes to count the
numbers of each of the Processor0, Processor1, Resource0 and Resource1 components present at a time t , say NP0(t), NP1(t),
NR0(t) and NR1(t) respectively. Note that their values fully determine the state at time t of the aggregated CTMC. For each
component, consider the rate of transitions which create new copies of that component and the rate of transitions which
lose copies of that component. For example, if we consider Processor0 components at time t , we see that the sum of all of the
transitions contributing Processor0 components has rate r2NP1(t), but on the other hand, we lose Processor0 components at
rate min(r1NP0(t), r2NR0(t)). Very similar considerations can be given for the other components. If we treat these integer-
valued stochastic processes instead as deterministic, real-valued functions, say vP0(t), vP1(t), vR0(t) and vR1(t) respectively,
we can intuitively construct a system of first-order ODEs. We will do this by considering, for each component, the rate at
which new components ‘‘enter the model’’ balanced against that at which they ‘‘leave the model’’:

v̇P0(t) = −min(r1vP0(t), r2vR0(t))+ qvP1(t)
v̇P1(t) = min(r1vP0(t), r2vR0(t))− qvP1(t)
v̇R0(t) = −min(r1vP0(t), r2vR0(t))+ svR1(t)
v̇R1(t) = min(r1vP0(t), r2vR0(t))− svR1(t).

Fig. 3 compares the ODE solution with the steady state solution of the underlying aggregated CTMC obtained through the
usual methods.
We see that at least in the (deterministic) limit of the steady state, the results appear to agree (for this set of rates and

initial conditions). �
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Fig. 3. Comparison of ODE solutions with the steady state solution of the underlying CTMC for a simple processor/resource model. The rates used are
r1 = 2.0, r2 = 14.0, q = 14.0 and s = 2.0. The initial conditions are 50 Processor0 and 20 Resource0 components.

The class of PEPA models considered by [18] is fairly general but includes some types of models which are not obviously
‘‘fluid-like’’, leading to systems of ODEs with discontinuous right hand sides (and thus no guaranteed global solution).
Furthermore, no mathematical relation of the ODEs to the original aggregated CTMC is given, although empirically, it would
appear that there is a quantitative relationship between the ODE solutions and the expected value of the corresponding
counting stochastic processes, at least for a class of PEPA models.
The first contribution of this paper is to identify syntactically this class of naturally ‘‘fluid-like’’ models, upon which we

should focus initially. In particular, we define the notion of a grouped PEPA model. Within this new framework we present
both the existing fluid analysis defined by [16,18] and extend it to handle also action hiding, active cooperation between
components with differing rates, arbitrary cooperation sets, between groups of components, and to allow the presence of
more than one component enabling the same action type on either side of a cooperation.
Furthermore, wewill see also that the grouped PEPAmodel abstractionmakes the clear presentation of the contributions

of the latter part of this paper possible.

2. Grouped PEPA models

Asdiscussed, the techniques of fluid analysis introduced are suitednaturally to a particular class of PEPAmodel, consisting
of cooperating groups of similar components. In order to allow such groups to be identified in the syntax explicitly, we
present a natural augmentation of the PEPA grammar, instances ofwhichwe call grouped PEPAmodels. Grouped PEPAmodels
are a conservative extension of standard PEPA models.
We maintain the standard PEPA component definitions from Section 1.1:

S ::= (α, r).S | S + S | CS
P ::= P BC

L
P | P/L | C .

When we wish to make clear that we are referring to a standard PEPA component as opposed to a grouped PEPA model, we
will say explicitly standard PEPA component. We wish to define a new type of component that explicitly represents a purely
concurrent group of standard PEPA components. To this end we define a component group, D:

D ::= D ‖ D | P (2.1)

where P is a standard PEPA component as defined above. The purpose of introducing this extra hierarchy is to specify
syntactically the level at which the fluid analysis is to be performed, that is, at the level of component groups. Cooperation
within components groups is not considered since such models do not have an obvious fluid interpretation.1
The fluid semantics for passive cooperation presented in [18] suffered from a related problem.2 Therefore, we exclude

passive cooperation by restricting the types of standard PEPA components that we will allow in component groups to those
not enabling any action passively in any of their derivative states. Thus we rewrite Eq. (2.1):

D ::= D ‖ D | P ∀P ′ ∈ ds(P) @(α, r) ∈ Act(P ′) such that r /∈ R+. (2.2)

1 Indeed if the programme presented here is naturally extended to such systems, the resulting ODE systems will have jumps in their right hand sides
and generally deliver meaningless quantitative results, if indeed they even have a solution at all.
2 However, a significant improvement on this was suggested in [39], whereby passive cooperation is replaced by an equivalent active cooperation. This
approach could be adopted here, in which case this work applies directly.
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The next definition allows the arbitrary combination of component groups into a grouped PEPA model,M:

M ::= M BC
L
M | M/L | Y {D} (2.3)

where L is a cooperation set. A grouped PEPAmodel consists of arbitrarily cooperating component groups (instances of Y {D},
called labelled component groups). Y is a component group label drawn from some sufficiently large label set, the purpose of
which is to provide a label uniquely identifying component groups. To this end, each labelled component group in a given
model is assumed to have a distinct label.
We might therefore represent the model System(Np,Nr) of Section 1.1.3 as the grouped PEPA model SystemG(Np,Nr):

Processors{Processor0[Np]} BC
{task1}

Resources{Resource0[Nr ]}.

In this particular case, the two component groups (identified by the labels Processors and Resources) specify that the fluid
analysis will happen at the level of Processor0, Processor1, Resource0 and Resource1 components. That is, these are the four
derivative states that we will count copies of; there will be one ordinary differential equation defined for each of these four
component states.
We now exhibit the natural standard PEPA model to which a grouped PEPA model corresponds. A grouped PEPA model

should be thought of simply as the corresponding standard PEPA model, but with additional annotations (the group
labellings), which specify unambiguously the level at which the fluid analysis should be performed. Accordingly, many
definitions for grouped PEPA models can be made directly in terms of the corresponding standard PEPA model.

Definition 2.1 (Model Flattening Function). For any grouped PEPA model G, the corresponding standard PEPA model, F (G),
can be recovered from the grouped model. F (·) is defined as

F (M1 BCL M2) := F (M1) BCL F (M2)

F (M/L) := F (M)/L
F (Y {D}) := F ′(D)

where for component groups,

F ′(D1 ‖ D2) := F ′(D1) ‖ F ′(D2)
F ′(P) := P.

Now in terms of its corresponding standard PEPA model, we can define the notion of apparent rate for grouped PEPA
models using the flattening function.3

Definition 2.2 (Apparent Rate of a Grouped PEPA Model). For any grouped PEPA model G, its apparent rate for action type
α ∈ A is

rα(G) := rα(F (G)).

As we will see, in generating a fluid model systematically from a PEPA model, we need to be able to extract component
generated actions from the top level PEPAmodel. This will require us to knowwhich action type a silent τ -actionwas before
it was hidden. The following will augment the existing silent action with an originating action type to allow this to happen.
In the case of standard PEPA components, every evolution will either have a non-hidden action type β 6= τ or the hidden

action type τ . The hidden action type arises either due to an application of action hiding or because an activity of type τ was
explicitly encoded into the model. We extend the set of action types to consist of the union of normal action types (simply
the set of action types, except τ , under the original PEPA definition, i.e.A\ {τ }) and hidden action types, which is the new set
of action types {τ β : β ∈ A \ {τ }} ∪ {τ }. τ β is the new action type of an evolution which originated locally as a β-action but
was later hidden so that it became a global τ -action. The τ -action type still exists to represent evolution of τ -actions which
were explicitly encoded in the grouped PEPA model and did not originate through action hiding. We define an extended
action type to be an element of the union of normal action types and hidden action types and denote this extended setAτ .
In keeping with the intended semantics of hidden actions, cooperation sets can only include normal action types (actions in
A \ {τ }). Furthermore, we do not allow any action types of the form τ β to be encoded explicitly in a model; they may only
arise through action hiding. The exact role of extended action types will be formalised when the operational semantics for
grouped PEPA models is presented shortly.
We also define the utility function t : Aτ

→ A which extracts the associated normal action type from an extended
action type, i.e. for normal action types β , t(β) := β , but for hidden action types τ β , t(τ β) := β and t(τ ) := τ .

F (G) provides information regarding how a grouped PEPAmodel G evolves, but only by first losing the explicit definition
of component groups and appealing to standard PEPA semantics. We of course wish to preserve the explicit nature of
component groups in the evolution of grouped models. We therefore extend the PEPA operational semantics of Fig. 1 to

3 We overload the syntax when equivalent definitions are effectively the same for standard PEPAmodels and grouped PEPAmodels, modulo the explicit
presence of component groups.
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Grouped model cooperation

M1
(α, r)
−−→ M ′1

M1 BCS M2
(α, r)
−−→ M ′1 BCS M2

(α /∈ S)
M2

(α, r)
−−→ M ′2

M1 BCS M2
(α, r)
−−→ M1 BCS M

′

2

(α /∈ S)

M1
(α, r1)
−−−→ M ′1 M2

(α, r2)
−−−→ M ′2

M1 BCS M2
(α, R)
−−→ M ′1 BCS M

′

2

(α ∈ S)

where R = r1
rα(M1)

r2
rα(M2)

min(rα(M1), rα(M2))
Grouped model hiding

M
(α, r)
−−→ M ′

M/L
(α, r)
−−→ M ′/L

(α /∈ L)
M

(β, r)
−−→ M ′

M/L
(τβ , r)
−−−→ M ′/L

(β ∈ L)

Labelled component group

D
(α, r)
−−→ D′

Y {D}
(α, r)
−−→ Y {D′}

Component group

D1
(α, r)
−−→ D′1

D1 || D2
(α, r)
−−→ D′1 || D2

D2
(α, r)
−−→ D′2

D1 || D2
(α, r)
−−→ D1 || D′2

Fig. 4. Grouped PEPA structured operational semantics.

grouped PEPA models explicitly in Fig. 4. The operational semantics for standard PEPA components is not repeated and
remains unaltered.
In terms of the operational semantics, we can now define the activity multiset of a grouped PEPA model analogously to

the standard PEPA case.

Definition 2.3 (Activity Multiset of a Grouped PEPA Model). For any grouped PEPAmodelG, its activitymultiset isAct(G) :=
{|(α, r) : G

(α,r)
−−→ |}.

The following theorem asserts formally our intention to have a grouped PEPA model behave exactly like the
corresponding standard PEPA model.

Theorem 2.4. Let G be a grouped PEPA model. Then:

1. If β ∈ A \ {τ }, transitions G
(β, r)
−−→ G′ are in one-to-one correspondence with transitions F (G)

(β, r)
−−→ F (G′).

2. Transitions G
(τβ , r)
−−−→ G′ with β ∈ A are in one-to-one correspondence with transitions F (G)

(τ , r)
−−→ F (G′).

Proof. Follows trivially by comparing Figs. 1 and 4. �
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2.1. Properties of grouped PEPA models

Some useful properties of grouped PEPA models are now formalised. To aid the reader, we first present a table giving
informal definitions for the notation used heavily in later sections.

G(G) The set of all component group labels in the grouped PEPA model G
B(G,H) The set of all standard PEPA component states in the component group of G which has

group label H
B(G) The set of all pairs whose first element is a component group label and whose second is a

standard PEPA component in the group specified by that label
C(G,H,Q ) The integer count of standard PEPA components in state Q in the component group of G

which has group label H
V(G,H) The set of action types performed locally by a standard PEPA component in groupH , which

are globally hidden in G

As stated in Section 2, group labels uniquely identify a given parallel grouping of components within a grouped PEPA
model. So in all the formal definitions below, for a given group H ∈ G(G), the group H can only occur once in the model G.

Definition 2.5 (Set of Component Group Labels). For any grouped PEPA model G, its set of component group labels is G(G)
where G(·) is defined as

G(M1 BCL M2) := G(M1) ∪ G(M2)

G(M/L) := G(M)
G(Y {D}) := Y .

Definition 2.6 (Group Visibility Function). Let G be a grouped PEPA model and let H ∈ G(G) be a component group label.
The group visibility function V(G,H) returns the set of normal action types which will be eventually hidden if performed by
a standard PEPA component in groupH in the context of the system, G. The functionV(·, ·) is defined over the grouped PEPA
syntax as follows:

V(M1 BCL M2,H) := V(M1,H) ∪ V(M2,H)

V(M/L,H) :=
{
L ∪ V(M,H) if H ∈ G(M)
∅ if H 6∈ G(M)

V(Y {D},H) := ∅.

Definition 2.7 (Standard PEPA Derivative States in a Component Group). For any grouped PEPA model G, B(G,H) is the set
of standard PEPA component derivative states in a component group, H ∈ G(G). The function B(·, ·) is defined over the
grouped PEPA syntax as follows:

B(M1 BCL M2,H) := B(M1,H) ∪B(M2,H)

B(M/L,H) := B(M,H)

B(Y {D},H) :=
{
B ′(D) if Y = H
∅ if Y 6= H

where for component groups,

B ′(D1 ‖ D2) := B ′(D1) ∪B ′(D2)
B ′(P) := ds(P).

Furthermore defineB(G) to be the subset of G(G)×
⋃
Hi∈G(G)

B(G,Hi) such that (H, P) ∈ B(G) if and only if H ∈ G(G)
and P ∈ B(G,H). That is, there is exactly one element of B(G) for every standard PEPA component and group in which
it occurs in the model. This allows us to specify the standard PEPA components of a particular type occurring in a given
component group.
The set of derivative states of a grouped PEPA model G, written as standard PEPA model components, is easily seen to

be ds(F (G)). However, we will need to express the derivative states of a grouped PEPA model themselves as grouped PEPA
model components. The next definition achieves this.

Definition 2.8 (Grouped Derivative States). The set of derivative states of a grouped PEPA model G is ds(G), defined as the
smallest set of grouped PEPA model components such that G ∈ ds(G) and if G1 ∈ ds(G) and G1

(α, r)
−−→ G2 then G2 ∈ ds(G).
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It is clear by virtue of Theorem 2.4 that this definition is identical to that for standard PEPA components (Section 1.1.2)
apart from the explicit identification of component groups through their labels. As in the case of standard PEPA
(Section 1.1.2), the underlying CTMC of a grouped PEPA model is generated directly from the derivation graph induced by
Definition 2.8. Theorem 2.4 tells us that as expected, the underlying CTMC of a grouped PEPA model is trivially isomorphic
to that of the corresponding standard PEPA model, i.e. they have identical stochastic behaviour, as is our intention.
We now define the component counting function. For a given grouped PEPA model G, this function takes a component

group and a standard PEPA component. It returns the number of standard PEPA components of a particular type currently
active in the given group.

Definition 2.9 (Component Counting Function). For any grouped PEPA model G and group label–state pair (H,Q ) ∈ B(G),
the component counting function C(G,H,Q ) counts the number of component members of group H that are in state Q . The
function C(·, ·, ·) is defined over the grouped PEPA syntax as follows:

C(M1 BCL M2,H,Q ) := C(M1,H,Q )+ C(M2,H,Q )

C(M/L,H,Q ) := C(M,H,Q )

C(Y {D},H,Q ) :=
{
C ′(D,Q ) if Y = H
0 if Y 6= H

where for component groups,

C ′(D1 ‖ D2,Q ) := C ′(D1,Q )+ C ′(D2,Q )

C ′(P,Q ) :=
{
1 if P = Q as standard PEPA components
0 otherwise.

It is quite clear from the operational semantics in Fig. 4 that as a groupedmodel evolves, each component groupmaintains
its fixed size in the sense of the number of standard PEPA components that it contains. It is therefore easy to see that
the component counting function will always be valued between zero and the size of the given component group for any
standard PEPA component derivative state in that group.
We now use the component counting function to aggregate a grouped PEPA model state space, combining states where

the component counts agree. We begin by defining the relation groupwise equivalence on the derivative states of grouped
PEPA models.

Definition 2.10 (Groupwise Equivalence). LetG be a grouped PEPAmodel. DefineG1,G2 ∈ ds(G) to be groupwise equivalent,
G1 'G G2, if and only if for all (H, P) ∈ B(G), we have C(G1,H, P) = C(G2,H, P).

Theorem 2.11. 'G is an equivalence relation, i.e. it induces a partition ds(G)/ 'G on the state space of a grouped PEPA model G.

Proof. This is immediate from Definition 2.9. �

For example, in the case of G = SystemG(Np,Nr), writing P0 for Processor0, R0 for Resource0 and so on, one equivalence
class G̃ ∈ ds(G)/'G is

G̃ = {Processors{P0 ‖ P1[Np − 1]} BC
{task1}

Resources{R0[Nr ]},

Processors{P1 ‖ P0 ‖ P1[Np − 2]} BC
{task1}

Resources{R0[Nr ]},

Processors{P1[2] ‖ P0 ‖ P1[Np − 3]} BC
{task1}

Resources{R0[Nr ]},
. . . ,

Processors{P1[Np − 1] ‖ P0} BC
{task1}

Resources{R0[Nr ]}}.

This is the case for one P0 component (and thus (Np − 1) × P1 components) and Nr × R0 components (and thus no R1
components).
Now for a general grouped PEPAmodel G and any G̃ ∈ ds(G)/'G, we will find it useful to define the component counting

function on equivalence classes, that is, C̃(G̃,H, P) := C(G,H, P) for some representative G ∈ G̃. This is trivially well-
defined by definition of the equivalence relation'G.
We wish now to prove that'G is a strong equivalence. The definition that we gave for strong equivalence was in terms

of standard PEPA components (Definition 1.2), but it adapts naturally to grouped PEPA models: define for extended action
type α and G1,G2 ∈ ds(G), q(G1,G2, α) as the total rate of α-transitions between derivative states G1 and G2, analogously
to the standard PEPA case.

Theorem 2.12. 'G is a strong equivalence.
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Proof. Let G be a grouped PEPA model with G1 'G G2 for G1 and G2 ∈ ds(G). Let α be an extended action type and
S ∈ ds(G)/'G. We need to show that q[G1, S, α] = q[G2, S, α].
NowG1 andG2 have by definition the same number of each standard PEPA component in each of their component groups.

Thus they potentially differ only in that these standard PEPA components might be arranged in a different order within the
component groups. Compare for example (P1 ‖ P1 ‖ P3 ‖ P2)with (P1 ‖ P2 ‖ P1 ‖ P3).

It is clear from the operational semantics (Fig. 4) that transitions G1
(α, r1)
−−−→ G′1 where G

′

1 ∈ S are in one-to-one

correspondence with transitions G2
(α, r2)
−−−→ G′2 for some G

′

2 ∈ S, where G
′

2 will differ from G
′

1 in the same fashion as G2
differs from G1, i.e. their component counts will remain the same (so they must both be in S). Furthermore, r2 = r1 since it
is clear from the operational semantics that the order of a parallel cooperation does not alter the rate of transitions. �

Therefore 'G induces a lumpable partition ds(G)/ 'G on the state space of the underlying CTMC by Theorem 1.3. We
refer to this CTMC as the underlying aggregated CTMC of the grouped PEPA model G.
We have shown that we may aggregate the state space of a grouped PEPA model according to the count of components

within component groups that are in a particular derivative state. Thus we do not have to explicitly track the evolution
of individual members of component groups. States in our aggregated CTMC are uniquely specified by component counts,
so a fluid approximation to the component counting stochastic processes will yield an approximation to the state of the
aggregated CTMC.

2.2. Evolution rates of grouped PEPA models

In this section, we present the fluid translation for PEPA models using the grouped PEPA model framework. We will
introduce the following key rate and probability functions based on grouped PEPA model evolution.

Rα(G, E,H, P) The component rate functionmeasures the local rate at which component state P
in groupH performs an α-action in the context of the cooperationwithin thewider
grouped PEPA model G (using counting function E)

pα(P,Q ) The derivative weighting function measures the probability that component P
evolves to component Q in one α-transition

rα(G, E) The count-oriented apparent rate function measures the total rate of α being
produced by grouped model G (using counting function E)

It is important to know the rates associated with the aggregated CTMC that we defined in the previous section. To this
end, we define the component rate functionwhich calculates the rate of evolution of a local action as experienced by a given
component type, i.e. it is used to describe the aggregate rate at which clusters of the same component type evolve into their
respective derivatives.

Definition 2.13 (Component Rate Function). Let G be a grouped PEPA model. Let G̃ ∈ ds(G)/'G be a groupwise equivalence
class of G and let G ∈ G̃ be a representative of the equivalence class. Then for (H, P) ∈ B(G) and extended action type
α ∈ Aτ , the component rate for α of members in state P of component group H of G̃ is R̃α(G̃,H, P) := Rα(G,H, P)where
R·(·, ·, ·) is defined as

Rα(M1 BCL M2,H, P) :=
{

Rα(Mi,H,P)
rα(Mi)

min(rα(M1), rα(M2)) if H ∈ G(Mi) and α ∈ L, for i = 1 or 2
Rα(Mi,H, P) if H ∈ G(Mi) and α /∈ L, for i = 1 or 2

Rα(M/L,H, P) :=


0 if α ∈ L(and α ∈ A)
Rα(M,H, P) if α /∈ L and α ∈ A
Rτβ (M,H, P) if α = τ β and β /∈ L
Rτβ (M,H, P)+Rβ(M,H, P) if α = τ β and β ∈ L

Rα(Y {D},H, P) :=
{
C(Y {D},H, P) rα(P) if H = Y
0 if H 6= Y .

The terms of the form Rα(Mi,H,P)
rα(Mi)

min(rα(M1), rα(M2)) are defined as 0 when rα(Mi) = 0.

That R̃·(·, ·, ·) is well-defined follows immediately from the definition of'G.

The component rate function gives the overall aggregate rate at which a given standard PEPA component type within a
grouped PEPA model does a certain action type. We are ultimately interested however in how that rate is shared between
enabled transitions into different derivative states. For example, for a given grouped PEPAmodel and particular component
group containing standard PEPA components P and Q , we wish to know the rate at which P components make transitions
to become Q components, as opposed to just the overall rate of transition out of P . To this end, we define the derivative
weighting functionwhich calculates the probability that given that a standard PEPA component does an action, it transits to
another specified standard PEPA component state.



2274 R.A. Hayden, J.T. Bradley / Theoretical Computer Science 411 (2010) 2260–2297

Definition 2.14 (Derivative Weighting Function). Let P and Q be standard PEPA components and let α ∈ A. Then

pα(P,Q ) :=
1
rα(P)

∑
P
(α, λi)
−−−→Q

λi.

This is defined to be zero when rα(P) = 0.

We now wish to relate the component rate function and derivative weighting function to the underlying aggregated
CTMC induced by ds(G)/'G by characterising the outgoing transitions from a given state in terms of these functions.

Theorem 2.15. Let G be a grouped PEPAmodel. Let G̃ ∈ ds(G)/'G be a groupwise equivalence class of G. Consider the component
group with label H ∈ G(G) and let α ∈ Aτ be an extended action type. For each standard PEPA component P ∈ B(G,H), all α-
transitions from G̃ to some other state G̃′ ∈ ds(G)/'G where C̃(G̃′,H, P) 6= C̃(G̃,H, P) are such that exactly one of the following
holds:

1. C̃(G̃′,H, P) = C̃(G̃,H, P)− 1, and furthermore, the sum of the rates of all α-transitions to states G̃′ for which this holds is∑
Qi∈B(G,H)
Qi 6=P

pt(α)(P,Qi) R̃α(G̃,H, P)

or
2. C̃(G̃′,H, P) = C̃(G̃,H, P)+ 1 and furthermore, the sum of the rates of all α-transitions to states G̃′ for which this holds is∑

Qi∈B(G,H)
Qi 6=P

pt(α)(Qi, P) R̃α(G̃,H,Qi).

Also in either case, if there is no such α-transition, the rates given above are zero.

Proof. See Appendix A.1. �

3. Fluid analysis of grouped PEPA models

Wenowproceed to showhowa systemof coupledODEsmaybederived fromagrouped PEPAmodel. TheseODEs describe
a continuous approximation to the time evolution of the numbers of each type of standard PEPA componentwithin a grouped
PEPAmodel. This section claims only that the rates used to define the ODEsmatch those of the underlying aggregated CTMC
(Theorem2.15). The actual relationship between theODE solution and the underlying CTMC is considered in the next section.
Since the component counts uniquely determine groupwise equivalence classes, we are effectively representing the state

of the system with a sequence of integers specifying the numbers of each of the standard PEPA components in each of the
component groups. Given such a definition, there is nothing preventing us from allowing, more generally, a sequence of real
numbers and naturally extending the definition of component rate accordingly. Although this would have no relationship
to the original grouped PEPAmodel since it makes no sense to have a non-integer number of components, it is exactly what
we need for the fluid approximation, where integer component counts are approximated by real variables.
Wewill call these alternative definitions count-oriented. Let G be a grouped PEPAmodel and define the set of all functions

E(G) := B(G) → R≥0. This represents a superset of the possible states of the aggregated CTMC of a grouped PEPA
model, i.e. a subset4 of elements of E(G) specify counts for all standard PEPA components within the grouped model G.
This construction plays the role of the sequence of real numbers mentioned above. In order to present the count-oriented
definition of component rate, we first need a count-oriented definition of apparent rate.

Definition 3.1 (Count-oriented Apparent Rate). Let G be a grouped PEPA model. Let α ∈ Aτ be an extended action type and
E ∈ E(G) specify the component counts. Then the count-oriented apparent rate is rα(G, E)where r·(·, ·) is defined as

rα(M1 BCL M2, E) :=
{
min(rα(M1, E), rα(M2, E)) if α ∈ L
rα(M1, E)+ rα(M2, E) otherwise

rα(M/L, E) :=
{
rα(M, E) if α /∈ L
0 otherwise

rα(Y {D}, E) :=
∑

Pi∈B(Y {D},Y )

E(Y , Pi) rα(Pi).

4 Non-negative integer-valued, in the correct range and preserving of the component group sizes. Note also that even if a given element of E(G) has
these properties, the CTMC state which it uniquely defines may not actually be reachable. This is worth bearing in mind but has no explicit effect on this
work.
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This matches the original definition of apparent rate (Definition 2.2), or more formally:

Theorem 3.2. Let G be a grouped PEPA model. Then for all extended action types α ∈ Aτ and groupwise equivalence classes
G̃ ∈ ds(G)/'G, we have that rα(G, C(G̃)) = rα(G) for all G ∈ G̃, where C(G̃) ∈ E(G) is given by C(G̃) := λ(H, P)→ C̃(G̃,H, P).

Proof. Immediate from the definitions. �

Definition 3.3 (Count-oriented Component Rate Function). Let G be a grouped PEPA model. For (H, P) ∈ B(G), extended
action type α ∈ Aτ and E ∈ E(G) specifying the component counts, the count-oriented component rate isRα(G, E,H, P)
whereR·(·, ·, ·, ·) is defined as

Rα(M1 BCL M2, E,H, P) :=
{

Rα(Mi,E,H,P)
rα(Mi,E)

min(rα(M1, E), rα(M2, E)) if H ∈ G(Mi) and α ∈ L, for i = 1 or 2
Rα(Mi, E,H, P) if H ∈ G(Mi) and α /∈ L, for i = 1 or 2

Rα(M/L, E,H, P) :=


0 if α ∈ L (and α ∈ A)
Rα(M, E,H, P) if α /∈ L and α ∈ A
Rτβ (M, E,H, P) if α = τ β and β /∈ L
Rτβ (M, E,H, P)+Rβ(M, E,H, P) if α = τ β and β ∈ L

Rα(Y {D}, E,H, P) :=
{
E(H, P) rα(P) if H = Y and P ∈ B(G,H)
0 otherwise.

As before, terms with zero-valued denominators are defined to be zero.

This matches the original definition of component rate (Definition 2.13), or more formally:

Theorem 3.4. Let G be a grouped PEPA model. Then for all (H, P) ∈ B(G), extended action types α ∈ Aτ and groupwise
equivalence classes G̃ ∈ ds(G)/ 'G, we have that Rα(G, C(G̃),H, P) = R̃α(G̃,H, P), where C(G̃) ∈ E(G) is given by
C(G̃) := λ(H, P)→ C̃(G̃,H, P).

Proof. Immediate from the definitions. �

Now consider a grouped PEPA model G. Let B = (H, P) ∈ B(G). In the style of Example 1.5, we will introduce
vB(t) as a deterministic, continuous approximation to the integer-valued stochastic process NB(t) := C̃(G̃t ,H, P) where
G̃t ∈ ds(G)/'G is the state of the underlying aggregated CTMC at time t . As in the example, the definition of vB(t) will be
by means of a system of coupled, first-order ODEs.

Definition 3.5 (ODE System Associated with a Grouped PEPA Model). LetGbe a groupedPEPAmodel.Wedefine the evolution
of the vH,P(t) over time for (H, P) ∈ B(G) via the system of first-order coupled ODEs

v̇H,P(t) =
∑
αi∈Aτ

 ∑
Qj∈B(G,H)

pt(αi)(Qj, P)Rαi(G, V (t),H,Qj)

−Rαi(G, V (t),H, P) for all (H, P) ∈ B(G)

where for t ∈ R≥0, V (t) ∈ E(G) is given by V (t) := (λ(H, P)→ vH,P(t)) for all (H, P) ∈ B(G).
The initial conditions, V0 ∈ E(G), for this system of ODEs are those naturally defined by the initial state of G. That is,

V0 := (λ(H, P)→ C(G,H, P)).

Definition 3.5 requires some explanation. As discussed, it is motivated by a more general version of the method applied
in Example 1.5. Indeed, for each component type in each component group, we consider the rates of the underlying CTMC
at which ‘‘copies’’ of the component are lost and gained, forming an ODE by balancing these quantities; informally,

v̇H,P(t) =
∑
α∈Aτ

[∑
of rates of all α transitions increasing no. P components in group H

−

∑
of rates of all α transitions decreasing no. P components in group H

]
.

Theorem 2.15 tells us that the first sum of the above is∑
Qj∈B(G,H)
Qj 6=P

pt(α)(Qj, P) R̃α(G̃t ,H,Qj)

and the second sum is∑
Qj∈B(G,H)
Qj 6=P

pt(α)(P,Qj) R̃α(G̃t ,H, P).
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Fig. 5. A central state of the underlying aggregated CTMC of Example 4.2.

Since we are concerned with the difference of these two sums, we may drop the condition Qj 6= P on each since
the corresponding terms will cancel. We may then note that

∑
Qj∈B(G,H)

pt(α)(P,Qj) = 1, which gives the equation of
Definition 3.5.

4. Fluid analysis as a first-moment approximation

There is currently very limited work in the literature relating the deterministic, real-valued quantities vH,P(t) defined
by the systems of ODEs presented in the last section to the integer-valued stochastic processes NH,P(t), which count the
number of standard PEPA model components in the component group with label H in derivative state P at time t . In this
section, we show, using the Chapman–Kolmogorov equations which govern the evolution of the underlying CTMC, that the
quantities vH,P(t) are each an approximation to the corresponding expectations, E[NH,P(t)]. Then, in the following section,
we will see how this point of view allows us to develop similar approximate analyses for (joint) higher order moments of
the stochastic processes NH,P(t).
We begin our analysis by considering a very small class of model, the purely concurrent models, for which we have an

exact result.

4.1. Purely concurrent models

In the case of purely concurrent grouped PEPAmodels, that is, thosewithout synchronisation between component groups,
we can show an exact correspondence with the underlying CTMC. In particular, we will show that the solution of the ODEs
of Definition 3.5 has an exact interpretation as the first moment of the stochastic process NH,P(t).

Definition 4.1 (Purely Concurrent Grouped PEPA Model). A purely concurrent grouped PEPAmodel is a grouped PEPAmodel
that has no shared actions (between component groups), that is, it can still be expressed in the less general grammar,
obtained by modifying Eq. (2.3):

M ::= M ‖ M | M/L | Y {D}.

Wemotivate what follows through a simple example.

Example 4.2 (Exact Transient Correspondence of Fluid Analysis for a Simple Model). Consider the following purely concur-
rent grouped PEPA model representing two unsynchronised groups of processors (N × Processora andM × Processorb):

Processora
def
= (task1, r1).Processor ′a

Processor ′a
def
= (task2, r2).Processora

Processorb
def
= (task1, q1).Processor ′b

Processor ′b
def
= (task2, q2).Processorb

System def
= A{Processora[N]} ‖ B{Processorb[M]}.

Writing a, a′, b and b′ for the number of Processora, Processor ′a, Processorb or Processor
′

b components respectively, a central
state of the aggregatedCTMCof thismodel is shown in Fig. 5.Wewrite p(a,a′,b,b′)(t) for the transient probability of being in the
CTMC state representing the groupwise equivalence class of a×Processora, a′×Processor ′a, b×Processorb and b

′
×Processor ′b

components at time t . For this case, the Chapman–Kolmogorov forward equations, that govern the evolution of the state
probabilities of the underlying aggregated CTMC, have the general form
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ṗ(a,a′,b,b′)(t) = (a+ 1)r1 · p(a+1,a′−1,b,b′)(t)+ (a′ + 1)r2 · p(a−1,a′+1,b,b′)(t)
+ (b+ 1)q1 · p(a,a′,b+1,b′−1)(t)+ (b′ + 1)q2 · p(a,a′,b−1,b′+1)(t)− ar1 · p(a,a′,b,b′)(t)
− a′r2 · p(a,a′,b,b′)(t)− bq1 · p(a,a′,b,b′)(t)− b′q2 · p(a,a′,b,b′)(t)

where each of the first four summands appear only when the state (a, a′, b, b′) has the corresponding incoming transitions,
in the aggregated state space, say S. Multiplying p(a,a′,b,b′)(t) by a, summing for all states (a, a′, b, b′) ∈ S, then re-indexing
the sums for the first four terms on the right hand side, we obtain∑

(a,a′,b,b′)∈S

a · ṗ(a,a′,b,b′)(t) =
∑

(a,a′,b,b′)∈S

[
(a− 1)ar1 · p(a,a′,b,b′)(t)+ (a+ 1)a′r2 · p(a,a′,b,b′)(t)+ abq1 · p(a,a′,b,b′)(t)

+ ab′q2 · p(a,a′,b,b′)(t)− aar1 · p(a,a′,b,b′)(t)− aa′r2 · p(a,a′,b,b′)(t)

− abq1 · p(a,a′,b,b′)(t)− ab′q2 · p(a,a′,b,b′)(t)
]
.

This re-indexing is possible since the sums of the first four terms on the right hand side only omit terms which are equal to
zero. If (A(t), A′(t), B(t), B′(t)) ∈ S is the state of the underlying aggregated CTMC at time t , cancelling terms then yields

Ė[A(t)] = −r1 · E[A(t)] + r2 · E[A′(t)].

Using a similar technique, we obtain also

Ė[A′(t)] = −r2 · E[A′(t)] + r1 · E[A(t)]
Ė[B(t)] = −q1 · E[B(t)] + q2 · E[B′(t)]
Ė[B′(t)] = −q2 · E[B′(t)] + q1 · E[B(t)].

These coincide exactly with the ODEs of Definition 3.5 when vH,P(t) is taken to be the expectations of the component
counts in question at time t . �

We will see that this result extends to general purely concurrent grouped models, but we first present a more general
result for arbitrary grouped PEPA models which will also be of later use.

Theorem 4.3. Let G be a grouped PEPA model and (H, P) ∈ B(G). Then,

Ė[NH,P(t)] =
∑
αi∈Aτ

 ∑
Qj∈B(G,H)

pt(αi)(Qj, P)E[Rαi(G,N(t),H,Qj)]

− E[Rαi(G,N(t),H, P)]

where for t ∈ R≥0, N(t) ∈ E(G) is given by N(t) := (λ(H, P)→ NH,P(t)) for all (H, P) ∈ B(G).

Proof. See Appendix A.2 �

Theorem 4.4. Let G be a purely concurrent grouped PEPA model. Then the expectations of the component counts at time t,
E[NH,P(t)], satisfy the ODEs of Definition 3.5.

Proof. Since G is purely concurrent, we have by Definition 3.3 that for all (H, P) ∈ B(G), the term Rα(G,N(t),H, P) is
nothing more than a linear combination of component counts. Therefore by linearity of expectation, Theorem 4.3 reduces
to

Ė[NH,P(t)] =
∑
αi∈Aτ

 ∑
Qj∈B(G,H)

pt(αi)(Qj, P)Rαi(G, E(t),H,Qj)

−Rαi(G, E(t),H, P)

where for all (H, P) ∈ B(G), E(t) := (λ(H, P)→ E[NH,P(t)]). �

Despite being quantitatively very strong, this result has limited use since it applies only to the simplest of models where
components evolve independently of each other. Suchmodels are of course already tractable andnot particularly interesting.
Interesting models are those with cooperation between component groups. In this case, Theorem 4.3 tells us that we

lose the exact correspondence with the expectations of the underlying CTMC since the component rate function is no longer
necessarily linear in the component counts. The ODEs of Definition 3.5 for a system with cooperation between component
groups will be seen to yield an approximation to the expectations of component counts. In the next section, we consider a
large class of models (the split-free models) for which this approximation has a particularly simple form.
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Fig. 6. A central state of the underlying aggregated CTMC of Example 4.6.

4.2. Split-free models

The class of split-free models is general enough to include most large concurrent models encountered in practice.
Specifically it excludes models involving cooperations M1 BCL M2 where, for some shared action α ∈ L, either M1 or M2
contains more than one type of standard PEPA component which enables α. That is, at least one side of the cooperation
splits between two different types of standard PEPA component. This is formalised in the next definition.

Definition 4.5 (Split-free Grouped PEPA Model). A grouped PEPAmodel G is split-free if and only ifQ(G) = true, whereQ(·)
is defined as

Q(M1 BCL M2) := Q(M1) ∧Q(M2) ∧Q′(M1, L) ∧Q′(M2, L)

Q(M/L) := Q(M)
Q(Y {D}) := true

whereQ′(M, L) = true if and only if for all α ∈ L, there do not exist distinct (H1, P1), (H2, P2) ∈ B(M)with α /∈ V(M,H1)
and α /∈ V(M,H2), such that (α, ·) ∈ Act(P1) and (α, ·) ∈ Act(P2).

Recall that for a general grouped PEPA model G = M1 BCL M2, (H, P) ∈ B(G) and E ∈ E(G), the (count-oriented)
component rate function (Definition 3.3) is defined as

Rα(M1 BCL M2, E,H, P) :=
{

Rα(Mi,E,H,P)
rα(Mi,E)

min(rα(M1, E), rα(M2, E)) if H ∈ G(Mi) and α ∈ L, for i = 1 or 2
Rα(Mi, E,H, P) if H ∈ G(Mi) and α /∈ L, for i = 1 or 2.

The term Rα(Mi,E,H,P)
rα(Mi,E)

may introduce rational functions in terms of the component counts into the component rate function
and thus the system of differential equations associated with the model. The desirable property of a split-free model, on the
other hand, is that the rational expression will always cancel, that is,Rα(Mi, E,H, P) = rα(Mi, E) for all α ∈ L. This follows
immediately from the definition of split-free.
For a general split-free grouped PEPA model G, there may be cooperation between component groups, and we see by

Definition 3.3 that the general form of Rα(G, ·, ·, ·) may involve minimum functions and linear combinations (but not
rational functions) of component counts, i.e. it is a piecewise-linear function of the component counts. Since the only source
of non-linearity is the use of minimum functions, we see that the equation of Theorem 4.3 matches that of Definition 3.5
after the following simple approximation is applied, perhaps more than once. For two stochastic processes,M(t) and N(t),

E[min(M(t),N(t))] ≈ min(E[M(t)],E[N(t)]).

Note that in general,

E[min(M(t),N(t))] ≤ min(E[M(t)],E[N(t)]).

We now illustrate this by means of a simple concrete example.

Example 4.6 (Fluid Analysis as a First-Moment Approximation for a Simple Synchronised (Split-free) Model). Consider again
the processor/resource model SystemG(Np,Nr). It is trivially split-free.
Writing P0, P1, R0 or R1 for the number of Processor0, Processor1, Resource0 or Resource1 components respectively, a central

state of the aggregated CTMC of this model is shown in Fig. 6. We can write p(P0,P1,R0,R1)(t) for the transient probability of
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being in the CTMC state representing the groupwise equivalence class of P0 × Processor0, P1 × Processor1, R0 × Resource0
and R1 × Resource1 components at time t . The Chapman–Kolmogorov forward equations are in this case

ṗ(P0,P1,R0,R1)(t) = min((P0 + 1)r1, (R0 + 1)r2) · p(P0+1,P1−1,R0+1,R1−1)(t)
+ (P1 + 1)q · p(P0−1,P1+1,R0,R1)(t)+ (R1 + 1)s · p(P0,P1,R0−1,R1+1)(t)
−min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)− P1q · p(P0,P1,R0,R1)(t)− R1s · p(P0,P1,R0,R1)(t) (4.1)

where again, each of the first four summands appear only when the state (a, a′, b, b′) has the corresponding incoming
transitions, in the aggregated state space, say S. Multiplying p(P0,P1,R0,R1)(t) by P0 and summing for all states (P0, P1, R0, R1) ∈
S as in the previous example, we obtain∑

(P0,P1,R0,R1)∈S

P0 · ṗ(P0,P1,R0,R1)(t) =
∑

(P0,P1,R0,R1)∈S

[
(P0 − 1)min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)

+ (P0 + 1)P1q · p(P0,P1,R0,R1)(t)+ P0R1s · p(P0,P1,R0,R1)(t)

− P0min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)− P0P1q · p(P0,P1,R0,R1)(t)− P0R1s · p(P0,P1,R0,R1)(t)
]
.

If (P0(t), P1(t), R0(t), R1(t)) ∈ S is the state of the underlying aggregated CTMC at time t , cancelling terms then yields

Ė[P0(t)] = −E[min(P0(t)r1, R0(t)r2)] + q · E[P1(t)].

Similarly we may obtain also

Ė[P1(t)] = E[min(P0(t)r1, R0(t)r2)] − q · E[P1(t)]
Ė[R0(t)] = −E[min(P0(t)r1, R0(t)r2)] + s · E[R1(t)]
Ė[R1(t)] = E[min(P0(t)r1, R0(t)r2)] − s · E[R1(t)].

These equations could be obtained systematically by applying Theorem 4.3 directly and not considering the Chapman–
Kolmogorov equations explicitly. Then when the vH,P(t) are taken to be the expectations of the component counts in
question at time t and the approximation E[min(·, ·)] ≈ min(E[·],E[·]) is applied once for each equation, we do indeed
obtain the ODEs of Definition 3.5. �

4.2.1. Nature of the approximation
Wehave identified that for split-free groupedPEPAmodels, the fluid analysis relies on the approximationE[min(X, Y )] ≈

min(E[X],E[Y ]), where X and Y are random variables. In simple instances, these are linear combinations of component
count random variables for some time t , possibly multiplied by positive real rates. In more complicated situations, the X
and Y random variables can themselves involve minima of such terms.
Wenowdefine the notion of a switch point associatedwith a given grouped PEPAmodelG. Consider a (H, P) ∈ B(G), then

for any E ∈ E(G), the component rate functionRα(G, E,H, P) defines switch points of G. Indeed, for each min(f (E), g(E))
term that occurs in the component rate function, the associated set of switch points is {E ∈ E(G) : f (E) = g(E)}. Intuitively,
these are the points in the phase space of the associated ODE system at which the min(f (E), g(E)) term switches from f (E)
to g(E) and vice versa.
In the case of the processor/resource model SystemG(Np,Nr), the only switch points are those of the expression

min(vP0(t)r1, vR0(t)r2), where we write vP0(t) for vProcessors,P0(t) and so on. Indeed, in this simple case, the set of switch
points is the line y = r2

r1
xwhere the y-axis counts the number of P0 components and the x-axis, the number ofR0 components.

It is easy to see that far away from switch points, we would expect the fluid approximation to remain good unless
the variabilities of the component counting stochastic processes are high. Fig. 7a illustrates this scenario for the case
of Np = Nr = N and r1 = r2 = 1. The black dot illustrates the expected values of the number of processors and
resources with the grey area representing informally the extent of the variability or spread of the distribution. The diagonal
line splits the state space into the areas in which each side of the min(·, ·) is the defining term, that is, it is the line
of switch points. At the point of the state space illustrated, E[min(NP0(t),NR0(t))] is clearly very well approximated by
E[NP0(t)] = min(E[NP0(t)],E[NR0(t)]), since NP0(t)� NR0(t).
Around the switch points, the quality of the approximation decreases with increasing variability of NP0(t) and NR0(t).

This is illustrated in Fig. 7b. The red part of the circle illustrates the part of the distribution which has been incorrectly
assigned to the processors rather than the resources, under the approximation E[min(NP0(t),NR0(t))] ≈ E[NP0(t)] =
min(E[NP0(t)],E[NR0(t)]).

5. Fluid approximations for higher order moments

In this section, we show how the results of the last section can be extended to develop a similar style of fluid
approximation for the (joint) higher order moments of the component counts. This provides inexpensive access to key
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(a) Far from a switch point. (b) Close to a switch point.

Fig. 7. Accuracy of the E[min(NP0 (t),NR0 (t))] ≈ min(E[NP0 (t)],E[NR0 (t)]) approximation.

characteristics of the probability distribution of the component counts, such as their variance. As well as having application
in itself, critically, this will allow us to predict the accuracy of the original first-order fluid analysis. Furthermore, knowledge
of the variance of component counts can provide an indication as to whether the expectations of component counts are
likely to reflect the actual trace behaviour of the system being modelled.

5.1. An example

We introduce this idea by again considering the model SystemG(Np,Nr) defined in Section 1.1.3.

Example 5.1 (Fluid Variance Approximation for a Simple Synchronised (Split-free) Model). As in Example 4.6, we will work
with the Chapman–Kolmogorov forward equations (Eq. (4.1)) of the underlying aggregated CTMC of SystemG(Np,Nr).
Multiplying p(P0,P1,R0,R1)(t) by P

2
0 and summing for all states (P0, P1, R0, R1) ∈ S as in the previous examples, we obtain∑

(P0,P1,R0,R1)∈S

P20 · ṗ(P0,P1,R0,R1)(t) =
∑

(P0,P1,R0,R1)∈S

[
(P0 − 1)2min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)

+ (P0 + 1)2P1q · p(P0,P1,R0,R1)(t)+ P
2
0R1s · p(P0,P1,R0,R1)(t)− P

2
0 min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)

− P20P1q · p(P0,P1,R0,R1)(t)− P
2
0R1s · p(P0,P1,R0,R1)(t)

]
. (5.1)

If (P0(t), P1(t), R0(t), R1(t)) ∈ S is the state of the underlying aggregated CTMC at time t , this simplifies to

Ė[P20 (t)] =
∑

(P0,P1,R0,R1)∈S

[
−2min(P20 r1, P0R0r2) · p(P0,P1,R0,R1)(t)+min(P0r1, R0r2) · p(P0,P1,R0,R1)(t)

+ 2P0P1q · p(P0,P1,R0,R1)(t)+ P1q · p(P0,P1,R0,R1)(t)
]

or

Ė[P20 (t)] = −2E[min(P0(t)
2r1, P0(t)R0(t)r2)] + E[min(P0(t)r1, R0(t)r2)] + 2E[P0(t)P1(t)]q+ E[P1(t)]q. (5.2)

Following this programme for allmoments of orders one and two (the resulting systemof equations is given inAppendix B.1),
and then applying the previous approximation E[min(·, ·)] ≈ min(E[·],E[·]) to the entire system we get a system of 14
coupled first-order (piecewise-linear) ODEs.
Now that we have access to second-order moments, wemay of course compute quantities such as the variance as well as

the mean. The variance of the number of processors and the number of resources are shown in Fig. 8, with the results
obtained through integrating the systems of ODEs5 against those obtained using Gillespie’s algorithm [17] to generate
1,000,000 independent replications. It is clear that we obtain a good agreement, at least for the qualitative features of the
variances, between the ODE solution and the averaged stochastic simulation. �

5 Specifically, we compute Var[X] = E[X2] − E[X]2 using fluid analysis.
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Fig. 8. Comparison of ODE solutions with those obtained through stochastic simulation for the variance of the number of processors and resources in the
simple processor/resource model. The rates used are r1 = 2.0, r2 = 14.0, q = 14.0 and s = 2.0. The initial conditions are 50 Processor0 and 20 Resource0
components.

5.2. General treatment of higher order moments

In this section, the aim is to give a general definition of the system of ODEswhich allow systematic fluid analysis of higher
order moments for grouped PEPA models. For this, we will need to evaluate how components evolve jointly so that we can
derive equations for Ė[X(t)Y (t)], for instance, as well as other higher order cross-terms.

5.2.1. Joint component rates
To proceed,weneed to generalise the notion of the component rate function for a grouped PEPAmodel, an action type and

one given standard PEPA component (Section 2.2) to the joint component rate for a given set of standard PEPA components.
This will arise naturally in the consideration of higher order moments involving more than one component count.
The joint component rate is the aggregate rate at which all of the given standard PEPA components complete an action of

a given action type in cooperation together. It is the sum of the rates of all transitions of that action type in the aggregated
CTMC, in which the specified components, in J, are the only joint participants.

Definition 5.2 (Count-oriented Joint Component Rate Function). Let G be a grouped PEPA model. Let J ⊆ B(G) be a non-
empty set of component group label and corresponding standard PEPA component pairs. Let α ∈ Aτ be an extended action
type and E ∈ E(G) specify the component counts. Then the count-oriented joint component rate is Rα(G, E,J) where
R·(·, ·, ·) is defined as

Rα(M1 BCL M2, E,J) :=


Rα(M1,E,J1)
rα(M1,E)

Rα(M2,E,J2)
rα(M2,E)

min(rα(M1, E), rα(M2, E)) if α ∈ L, J * B(Mj) for j = 1 and 2
Rα(Mj, E,J) if α /∈ L, J ⊆ B(Mj) for j = 1 or 2
0 otherwise.

In the first line of the definition, we defineJ1 andJ2 to be the unique partition ofJ such thatJ1 ⊆ B(M1) andJ2 ⊆ B(M2).
As before, terms with zeros in the denominator are defined as zero.

Rα(M/L, E,J) :=


0 if α ∈ L(and α ∈ A)
Rα(M, E,J) if α /∈ L and α ∈ A
Rτβ (M, E,J) if α = τ β and β /∈ L
Rτβ (M, E,J)+Rβ(M, E,J) if α = τ β and β ∈ L

Rα(H{D}, E,J) :=
{
0 if |J| 6= 1
E(H, P) rα(P) if J = {(H, P)}.

In the final case of the count-oriented formula, the cardinality of J has to be 1 to return a non-zero value, since there is no
cooperation between the components of a component group by definition, and we are computing the joint rate of evolution
for cooperating components.
For brevity, we have presented the count-oriented version only, but for a given G̃ ∈ ds(G)/'G, we can of course define

an equivalent version on groupwise equivalence classes directly by

Rα(G̃,J) := Rα(G, C(G̃),J)
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where C(G̃) ∈ E(G) is given by C(G̃) := λ(H, P) → C̃(G̃,H, P). Or indeed on elements G ∈ G̃ of groupwise equivalence
classes:

Rα(G,J) := Rα(G̃,J).

We now relate the joint component rate function to the underlying CTMC. For a given grouped PEPA model G, and
G̃ ∈ ds(G)/ 'G, we will specify pairs of non-empty sets J− and J+ ⊆ B(G). These will be useful for characterising the
possible states reachable in one step from G̃ and are much used in the remainder of the paper, so we present a summary:

J− A set of component types that must all cooperate together to produce a particular action
type. When they cooperate, the count of each component in this set will be decremented
(unless the component also appears in J+)

J+ A set of component types that is a possible one-step evolution of a set of cooperating
components, J−. When a cooperation occurs, the count of each component in this set will
be incremented (unless the component also appears in J−)

For a given action type, we will be interested in the sum of the rates of all transitions from G̃ of that action type
decrementing the count of all components in J− \ J+, incrementing the count of all components in J+ \ J− and leaving
the count of all other components alone. Note that for each transition out of G̃, there is exactly one pair (J−,J+), which
represents it in thismanner. TransitionswhereJ−∩J+ 6= ∅ are possible since theremay be componentswhich are involved
in a cooperation that does not decrement the count of that component. Consider, for example, components whichmay loop,
such as P def= (α, r).P + (β, q).Q in a component group on one side of a cooperation.
We will impose two conditions restricting the allowed pairs (J−,J+). Firstly, no two derivative states in the same

component group can cooperate on a transition, so there can be no H ∈ G(G) such that there exist distinct (H, P) and
(H,Q ) both in J− or both in J+. Secondly, any state change in a component groupmust be between derivative states within
the group; thus for every H ∈ G(G), if (H, P) ∈ J−, there must be some corresponding (H,Q ) ∈ J+ (not necessarily
distinct from (H, P)) and vice versa. Define J(G) to be the set of all such pairs of non-empty sets (J−,J+) satisfying these
two conditions. The conditions do not change anything since the operational semantics asserts that there can be no such
transition if either conditiondoes not hold. Theydohowever simplify the following theorem,which gives the rates associated
with these transitions.

Theorem 5.3. Let G be a grouped PEPA model. Let G̃, G̃′ ∈ ds(G)/'G be groupwise equivalence classes of G. Let α ∈ Aτ be an
extended action type.
Then the sum of the rates of all α-transitions from G̃ to G̃′ is the sum of all quantities

ρt(α)(J−,J+)Rα(G̃,J−) (5.3)

taken over all pairs (J−,J+) ∈ J(G), which characterise G̃′ in the sense given above, that is:

1. C̃(G̃′,H, P) = C̃(G̃,H, P)− 1 for all (H, P) ∈ J− \ J+,
2. C̃(G̃′,H, P) = C̃(G̃,H, P)+ 1 for all (H, P) ∈ J+ \ J− and
3. C̃(G̃′,H, P) = C̃(G̃,H, P) for all (H, P) ∈ B(G) \ (J− 	 J+).6

For α ∈ A, ρα(·, ·) is the generalised derivative weighting function, defined by

ρα(J−,J+) :=
∏

(H,Q )∈J+

pα(g(H,J−),Q ).

This is the joint probability, taken over all (H,Q ) ∈ J+, that given that each standard PEPA component, (H, g(H,J−)) ∈ J−
does an α-action, it transits to the component, (H,Q ) ∈ J+, where g(H,J−) is defined as the unique standard PEPA component
P, such that (H, P) ∈ J−. That it will exist and be unique is guaranteed by the fact that (J−,J+) ∈ J(G).
Each term given by Eq. (5.3) is zero if no such α-transitions exist.

Proof. See Appendix A.3. �

Aswewill see in Section 6,wewill generate aJ− set of components for every possible local transition of amodel, whether
shared or not. For each J−, there will be at least one and possibly several resulting J+ sets of components. The ρα(J−,J+)
weighting function generates the probability that a specified J+ is the actual one-step joint α-evolution from a J− set of
cooperating components.
Making use of the characterisation of the underlying CTMC given by Theorem 5.3, we are now able to present the

following key result, which generalises Theorem 4.3 to arbitrary joint moments of component counts.

6 Where A	 B := (A ∪ B) \ (A ∩ B) is the symmetric difference of the two sets A and B.
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Theorem 5.4. Let G be a grouped PEPAmodel andM ∈ (B(G)→ Z≥0) specify a particular jointmoment of component counting
stochastic processes that is of interest, E[M(t)], by

M(t) :=
∏

Bi∈B(G)

NBi(t)
M(Bi).

Then we have

Ė[M(t)] =
∑
αi∈Aτ

∑
(J−,J+)∈J(G)

ρt(αi)(J−,J+)E
[
(F+(t)F−(t)F(t)−M(t))Rαi(G,N(t),J−)

]
(5.4)

where

F±(t) :=
∏

Bi∈J±\J∓

(NBi(t)± 1)
M(Bi) and F(t) :=

∏
Bi∈B(G)\(J−	J+)

NBi(t)
M(Bi)

and for t ∈ R≥0, N(t) ∈ E(G) is given by N(t) := λ(B)→ NB(t) for all B ∈ B(G).

Proof. See Appendix A.4 �

For the incoming transitions, the functions F+(t) and F−(t) reflect the contributions of J− and J+, respectively,
from the underlying Chapman–Kolmogorov equations, and F(t) represents the contribution of the other components (in
B(G) \ (J−	J+)).M(t) expresses the contributions for the outgoing transitions for all components. This is best illustrated
by considering Example 5.1, where we are constructing an equation for Ė[P20 (t)]. For action type task1, the only value of J−
for which the joint component rate is not identically zero is

J− = {(Processors, P0), (Resources, R0)}.

Indeed, in this case, the joint component rate is

Rtask1(G,N(t),J−) = min(P0(t)r1, R0(t)r2).

Furthermore, for this J−, the only value of J+ for which ρtask1(J−,J+) is not zero (it is one) is

J+ = {(Processors, P1), (Resources, R1)}.

For this pair (J−,J+),

F+(t) = (P1(t)+ 1)0(R1(t)+ 1)0 = 1
F−(t) = (P0(t)− 1)2(R0(t)− 1)0 = (P0(t)− 1)2

F(t) = 1

and so

(F+(t)F−(t)F(t)−M(t))Rtask1(G,N(t),J−) = ((P0(t)− 1)
2
− P20 (t))min(P0(t)r1, R0(t)r2)

= −2min(P20 (t)r1, P0(t)R0(t)r2)+min(P0(t)r1, R0(t)r2).

This corresponds with lines 1 and 4 of the right hand side of Eq. (5.1) and the first two summands of the right hand side of
Eq. (5.2). The other terms come from considering the two remaining actions, task2 and reset .

5.2.2. Fluid approximation
The previous section presented an equation for the derivative of a general moment of component counting functions

(Eq. (5.4) of Theorem 5.4). In this section, we show how a fluid approximation to this equation can be constructed using a
suitable system of ODEs. In order to achieve this, me must rearrange Eq. (5.4) to make the individual component count
moments explicit on the right hand side. Each of these component count moments is then approximated by its own
differential equation (as finally achieved in Eq. (5.9)).
We begin by using the binomial theorem to see that the term F+(t)F−(t)F(t) of Eq. (5.4) is the sum of all monomials of

the form∏
Bi∈J−\J+

(−1)M(Bi)−K(Bi)
∏

Bi∈J−	J+

(
M(Bi)
K(Bi)

) ∏
Bi∈B(G)

NBi(t)
K(Bi) (5.5)

over all elements K ∈ (B(G) → Z≥0), such that 0 ≤ K(B) ≤ M(B) for all B ∈ J− 	 J+, and K(B) = M(B) for all
B ∈ B(G)\ (J−	J+). Now consider the term F+(t)F−(t)F(t)−M(t) and note thatM(t) simply serves to cancel the highest
order Eq. (5.5) monomial, i.e. the case of K(B) = M(B) for all B ∈ B(G), so after this cancellation, all monomials in the
sum will have order at most M − 1, where M :=

∑
Bi∈B(G)

M(Bi). That is, F+(t)F−(t)F(t) − M(t) is equal to the sum of
all monomials of the form of Eq. (5.5) taken over all elements K ∈ (B(G) → Z≥0), such that 0 ≤ K(B) ≤ M(B) for all
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B ∈ J− 	 J+, and K(B) =M(B) for all B ∈ B(G) \ (J− 	 J+), and
∑
Bi∈B(G)

K(Bi) 6= M . Call this subset of (B(G)→ Z≥0),
K(J−,J+,M).
Consider now the expectation term

E
[
(F+(t)F−(t)F(t)−M(t))Rαi(G,N(t),J−)

]
(5.6)

from Eq. (5.4). Using the fact above that F+(t)F−(t)F(t)− M(t) consists of a sum of monomials of the form of Eq. (5.5), we
may expand Eq. (5.6) into a sum of expectations, one for each monomial term, i.e. it is equal to the sum of the terms ∏

Bj∈J−\J+

(−1)M(Bj)−K(Bj)
∏

Bj∈J−	J+

(
M(Bj)
K(Bj)

)E

 ∏
Bj∈B(G)

NBj(t)
K(Bj)Rαi(G,N(t),J−)

 (5.7)

over all K ∈ K(J−,J+,M).
The joint component rate function enjoys a homogeneity property, which is useful in presenting the systemof ODEswhich

will facilitate the fluid analysis.

Lemma 5.5. Let G be a grouped PEPA model. Let J ⊆ B(G) be a non-empty set of component group label and corresponding
standard PEPA component pairs. Let α ∈ Aτ be an extended action type and let E ∈ E(G). Then for any real C ≥ 0,

C ×Rα(G, E,J) = Rα(G, E∗,J)

where E∗ ∈ E(G) is defined by E∗(B) = C × E(B) for all B ∈ B(G).

Proof. See Appendix A.5. �

Lemma 5.5 allows us to write Eq. (5.7) as ∏
Bj∈J−\J+

(−1)M(Bj)−K(Bj)
∏

Bj∈J−	J+

(
M(Bj)
K(Bj)

)E
[
Rαi(G,N

∗(t),J−)
]

(5.8)

where for t ∈ R≥0, N∗(t) ∈ E(G) is given by

N∗(t) := λ(B)→ NB(t)×
∏

Bi∈B(G)

NBi(t)
K(Bi)

for all B ∈ B(G).
Now for a given moment, specified by M ∈ (B(G) → Z≥0), write vM(t) as its fluid approximation. For split-free

models, the joint component rate function (Definition 5.2), as in the case of the component rate function (Definition 3.3),
may involve minimum functions and linear combinations (but not rational functions) of component counts. So applying
the approximation E[min(·, ·)] ≈ min(E[·],E[·]), potentially repeatedly to Eq. (5.8),7 yields, in terms of the fluid
approximations, ∏

Bj∈J−\J+

(−1)M(Bj)−K(Bj)
∏

Bj∈J−	J+

(
M(Bj)
K(Bj)

)Rαi(G, V (t, K),J−)

where for t ∈ R≥0, V (t, K) ∈ E(G) is given by, for all B ∈ B(G),

V (t, K) := λ(B)→ vI(t)

and I(Bi) = K(Bi) for all Bi 6= B and I(B) = K(B)+ 1. Note that since
∑
Bi∈B(G)

K(Bi) ≤ M − 1 for all K ∈ K(J−,J+,M),
fluid approximations of joint moments of order at mostM occur in such terms.
Combining these terms to approximate Eq. (5.4) gives the following ODEwhere the right hand side is in terms of the fluid

approximations of the joint moments of orderM and below:

v̇M(t) =
∑
αi∈Aτ

∑
(J−,J+)∈J(G)

ρt(αi)(J−,J+)

×

∑
K∈K(J−,J+,M)

 ∏
Bj∈J−\J+

(−1)M(Bj)−K(Bj)
∏

Bj∈J−	J+

(
M(Bj)
K(Bj)

)Rαi(G, V (t, K),J−)

 . (5.9)

7 Formodelswhich are not split-free, the fluid approximation is still defined but the nature of the approximation ismore complicated, as in the first-order
case.
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The initial condition for each moment,M ∈ (B(G) → Z≥0), is that naturally implied by the initial state of G. Specifically,
we define

vM(0) :=
∏

Bi∈B(G)

C(G, Bi)M(Bi).

In the case of first-order moments, Eq. (5.9) reduces to the ODE given by Definition 3.5.
For a grouped PEPA model G and a given order n ≥ 1, the system of ODEs consisting of Eq. (5.9) taken for every mth

(1 ≤ m ≤ n) joint moment of component counts thus yields a complete Lipschitz continuous system of ODEs. The number
of ODEs in the system is

n∑
i=1

(
P + i− 1

i

)
=

(
P + n
n

)
− 1 ≤ Pn+1 for P > 1,

where P = |B(G)|. The ODEs can be solved for their unique solutions, yielding approximations for all joint moments of
orders n and below. So for a given order n, the growth in the number of ordinary differential equations is no worse than
polynomial in the number of standard PEPA components in the model. This will obviously have a practical implication for
the degree of moment analysis that will be possible for a given model; however first- and second-order moment analysis
should certainly be very tractable in most cases.

6. A worked example

In this section, we show explicitly how Eq. (5.9) can be used in practice to construct fluid approximations to the
expectations and higher order moments (specifically, the variance) of component counts of grouped PEPA models.

6.1. A client–server model with two-stage fetch and server breakdowns

In the (split-free) grouped PEPA model G below, we have a population of C Clients and a population of S Servers. The
system uses a two-stage fetch mechanism: a client requests data from the pool of servers; one of the servers receives the
request, and another server may then fetch the data for the client. At any stage, a server in the pool may fail.

Client def= (request, rreq).Client_waiting

Client_waiting def= (data, rdata).Client_think

Client_think def= (think, rthink).Client

Server def= (request, rreq).Server_get + (break, rbreak).Server_broken

Server_get def= (data, rdata).Server + (break, rbreak).Server_broken

Server_broken def= (reset, rreset).Server

G def= Clients{Client[C]} BC
L
Servers{Server[S]}

where L = {request, data}.
Wewill be considering thismodel for C = 100 and S = 50. Its unaggregated state spacewould therefore have of the order

of 3150 states. This places the model out of the immediate reach of existing analysis techniques for numerically obtaining
steady state or transient probabilities. The only other option is to simulate the model many times for the random quantity
of interest using, for example, Gillespie’s algorithm [17], and take the average to obtain the desired expectation. This is of
course still many orders of magnitude more costly than the simple operation of integrating a small system of ODEs, as is
required for the fluid analysis, but is how we will validate the results of the fluid approximation.

6.2. Construction of first- and second-order moment fluid approximation

Weare nowgoing to evaluate Eq. (5.9) explicitly to obtain a systemof ODEs allowing fluid analysis of all first- and second-
order moments of the various client and server component counts for the above model. We will write NC (t) for the Client
counting stochastic process, NSg (t) for the Server_get counting stochastic process and similarly for all other components.
Also we define N(t) ∈ E(G) by

N(t)(Clients, Client) := NC (t)

and so on.Wewill write vC2(t) for the fluid approximation to the secondmoment of the Client counting process and vC ·Sg (t)
for the fluid approximation to the joint moment of the Client and Server_get counting processes, and again, similarly for all
other first- and second-order moment approximations.
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In order to evaluate Eq. (5.9), it is easiest to first enumerate all of the joint component rates which are not identically
zero:

1. request-transitions of {Client, Server} occur at rate min(NC (t),NS(t))rreq, that is

Rrequest(G,N(t), {(Clients, Client), (Servers, Server)}) = min(NC (t),NS(t))rreq.

2. data-transitions of {Client_waiting, Server_get} occur at rate min(NCw(t),NSg (t))rdata, that is

Rdata(G,N(t), {(Clients, Client_waiting), (Servers, Server_get)}) = min(NCw(t),NSg (t))rdata.

3. think-transitions of {Client_think} occur at rate NCt (t)rthink, that is

Rthink(G,N(t), {(Clients, Client_think)}) = NCt (t)rthink.

4. break-transitions of {Server} occur at rate NS(t)rbreak, that is

Rbreak(G,N(t), {(Servers, Server)}) = NS(t)rbreak.

5. break-transitions of {Server_get} occur at rate NSg (t)rbreak, that is

Rbreak(G,N(t), {(Servers, Server_get)}) = NSg (t)rbreak.

6. reset-transitions of {Server_broken} occur at rate NSb(t)rreset , that is

Rreset(G,N(t), {(Servers, Server_broken)}) = NSb(t)rreset .

Having identified the subsets J− ⊆ B(G) for which the joint component rate function is not identically zero, we then wish
to identify the corresponding subsets J+ ⊆ B(G), such that (J−,J+) ∈ J(G), for which the coefficient ρα(J−,J+) is non-
zero. That is, we are interested in the sets of componentsJ+ ⊆ B(G), whose counts can all be incremented by simultaneous
evolution of (only) the components J−. For this model, it is clear that there is exactly one such J+ corresponding to each of
the above transition classes. In the same order of enumeration, we thus now give the corresponding J+. Note that for this
model, if ρα(J−,J+) is non-zero, it is always one.

1. J+ = {(Clients, Client_waiting), (Servers, Server_get)}.
2. J+ = {(Clients, Client_think), (Servers, Server)}.
3. J+ = {(Clients, Client)}.
4. J+ = {(Servers, Server_broken)}.
5. J+ = {(Servers, Server_broken)}.
6. J+ = {(Servers, Server)}.

Let us begin by considering the joint second-order moment E[NCw(t)NSg (t)]. The only transitions of interest are 1, 2 and
5 in the above enumeration since they are the only ones for which either

(Clients, Client_waiting) ∈ J− 	 J+ or (Servers, Server_get) ∈ J− 	 J+.

Indeed, if J− 	 J+ does not include at least one B ∈ B(G) for whichM(B) > 0,K(J−,J+,M) = ∅ and the pair (J−,J+)
would contribute nothing to the right hand side of Eq. (5.9).
Now for the first transition, K(J−,J+,M) consists of three elements, K1, K2 and K3, where K1(B) = 0 for all

B ∈ B(G), K2((Clients, Client_waiting)) = 1, K2((Servers, Server_get)) = 0 and K2(B) = 0 otherwise, and
K3((Clients, Client_waiting)) = 0, K3((Servers, Server_get)) = 1 and K3(B) = 0 otherwise. K1 contributes to Eq. (5.9)

rreqmin(vC (t), vS(t)).

K2 contributes

rreqmin(vCw ·C (t), vCw ·S(t))

and K3 contributes

rreqmin(vSg ·C (t), vSg ·S(t)).

So altogether, transition 1 contributes

rreq(min(vC (t), vS(t))+min(vCw ·C (t), vCw ·S(t))+min(vSg ·C (t), vSg ·S(t))).

For transition 2,K(J−,J+,M) is as for transition 1 and the contribution is similarly

rdata(min(vCw(t), vSg (t))−min(vC2w (t), vCw ·Sg (t))−min(vCw ·Sg (t), vS2g (t))).

For transition 5,K(J−,J+,M) consists only of K2 as defined above, and the contribution is thus just

−rbreakvCw ·Sg (t).
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(a) Expectations of component counts for the Clients group.

(b) Expectations of component counts for the Servers group.

Fig. 9. Comparison of expectations obtained through fluid analysis with those obtained through stochastic simulation for the client–servermodel. The rates
used are rreq = 2.0, rthink = 0.2, rbreak = 0.1, rdata = 1.0, rreset = 2.0 and the initial component counts are 100 Client and 50 Server components.

Collecting all of these individual contributions to form the ODE of Eq. (5.9) for v̇Cw ·Sg (t) gives

v̇Cw ·Sg (t) = rreq(min(vC (t), vS(t))+min(vCw ·C (t), vCw ·S(t))+min(vSg ·C (t), vSg ·S(t)))
+ rdata(min(vCw(t), vSg (t))−min(vC2w (t), vCw ·Sg (t))−min(vCw ·Sg (t), vS2g (t)))− rbreakvCw ·Sg (t). (6.1)

Repeating this procedure for the first-order and other joint second-ordermoments yields a complete systemof 27piecewise-
linear ODEs, which uniquely determine the 27 approximations.

6.3. Results for first-order moments

Fig. 9 shows a comparison of component count expectations for this model generated by repeated stochastic simulation
and the first-order moment fluid approximation. We see that the correspondence is so close that the fluid approximation
almost overlays the stochastic simulation result for all components.
It is possible however to discern a slight but visible quantitative discrepancy for the Client , Client_waiting , Server and

Server_get components approximately in the time interval t ∈ [3, 4]. It is clear that there is a switch point around this time
interval for the term min(vC (t), vS(t))rreq (since there is a point at which the number of Client and Server components
becomes equal). To present this more clearly, Fig. 10 shows a phase plot of the expectation of the number of Client
components against Server components, again computed both by fluid analysis and repeated stochastic simulation. The
straight line is the line of switch points for this term. It is clear that the quantitative error is introduced as the switch point
is approached, in line with the predictions of Section 4.2.1.
Furthermore, it is worth noting that Fig. 10 suggests that the accuracy of the fluid approximation is restored again as the

solution moves away from the switch point and approaches the steady state limit of the underlying CTMC. Indeed, if the
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Fig. 10. Phase plot of expectations of Client components against Server components obtained through fluid analysis and through stochastic simulation for
the client–server model. The rates used are rreq = 2.0, rthink = 0.2, rbreak = 0.1, rdata = 1.0, rreset = 2.0 and the initial component counts are 100 Client and
50 Server components.

steady state of the underlying CTMC is far from any switch points, it at least makes sense by the arguments of Section 4.2.1
that if the fluid approximation is started in the CTMC steady state, it will remain very close to it and thus perform well
as an approximation for that configuration. If the fluid approximation always reaches the same long-time limit for any
given initial configuration which has the same underlying (irreducible) CTMC, we are provided with intuition as to why
the fluid approximation appears to improve in the long-time limit in, for example, Fig. 10. Whether or not this one-to-one
correspondence between the fixed point(s) of the approximating ODE system and the steady state of the CTMC does always
hold is unresolved in general.

6.4. Results for second-order moments: Variance and covariance

Fig. 11 shows a comparison of component count variances and covariances for this model generated by repeated
stochastic simulation (1000,000 independent replications) and the second-ordermoment fluid approximation.We see again
impressive correspondence with all qualitative features of the (co)variances being exhibited by the fluid approximation.
Again, visible quantitative discrepancy occurs roughly in the time interval t ∈ [3, 4], around when the min(vC (t), vS(t))rreq
switch point mentioned in the previous section is approached. This is of course also going to be close to a switch point
for the second-order terms such as min(vCw ·C (t), vCw ·S(t))rreq which occur in the differential equations for the higher order
moments (see for example Eq. (6.1)) and which will thus also contribute to this error.
It is interesting to note that the variance of all components apart from Server_broken appears to reach a local maximum

around this switch point. This is a reasonable, if not even expected, outcome. As a switch point is approached, there is
increasing stochastic uncertainty as towhich side of the corresponding cooperation is fastest. Since this quantity determines
the rate of the cooperation, it makes sense that this uncertainty leads to increased variability in the component counts
affected by this cooperation (in this case all the components apart from Server_broken, since servers may break in any of
their states).
Furthermore, we observe a completely negative covariance of the Server and Server_broken components. This is also to be

expected sincewhen the number of Server components is above its expected value,wewould usually expect a corresponding
negative difference in the count of Server_broken components.

7. Conclusion

We have described a systematic transformation of the stochastic process algebra, PEPA, to a system of ordinary
differential equations, which measure the mean dynamic evolution of the PEPA model. In doing this, we have shown that
the state space explosion, which inhibits performance analysis as it does functional analysis, can effectively be beaten for
large classes of massively parallel models.
Importantly, we have established a relationship between the fluid approximation of the system of ODEs and the

traditional underlying discrete performance model. We have shown that fluid-flow analysis is a good approximation of
the mean of the transient distribution of components in a system. In some simple cases, the technique captures the mean
precisely and for a much larger class of models it gives us a close approximation.
We have shown that for a large class of models, the fluid-flow approximation hinges on the accuracy of the

statement, E[min(X, Y )] ≈ min(E[X],E[Y ]), where X and Y are component rate random variables. This arises from the
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(a) Variance of component counts for the Clients group.

(b) Variance of component counts for the Servers group.

(c) Covariance of Server and Server_broken component counts.

Fig. 11. Comparison of variances and covariances obtained through fluid analysis with those obtained through stochastic simulation for the client–server
model. The rates used are rreq = 2.0, rthink = 0.2, rbreak = 0.1, rdata = 1.0, rreset = 2.0 and the initial component counts are 100 Client and 50 Server
components.

synchronisation of component groups in PEPA, although other similar approximationswould also be needed to take account
of synchronisation in, say, stochastic π-calculus. We are able to predict theoretically that the error will be at its worst
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when one component group changes from being the faster group to being the slower group within a cooperation. We have
supported these predictions empirically using stochastic simulation. Taking this in conjunction with the complementary
result [25], we can have confidence that this error cannot grow unboundedly in any finite time range.
For the first time for any synchronously communicating stochastic process algebra, we have formally derived a

formulation for the second moment (and thus variance) of the evolution of a model. This is essential if we are to quantify
the error in themean fluid-flow approximation. Also and perhaps more importantly, this gives an idea of the sense in which
the expectation is representative of the behaviour of the system, that is, how concentrated the probability mass is around
the mean.
For the first time for any process algebra, we have also been able to extend the formulation to derive a fluid analysis

for any higher moment or joint moment. The value of these contributions is highlighted by the fact that any simulation-
based attempt at accurately obtaining quantities like the variance, which are of relatively small magnitude, will require
many thousands or even millions of independent replications. This is evident in Fig. 11, where visible fluctuations are still
present in the variances derived by stochastic simulation, even after 1000,000 independent replications (an extremely time-
consuming endeavour comparedwith the single integration of a small systemof ODEs). Finally, we have extended the subset
of PEPA that can be translated to a fluid model from that presented in [16,25].
Through this work, we have a more precise understanding of what fluid-flow analysis of PEPA models means in terms

of traditional performance measures. This allows performance modellers to use a powerful tool that permits analysis of
massive state space models that were beyond the capability of traditional techniques. We aim to develop libraries which
support these transformations and new fluid analysis techniques, for integration into existing popular toolsets, such as the
PEPA Plug-in [40], ipc [41] and Möbius [42].
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Appendix A. Proofs

A.1. Proof of Theorem 2.15

It is clear from the operational semantics of parallel cooperation that a single grouped PEPAmodel transitionmay evolve
at most one component in each component group. Therefore if C̃(G̃′,H, P) 6= C̃(G̃,H, P), it must be the case that either
C̃(G̃′,H, P) = C̃(G̃,H, P)− 1 or C̃(G̃′,H, P) = C̃(G̃,H, P)+ 1. We begin with the former case.
Let us have G̃ ∈ ds(G)/ 'G and G ∈ G̃. Then let G̃′ ⊆ ds(G)/ 'G be the set of all G̃′ ∈ ds(G)/ 'G such that

C̃(G̃′,H, P) = C̃(G̃,H, P)− 1. We require to show∑
G̃′∈G̃′

q[G, G̃′, α] =
∑

Q∈B(G,H)
Q 6=P

pt(α)(P,Q )Rα(G,H, P).

We proceed by induction on the structure of G.
If G = H{D},Rα(G,H, P) = C(H{D},H, P) rα(P) by definition. Now there is exactly one G̃′ ∈ G̃′ with q[G, G̃′, α] 6= 0 for

each Q ∈ B(G,H), Q 6= P with pα(P,Q ) 6= 0. Also for any G
′
∈ G̃′, q(G,G

′
, α) = pα(P,Q ) rα(P).

Nowby definition, q[G, G̃′, α] =
∑
G′∈G̃′ q(G,G

′
, α), and for each P component in groupH ofG, there is exactly oneG

′
∈ G̃′

for which q(G,G
′
, α) is non-zero, so

q[G, G̃′, α] = C(H{D},H, P) pα(P,Q ) rα(P)

as required.
If G = M/L then by definition

Rα(G,H, P) :=


0 if α ∈ L(and α ∈ A)

Rα(M,H, P) if α /∈ L and α ∈ A

Rτβ (M,H, P) if α = τ β and β /∈ L
Rτβ (M,H, P)+Rβ(M,H, P) if α = τ β and β ∈ L.
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Let M̃′ ⊆ ds(M)/ 'M be the set of all M̃
′
∈ ds(M)/ 'M such that C̃(M̃ ′,H, P) = C(M,H, P) − 1. It is clear from

the operational semantics that since G = M/L then any G
′
∈ G̃′ ∈ ds(G)/ 'G has the form G

′
= M

′
/L for some

M
′
∈ M̃ ′ ∈ ds(M)/ 'M . So the elements of M̃ and G̃ are in one-to-one correspondence, agreeing on component counts.

Furthermore, the elements of each G̃′ and M̃ ′ are in one-to-one correspondence also.

If α ∈ L, it is immediate that q(G,G
′
, α) = 0. If α /∈ L and α ∈ A, or if α = τ β where β /∈ L, it is immediate that

q(G,G
′
, α) = q(M,M

′
, α). Furthermore, we also then have q[G, G̃′, α] = q[M, M̃ ′, α], and then since the elements of G̃′ are

in one-to-one correspondencewith those of M̃′ and they agree on component counts, the desired result follows by induction
in all three of these cases.
Otherwise, if α = τ β where β ∈ L, it is clear from the operational semantics that

q(G,G
′
, τ β) = q(M,M

′
, τ β)+ q(M,M

′
; , β).

Furthermore, by the one-to-one correspondence between the elements of G̃′ and M̃ ′, and the one-to-one correspondence
between those of G̃′ and M̃′,∑

G̃′∈G̃′

q[G, G̃′, τ β ] =
∑
M̃ ′∈M̃′

q[M, M̃ ′, τ β ] +
∑
M̃ ′∈M̃′

q[M, M̃ ′, β].

The result then follows by induction and the definition of the component rate function.
If G = M BC

L
R then assume without loss of generality that H ∈ G(M). By definition,

Rα(G,H, P) =

{
Rα(M,H,P)
rα(M)

min(rα(M), rα(R)) if α ∈ L
Rα(M,H, P) if α /∈ L.

Let M̃′ ⊆ ds(M)/'M be the set of all M̃
′
∈ ds(M)/'M such that C̃(M̃

′,H, P) = C(M,H, P) − 1. Consider first the case
α /∈ L. It is clear from the operational semantics that the following two sets:

G̃∗ := {G̃′ ∈ G̃′ : q[G, G̃′, α] 6= 0 and for any G
′
∈ G̃′, G

′
= M

′ BC
L
R, for someM

′
∈ ds(M)}

M̃∗ := {M̃ ′ ∈ M̃′ : q[M, M̃ ′, α] 6= 0}

are in one-to-one correspondence in the sense that if G
′
∈ G̃′ ∈ G̃∗ with G

′
= M

′ BC
L
R, then M

′
∈ M̃ ′ ∈ M̃∗. Also,

q(G,G
′
, α) = q(M,M

′
, α). Furthermore, the elements of G̃i are also in one-to-one correspondence with those of M̃ ′ in the

above sense, so q[G, G̃′, α] = q[M, M̃ ′, α]. Thus the result follows by induction and the definition of the component rate
function.
For the case α ∈ L, define M̃∗ as before, but

G̃∗ := {G̃′ ∈ G̃′ : q[G, G̃′, α] 6= 0}.

Consider G
′
∈ G̃′ ∈ G̃∗. From the operational semantics, we see that G

′
= M

′ BC
L
R
′
for some R′ ∈ ds(R) andM

′
∈ M̃ ′ ∈ M̃∗.

Write also R̃′ for the element of ds(R)/'R to which R
′
belongs. We have from the operational semantics

q(G,G
′
, α) =

q(M,M
′
, α)

rα(M)

q(R, R
′
, α)

rα(R)
min(rα(M), rα(R))

and thus also

q[G, G̃′, α] =
∑
G′∈G̃′

q(G,G
′
, α)

=

∑
M ′∈M̃ ′

∑
R′∈R̃′

q(G,M
′ BC
L
R
′
, α)

=

∑
M ′∈M̃ ′

∑
R′∈R̃′

q(M,M
′
, α)

rα(M)

q(R, R
′
, α)

rα(R)
min(rα(M), rα(R))

=
q[M, M̃ ′, α]

rα(M)

q[R, R̃′, α]

rα(R)
min(rα(M), rα(R)).
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We now need to sum this expression over all elements G̃′ ∈ G̃∗. This is the same as summing over all elements M̃ ′ ∈ M̃∗ and
all elements R̃′ ∈ ds(R)/'R because this will definitely include all elements of G̃

∗ and for any additional ones also included,
the above expression must be zero (or they would be in G̃∗ by definition). Noting that

∑
R̃′∈ds(R)/'R

q[R, R̃′, α] = rα(R) then

gives the desired result by induction and completes the proof for the C̃(G̃′,H, P) = C̃(G̃,H, P)− 1 case.
The proof for the second case, when C̃(G̃′,H, P) = C̃(G̃,H, P)+ 1, is very similar and is omitted for brevity.

A.2. Proof of Theorem 4.3

Let S ⊆ E(G) be the aggregated state space. For s ∈ S write ps(t) as the transient probability of being in state s at time t .
Consider the following sum, i.e. Ė[NH,P(t)]:∑

si∈S

ṗsi(t)si(H, P).

This quantity can be constructed by summing over the left hand sides of the individual Chapman–Kolmogorov forward
equations for all s ∈ S after first multiplying them each by s(H, P). Therefore it is equal to the sum of the corresponding
right hand sides, also each multiplied by s(H, P). We now aim to compute this quantity.
Consider those α-transitions into each state s ∈ S which decrease the count of P components. By Theorem 2.15, these

will together contribute the following term:∑
si∈S

psi(t)(si(H, P)− 1)
∑

Qj∈B(G,H)
Qj 6=P

pt(α)(P,Qj)Rα(G, si,H, P).

Now consider those α-transitions into each state s ∈ S which increase the count of P components. By Theorem 2.15, these
will together contribute the following term:∑

si∈S

psi(t)(si(H, P)+ 1)
∑

Qj∈B(G,H)
Qj 6=P

pt(α)(Qj, P)Rα(G, si,H,Q ).

The α-transitions out of each state s ∈ S which decrease the count of P components will similarly together contribute the
following term:

−

∑
si∈S

psi(t)si(H, P)
∑

Qj∈B(G,H)
Qj 6=P

pt(α)(P,Qj)Rα(G, si,H, P).

Finally, the α-transitions out of each state s ∈ S which increase the count of P components will together contribute the
following term:

−

∑
si∈S

psi(t)si(H, P)
∑

Qj∈B(G,H)
Qj 6=P

pt(α)(Qj, P)Rα(G, si,H,Qj).

Combining now the left and right hand sides, we have∑
si∈S

ṗsi(t)si(H, P) =
∑
αi∈Aτ

[∑
sj∈S

psj(t)(sj(H, P)− 1)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(P,Qk)Rαi(G, sj,H, P)

+

∑
sj∈S

psj(t)(sj(H, P)+ 1)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(Qk, P)Rαi(G, sj,H,Qk)

−

∑
sj∈S

psj(t)sj(H, P)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(P,Qk)Rαi(G, sj,H, P)

−

∑
sj∈S

psj(t)sj(H, P)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(Qk, P)Rαi(G, sj,H,Qk)
]
+ · · ·

where the omitted terms (· · · ) are those due to all of the remaining transitions that do not involve changes in the number
of P components.
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Noticing that all terms in (· · · ) also cancel, we obtain∑
si∈S

ṗsi(t)si(H, P) =
∑
αi∈Aτ

[∑
sj∈S

psj(t)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(Qk, P)Rαi(G, sj,H,Q )

−

∑
sj∈S

psj(t)
∑

Qk∈B(G,H)
Qk 6=P

pt(αi)(P,Qk)Rαi(G, sj,H, P)
]

which, after simplification, is the desired result. �

A.3. Proof of Theorem 5.3

Let G̃, G̃′ ∈ ds(G)/'G be any two groupwise equivalence classes and let G ∈ G̃. Let α ∈ Aτ . We require to show that the
sum of the rates of all α-transitions from G̃ to G̃′, that is, q[G, G̃′, α], is the sum of all quantities∏

(H,Q )∈J+

[
pt(α)(h(H,J−),Q )

]
Rα(G,J−) (A.1)

taken over all (J−,J+) ∈ J(G), which characterise G̃′ in the sense that:

1. C̃(G̃′,H, P) = C̃(G̃,H, P)− 1 for all (H, P) ∈ J− \ J+,
2. C̃(G̃′,H, P) = C̃(G̃,H, P)+ 1 for all (H, P) ∈ J+ \ J− and
3. C̃(G̃′,H, P) = C̃(G̃,H, P) for all (H, P) ∈ B(G) \ (J− 	 J+).

We proceed by induction on the structure of G.
If G = H{D} and there are α-transitions between G̃ and G̃′, there are two possible cases. The first case is that G̃ 6= G̃′ and

there is some P 6= Q ∈ B(G,H), such that a P component in G performs an α-transition to become a Q component in some
G
′
∈ G̃′. In this case,

q[G, G̃′, α] = pα(P,Q )C(H{D},H, P) rα(P). (A.2)

The only (J−,J+) ∈ J(G) characterising G̃′ is then given by J− = {(H, P)} and J+ = {(H,Q )}. So by definition of the joint
component rate function, Eq. (A.2) agrees with the sum of Eq. (A.1) terms, as required.
The second case is that G̃ = G̃′ and there are possibly many P ∈ B(G,H) such that some P component in G performs an

α-transition back to itself in G. In this case,

q[G, G̃′, α] =
∑

P∈B(G,H)

pα(P, P)C(H{D},H, P) rα(P). (A.3)

The possible pairs (J−,J+) ∈ J(G) which characterise G̃′ are now given by J− = J+ = {(H, P)} for any P ∈ B(G,H). So
by definition of the joint component rate function, Eq. (A.3) also agrees with the sum of Eq. (A.1) terms, as required.
If there are no α-transitions between G̃ and G̃′ and G̃ 6= G̃′, there can be no components P,Q ∈ B(G,H), such that

P
(α,·)
−−→ Q and:

1. C̃(G̃′,H, P) = C̃(G̃,H, P)− 1,
2. C̃(G̃′,H,Q ) = C̃(G̃,H,Q )+ 1 and
3. C̃(G̃′,H, R) = C̃(G̃,H, R) for all R ∈ B(G,H), where R 6= P and R 6= Q .

But Eq. (A.1) is only non-zero for (J−,J+) ∈ J(G)which characterise states, G̃′, where this is true.

If there are no α-transitions between G̃ and G̃′ and G̃ = G̃′, there can be no component P ∈ B(G,H) such that P
(α,·)
−−→ P .

As above, if (J−,J+) ∈ J(G) characterises G̃′ = G̃, J− = J+ = {(H, P)} for some P ∈ B(G,H), so Eq. (A.1) must be zero by
definition.
If G = M/L then by definition

Rα(G,J−) :=


0 if α ∈ L(and α ∈ A)

Rα(M,J−) if α /∈ L and α ∈ A

Rτβ (M,J−) if α = τ β and β /∈ L
Rτβ (M,J−)+Rβ(M,J−) if α = τ β and β ∈ L.

Firstly, it is clear from the operational semantics that since G = M/L, any G
′
∈ G̃′ has the form G

′
= M

′
/L, and furthermore,

M ∈ M̃ ∈ ds(M)/'M andM
′
∈ M̃ ′ ∈ ds(M)/'M . Furthermore, the pairs M̃ , G̃ and M̃

′, G̃′ have identical component counts.
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For the case α ∈ L, it is immediate that q[G, G̃′, α] = 0, as required. If α /∈ L and α ∈ A, or if α = τ β where β /∈ L, it
is immediate that q[G, G̃′, α] = q[M, M̃ ′, α] and the result follows by induction and the definition of the joint component
rate function, since the same pairs (J−,J+) ∈ J(G) characterise G̃′ as do M̃ ′.
Otherwise, if α = τ β where β ∈ L, it is clear from the operational semantics that

q[G, G̃′, α] = q[M, M̃ ′, τ β ] + q[M, M̃ ′, β].

The result then follows as in the previous case.
If G = M BC

L
R then by definition

Rα(M BCL R,J−) :=


Rα(M,JM− )
rα(M)

Rα(R,JR−)
rα(R)

min(rα(M), rα(R)) if α ∈ L, J− * B(M) and J− * B(R)
Rα(M,J−) if α /∈ L, J− ⊆ B(M)
Rα(R,J−) if α /∈ L, J− ⊆ B(R)
0 otherwise

where in the first line of the above definition, the set J− is partitioned into JM
−
and JR

−
, such that JM

−
⊆ B(M) and

JR
−
⊆ B(R).
Now it is clear from the operational semantics that since G = M BC

L
R, any G

′
∈ G̃′ has the form G

′
= M

′ BC
L
R
′
. We also

have thatM ∈ M̃ ∈ ds(M)/'M , R ∈ R̃ ∈ ds(R)/'R,M
′
∈ M̃ ′ ∈ ds(M)/'M and R

′
∈ R̃′ ∈ ds(R)/'R. Furthermore, G̃ agrees

with M̃ (resp., R̃) on the counts of all components inB(M) (resp.,B(R)). The same is true for G̃′, M̃ ′ and R̃′.
Firstly, we consider the case α /∈ L. If both M̃ 6= M̃ ′ and R̃ 6= R̃′, the operational semantics asserts that there can be no

such α-transition. For any pairs (J−,J+) ∈ J(G) characterising G̃′, it is clear that J− has elements in bothB(M) andB(R),
and thus the joint component rate function is zero by definition, as required.
In the case M̃ = M̃ ′ and R̃ = R̃′ (so G̃ = G̃′), it is clear from the operational semantics that

q[G, G̃′, α] = q[M, M̃, α] + q[R, R̃, α].

Furthermore, the only elements of J(G) characterising G̃′ for which the joint component rate function is not immediately
zero is simply the union of the elements of J(M) and J(R), which characterise M̃ ′ and R̃′, respectively. The equality of
q[G, G̃′, α] and the sum of Eq. (A.1) terms then follows by induction and the definition of the joint component rate function.
It remains to consider, without loss of generality, just the case M̃ 6= M̃ ′ and R̃ = R̃′. Then, the operational semantics

asserts that

q[G, G̃′, α] = q[M, M̃ ′, α].

Now the only elements of J(G) characterising G̃′, for which the joint component rate function is not immediately zero are
the elements of J(M) which characterise M̃ ′. The equality of q[G, G̃′, α] and the sum of Eq. (A.1) terms then follows again
by induction and the definition of the joint component rate function.
Now it remains to consider the case α ∈ L. Let {G

′

ij = M
′

i BCL R
′

j}ij enumerate the elements of G̃
′, so M̃ ′ = {M

′

i}i and

R̃′ = {R
′

j}j enumerate the elements of M̃
′ and R̃′, respectively. Then the operational semantics asserts

q(G,G
′

ij, α) =
q(M,M

′

i, α)

rα(M)

q(R, R
′

j, α)

rα(R)
min(rα(M), rα(R)).

Then we have

q[G, G̃′, α] =
∑
G′ij∈G̃′

q(G,G
′

ij, α) =
∑
M ′i∈M̃ ′

∑
R′j∈R̃′

q(G,M
′

i BCL R
′

j, α)

=

∑
M ′i∈M̃ ′

∑
R′j∈R̃′

q(M,M
′

i, α)

rα(M)

q(R, R
′

j, α)

rα(R)
min(rα(M), rα(R))

=
q[M, M̃ ′, α]

rα(M)

q[R, R̃′, α]

rα(R)
min(rα(M), rα(R)).

Now let {(Jk,M̃− ,Jk,M̃+ )}k ∈ J(M) characterise M̃ ′ and {(Jl,M̃− ,J
l,M̃
+ )}l ∈ J(R) characterise R̃′. Then the subset of J(G)

characterising G̃′ is

JG̃ := {(Jkl
−
,Jkl
+
) ∈ J(G) : Jkl

−
= Jk,M̃− ∪ Jl,R̃− and Jkl

+
= Jk,M̃+ ∪ Jl,R̃+ }kl.
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By induction, we then have

q[M, M̃ ′, α] q[R, R̃′, α] =
∑
k,l

∏
(H,Q )∈Jk,M̃

+
∪J
l,R̃
+

[
pt(α)(h(H,Jk,M̃− ∪ Jl,R̃− ),Q )

]
Rα(M,J

k,M̃
− )Rα(R,J

l,R̃
− ).

The equality of q[G, G̃′, α] and the sum of Eq. (A.1) terms then follows by the definition of the joint component rate
function. �

A.4. Proof of Theorem 5.4

Let S ⊆ E(G) be the aggregated state space. For s ∈ S write ps(t) as the transient probability of being in state s at time t .
Consider the following sum, i.e. Ė[M(t)]:∑

si∈S

ṗsi(t)
∏

Bj∈B(G)

si(Bj)M(Bj).

As in the proof of Theorem 4.3, this quantity can be constructed by summing over the left hand sides of the individual
Chapman–Kolmogorov forward equations for all s ∈ S after first multiplying them each by

∏
Bi∈B(G)

s(Bi)M(Bi). Therefore it is
equal to the sum of the corresponding right hand sides, also each multiplied by

∏
Bi∈B(G)

s(Bi)M(Bi). We now aim to compute
this quantity.
For (J−,J+) ∈ J(G), consider those α-transitions into each state s ∈ S which decrease the count of all components

specified by J− \ J+, increase the count of all components specified by J+ \ J− and do not modify the count of any
components specified byB(G) \ (J− 	 J+). By Theorem 5.3, these will together contribute the following term:

ρα(J−,J+)
∑
sk∈S

ṗsk(t) [F+(sk)F−(sk)F(sk)Rα(G, sk,J−)] .

The α-transitions out of each state s ∈ S which decrease the count of all components specified by J− \ J+, increase the
count of all components specified byJ+ \J− and do notmodify the count of any components specified byB(G)\(J−	J+)
contribute, by Theorem 5.3, the following term:

−ρα(J−,J+)
∑
sk∈S

ṗsk(t) [M(sk)Rα(G, sk,J−)]

where

F±(s) :=
∏

Bi∈J±\J∓

(s(Bi)± 1)M(Bi)

F(s) :=
∏

Bi∈B(G)\(J−	J+)

s(Bi)M(Bi)

and

M(s) :=
∏

Bi∈B(G)

s(Bi)M(Bi).

Combining the left and right hand sides and noting that every transition in the aggregated state space corresponds to exactly
one element of (J−,J+) ∈ J(G) gives the desired result. �

A.5. Proof of Lemma 5.5

By induction on the structure of G.
If G = H{D}, then the result is trivial since the joint component rate is simply a linear combination of component counts.
If G = M/L, the result is again trivial from the definition and by induction.
If G = M1 BCL M2, the only interesting case is when α ∈ L and J * B(Mj) for j = 1 and 2, in which case

Rα(M1 BCL M2, E,J) =
Rα(M1, E,J1)
rα(M1, E)

Rα(M2, E,J2)
rα(M2, E)

min(rα(M1, E), rα(M2, E))

whereJ is partitioned uniquely into (non-empty)J1 andJ2, such thatJ1 ⊆ B(M1) andJ2 ⊆ B(M2). By a similar induction
argument on apparent rate and this induction, we see that bothRα(Mj, E,Jj) and rα(Mj, E) have this homogeneity property
for j = 1, 2, so

Rα(Mj, E∗,Jj)
rα(Mj, E∗)

=
Rα(Mj, E,Jj)
rα(Mj, E)

for j = 1, 2. The result then follows since for any non-negative a, b and c , c ×min(a, b) = min(c × a, c × b).
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Appendix B. Systems of equations

B.1. First- and second-order moment equations for the processor/resource model

Ė[P0(t)] = −E[min(P0(t)r1, R0(t)r2)] + q · E[P1(t)]
Ė[P1(t)] = E[min(P0(t)r1, R0(t)r2)] − q · E[P1(t)]
Ė[R0(t)] = −E[min(P0(t)r1, R0(t)r2)] + s · E[R1(t)]
Ė[R1(t)] = E[min(P0(t)r1, R0(t)r2)] − s · E[R1(t)]
Ė[P20 (t)] = −2 · E[min(P

2
0 (t)r1, P0(t)R0(t)r2)] + E[min(P0(t)r1, R0(t)r2)] + 2 · E[P0(t)P1(t)] · q+ E[P1(t)] · q

Ė[P0(t)P1(t)] = E[min(P20 (t)r1, P0(t)R0(t)r2)] − E[min(P1(t)P0(t)r1, P1(t)R0(t)r2)]
−E[min(P0(t)r1, R0(t)r2)] − E[P0(t)P1(t)] · q+ E[P21 (t)] · q− E[P1(t)] · q

Ė[P0(t)R0(t)] = −E[min(P20 (t)r1, P0(t)R0(t)r2)] − E[min(R0(t)P0(t)r1, R20(t)r2)]
+E[min(P0(t)r1, R0(t)r2)] + E[P1(t)R0(t)] · q+ E[P0(t)R1(t)] · s

Ė[P0(t)R1(t)] = E[min(P20 (t)r1, P0(t)R0(t)r2)] − E[min(R1(t)P0(t)r1, R1(t)R0(t)r2)]
−E[min(P0(t)r1, R0(t)r2)] + E[P1(t)R1(t)] · q− E[P0(t)R1(t)] · s

Ė[P21 (t)] = 2 · E[min(P1(t)P0(t)r1, P1(t)R0(t)r2)] + E[min(P0(t)r1, R0(t)r2)]
− 2 · E[P21 (t)] · q+ E[P1(t)] · q

Ė[P1(t)R0(t)] = −E[min(P1(t)P0(t)r1, P1(t)R0(t)r2)] + E[min(R0(t)P0(t)r1, R20(t)r2)]
−E[min(P0(t)r1, R0(t)r2)] − E[P1(t)R0(t)] · q+ E[P1(t)R1(t)] · s

Ė[P1(t)R1(t)] = E[min(P1(t)P0(t)r1, P1(t)R0(t)r2)] + E[min(R1(t)P0(t)r1, R1(t)R0(t)r2)]
+E[min(P0(t)r1, R0(t)r2)] − E[P1(t)R1(t)] · q− E[P1(t)R1(t)] · s

Ė[R20(t)] = −2 · E[min(R0(t)P0(t)r1, R
2
0(t)r2)] + E[min(P0(t)r1, R0(t)r2)]

+ 2 · E[R0(t)R1(t)] · s+ E[R1(t)] · s

Ė[R0(t)R1(t)] = E[min(R0(t)P0(t)r1, R20(t)r2)] − E[min(R1(t)P0(t)r1, R1(t)R0(t)r2)]
−E[min(P0(t)r1, R0(t)r2)] − E[R0(t)R1(t)] · s+ E[R21(t)] · s− E[R1(t)] · s

Ė[R21(t)] = 2 · E[min(R1(t)P0(t)r1, R1(t)R0(t)r2)] + E[min(P0(t)]r1, R0(t)r2)] − 2 · E[R21(t)] · s+ E[R1(t)] · s.
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