On the uniqueness problems of entire functions and their derivatives✩

Huifang Liuᵃᵇ,*, Daochun Sunᵃ

ᵃ School of Mathematics, South China Normal University, Guangzhou 510631, China
ᵇ Institute of Mathematics and Informatics, Jiangxi Normal University, Nanchang 330027, China

A R T I C L E I N F O

Article history:
Received 3 May 2008
Available online 26 July 2008
Submitted by S. Ruscheweyh

Keywords:
Entire function
Order of growth
Uniqueness
Shared value

A B S T R A C T

In this paper, we obtain some uniqueness theorems for entire functions and their derivatives sharing the same fixed points with the same multiplicities.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and main results

Let $f(z)$ be a non-constant meromorphic function in the complex plane. We adopt the standard notations in Nevanlinna’s value distribution theory of meromorphic functions as explained in [1,2]. In addition, we use notations $\sigma(f)$, $\sigma^2(f)$ to denote the order and the hyper-order of $f(z)$, respectively, where

$$\sigma(f) = \lim_{r \to \infty} \frac{\log^+ T(r, f)}{\log r}, \quad \sigma^2(f) = \lim_{r \to \infty} \frac{\log^{+} \log^+ T(r, f)}{\log r}.$$

It will be convenient to let E denote any set of finite linear measure, not necessarily the same at each occurrence. The notation $S(r, f)$ is defined to be any quantity satisfying $S(r, f) = o(T(r, f))$ as $r \to \infty$, possibly outside a set E of r of finite linear measure. A meromorphic function $\alpha(z) \neq \infty$ is called a small function with respect to $f(z)$ provided that $T(r, \alpha) = S(r, f)$.

Suppose that f and g are two non-constant meromorphic functions, and Q is a meromorphic function. We say that f and g share Q CM, provided that $f - Q$ and $g - Q$ have the same zeros with the same multiplicities. Similarly, we say that f and g share Q IM, provided that $f - Q$ and $g - Q$ have the same zeros ignoring multiplicities.

In 1996, R. Brück posed the following conjecture.

Conjecture 1. (See [3,]) Let f be a non-constant entire function satisfying $\sigma^2(f) < \infty$, where $\sigma^2(f)$ is not a positive integer. If f and f' share one finite value a CM, then $f - a = c(f' - a)$ for some constant $c \neq 0$.

In [3], Brück himself proved the conjecture provided that either $a = 0$ or $N(r, f' = 0) = S(r, f)$. He also gave counterexamples to show that the restriction on the growth of f is necessary. G. Gundersen and L.Z. Yang partially solved the conjecture for entire functions of finite order. We refer the reader to [4] and [5].

✩ This work is supported by the National Nature Science Foundation of China (No. 10471048).
* Corresponding author at: School of Mathematics, South China Normal University, Guangzhou 510631, China.
E-mail address: liu_huifang73@sina.com (H. Liu).

0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
In 2005, A. Al-Khaladi obtained the following result.

Theorem A. (See [6].) Let \(f \) be a non-constant entire function satisfying \(N(r, \frac{1}{f(z)}) = S(r, f) \) and let \(\alpha (\neq 0, \infty) \) be a meromorphic small function of \(f \). If \(f \) and \(f^{(k)} \) share \(\alpha \) CM, then

\[
f - \alpha = \left(1 - \frac{P_{k-1}}{\alpha}\right)(f^{(k)} - \alpha),
\]

where \(1 - \frac{P_{k-1}}{\alpha} = e^\beta \), \(P_{k-1} \) is a polynomial of degree at most \(k - 1 \) and \(\beta \) is an entire function.

Dealing with Conjecture 1, G. Gundersen and L.Z. Yang considered the differential equation

\[
F(k) - e^{p(z)}F = 1,
\]

and proved the following results.

Theorem B. (See [4].) Let \(P(z) \) be a non-constant polynomial and \(k = 1 \). Then every solution of Eq. (1.1) is an entire function of infinite order.

Theorem C. (See [5].) Let \(P(z) \) be a non-constant polynomial and \(k \) be a positive integer. Then every solution of Eq. (1.1) is an entire function of infinite order.

In this paper, we prove the following result.

Theorem 1.1. Let \(P(z) \) be a transcendental entire function, and let \(k (\geq 2) \) be a positive integer. If \(f \) is a solution of the equation

\[
f^{(k)}(z) - z = e^{P(z)},
\]

and there exists some positive integer \(l (2 \leq l \leq k) \) such that \(m(r, \frac{1}{f^{(l)}}) = O(|\log T(r, f)|) (r \to \infty, r \not\in E) \), where \(E \) is a set of finite linear measure, then \(\sigma_2(f) = \infty \).

In 1995, H.X. Yi and C.C. Yang posed the following question named question of Yi and Yang.

Question 1. (See [7].) Let \(f \) be a non-constant meromorphic function, and let \(a \) be a finite nonzero complex constant. If \(f \), \(f^{(m)} \) and \(f^{(m)} \) share a CM, where \(n \) and \(m \) are positive integers satisfying \(n < m \), then can we get the result \(f \equiv f^{(m)} \)?

A counterexample (see [8, p. 536]) shows that the answer to Question 1 is negative in general, even if \(f \) is an entire function. However P. Li and C.C. Yang proved that the answer is positive for an entire function \(f \) provided that \(m = n + 1 \). In fact, they proved the following theorem.

Theorem D. (See [9].) Let \(f(z) \) be a non-constant entire function, \(a \) be a finite nonzero value, and let \(n \) be a positive integer. If \(f \), \(f^{(m)} \) and \(f^{(m+1)} \) share a CM, then \(f \equiv f' \).

J.M. Chang and M.L. Fang considered the same problem for small functions, and proved the following result.

Theorem E. (See [10].) Let \(f(z) \) be a non-constant entire function, \(\alpha(z) \) be a non-constant small function with respect to \(f \), and let \(n \geq 2 \) be an integer. If \(f \), \(f^{(m)} \) and \(f^{(m+1)} \) share \(\alpha(z) \) CM, then \(f \equiv f' \).

In this paper, we prove the following result, which is a supplement of Theorem E.

Theorem 1.2. Let \(f(z) \) be a non-constant entire function satisfying \(\sigma_2(f) < \infty \), where \(\sigma_2(f) \) is not a positive integer. If \(f \), \(f^{(m)} \) and \(f^{(m)} \) share \(z \) CM, where \(n \) and \(m \) are positive integers satisfying \(2 \leq n < m \), then there exist finite complex numbers \(\lambda_j (\neq 0) \) \((1 \leq j \leq m - n)\), \(c (\neq 0) \) satisfying

\[
\lambda_j^m = \lambda_j^n = c \quad (1 \leq j \leq m - n),
\]

such that

\[
f(z) = \sum_{j=1}^{m-n} \frac{d_j}{c} e^{\lambda_j z} + \frac{c - 1}{c} z,
\]

where \(d_j (1 \leq j \leq m - n) \) are certain finite complex constants.
Corollary 1.1. Let \(f, f^{(n)}, f^{(m)} \) satisfy the hypothesis of Theorem 1.2. If there exists one point \(z_0 \) such that \(f^{(n)}(z_0) = f(z_0) \neq z_0 \) or \(f^{(m)}(z_0) = f(z_0) \neq z_0 \), then \(f \equiv f^{(n)} \).

Proof. From (1.3) and (1.4), we get
\[
f^{(n)}(z) = f^{(m)}(z) = \sum_{j=1}^{m-n} d_j e^{jz}.
\]
Combining this and (1.4), we can easily get
\[
f^{(n)}(z) = f^{(m)}(z) = cf(z) - (c - 1)z_0.
\]
Since \(f^{(n)}(z_0) = f(z_0) \neq z_0 \) or \(f^{(m)}(z_0) = f(z_0) \neq z_0 \), from this and (1.5), we get \(c = 1 \). Hence \(f(z) = \sum_{j=1}^{m-n} d_j e^{jz} \). Therefore \(f \equiv f^{(n)} \). \(\Box \)

Using the similar reasoning as in the proof of Corollary 1.1, we can easily get the following corollary.

Corollary 1.2. Let \(f, f^{(n)}, f^{(m)} \) satisfy the hypothesis of Theorem 1.2. If there exists one point \(z_0 \) such that \(f^{(n+1)}(z_0) = f'(z_0) \neq 1 \) or \(f^{(m+1)}(z_0) = f'(z_0) \neq 1 \), then \(f \equiv f^{(n)} \).

2. Lemmas

Lemma 2.1. (See [11].) Let \(f_1, f_2, \ldots, f_n \) be non-constant meromorphic functions satisfying
\[
N(r, f_i) + N\left(r, \frac{1}{f_i} \right) = S(r), \quad i = 1, 2, \ldots, n,
\]
and
\[
T(r, f_i) \neq S(r), \quad T\left(r, \frac{f_j}{f_i} \right) \neq S(r), \quad i \neq j, i, j = 1, 2, \ldots, n.
\]
Let \(a_0, a_1, \ldots, a_m \) be meromorphic functions satisfying \(T(r, a_i) = S(r), i = 0, 1, \ldots, m \). If
\[
\sum_{i=1}^{m} a_i f_i = a_0,
\]
then \(a_0 \equiv a_1 \equiv \cdots \equiv a_m \equiv 0 \), where \(S(r) = o(T(r)), as \ r \to \infty and r \notin E \), and \(T(r) = \sum_{i=1}^{m} T(r, f_i) \).

Lemma 2.2. (See [7, p. 21].) Let \(f(z) \) be a non-constant meromorphic function in the complex plane. If the order of \(f(z) \) is finite, then
\[
m\left(r, \frac{f'}{f} \right) = O\left\{ \log r \right\} \quad r \to \infty.
\]
If the order of \(f(z) \) is infinite, then
\[
m\left(r, \frac{f'}{f} \right) = O\left\{ \log r T(r, f) \right\} \quad r \to \infty, \quad r \notin E_0,
\]
where \(E_0 \) is a set whose linear measure is not greater than 2.

Lemma 2.3. Suppose that \(f(z) \) is an entire function with \(\sigma(f) = \infty \). If \(f^{(n)} \) and \(f^{(m)} \) share \(z \) CM, where \(n, m(n < m) \) are positive integers, then
\[
m\left(r, \frac{1}{f^{(m)}} \right) = O\left\{ \log r T(r, f) \right\} \quad r \to \infty, \quad r \notin E,
\]
where \(E \) is a set of finite linear measure.

Proof. Set
\[
\psi = \frac{f^{(n+1)} - 1}{f^{(n)} - z} - \frac{f^{(m+1)} - 1}{f^{(m)} - z} \tag{2.1}
\]
Then \(\psi \) is an entire function and \(\psi \neq 0 \). In fact, if \(\psi \equiv 0 \), then from (2.1) we get
\[
f^{(m)} - z = c(f^{(n)} - z), \tag{2.2}
\]
where \(c \) is a nonzero complex constant. From (2.2) we get \(\sigma(f) < \infty \). This is impossible.
Combining (2.1) and Lemma 2.2, we deduce
\[T(r, \psi) = m(r, \psi) \leq m\left(r, \frac{f^{(n+1)} - 1}{f^{(n)} - z}\right) + m\left(r, \frac{f^{(m+1)} - 1}{f^{(m)} - z}\right) + \log 2 \]
\[= O\left\{\log T(r, f^{(n)} - z)\right\} + O\left\{\log T(r, f^{(m)} - z)\right\} + \log 2 \]
\[= O\left\{\log T(r, f)\right\} \quad (r \to \infty, \ r \notin E). \tag{2.3} \]

Since
\[\frac{1}{f^{(n)}} = \frac{1}{\psi}\left\{\frac{f^{(n+1)} - 1}{f^{(n)} - z} - \frac{f^{(m+1)} - 1}{f^{(m)} - z}\right\}, \tag{2.4} \]
from (2.3), (2.4) and Lemma 2.2, we deduce
\[m\left(r, \frac{1}{f^{(n)}}\right) \leq m\left(r, \frac{1}{z}\right) + m\left(r, \frac{1}{\psi}\right) + m\left(r, \frac{f^{(n+1)} - 1}{f^{(n)} - z}\right) + m\left(r, \frac{f^{(m+1)} - 1}{f^{(m)} - z}\right) + m\left(r, \frac{f^{(m+1)} - 1}{f^{(m)} - z}\right) + O(1) \]
\[\leq T(r, z) + T(r, \psi) + O\left\{\log T(r, f)\right\} \]
\[= O\left\{\log T(r, f)\right\} \quad (r \to \infty, \ r \notin E), \]
where E is a set of finite linear measure. \square

Lemma 2.4. (See [2].) Let $g : (0, \infty) \to R$ and $h : (0, \infty) \to R$ be monotone nondecreasing functions such that $g(r) \leq h(r)$ outside of an exceptional set E_2 of finite linear measure. Then for any $\alpha > 1$, there exists r_0 such that $g(r) \leq h(\alpha r)$ for all $r > r_0$.

Lemma 2.5. (See [12].) Let $Q_1(z)$ and $Q_2(z)$ be two nonzero polynomials, and let $P(z)$ be a polynomial. If f is a non-constant solution of the equation
\[f^{(k)}(z) - Q_1(z) = e^{P(z)}(f(z) - Q_2(z)), \]
where k is a positive integer, then $\sigma_2(f) = \deg(P)$, where $\deg(P)$ denotes the degree of $P(z)$.

3. Proofs of theorems

Proof of Theorem 1.1. From (1.2) and the assumptions of Theorem 1.1, we know f is a transcendental entire function with $\sigma(f) = \infty$.

We write (1.2) in the form
\[f^{(k)} - z = e^{P(z)}(f - z). \tag{3.1} \]

Differentiation of (3.1) yields
\[f^{(k+1)} - 1 = e^{P(z)}P'(z)(f - z) + e^{P(z)}(f' - 1). \tag{3.2} \]

Combining (3.1) and (3.2), we get
\[P'(z) = \frac{f^{(k+1)} - 1}{f^{(k)} - z} = \frac{f' - 1}{f - z}. \tag{3.3} \]

Then, from (3.3) and Lemma 2.2, we deduce
\[T(r, P') = m(r, P') \leq m\left(r, \frac{f^{(k+1)} - 1}{f^{(k)} - z}\right) + m\left(r, \frac{f' - 1}{f - z}\right) + O(1) \]
\[= O\left\{\log T(r, f^{(k)} - z)\right\} + O\left\{\log T(r, f - z)\right\} \]
\[= O\left\{\log T(r, f)\right\} \quad (r \to \infty, \ r \notin E). \tag{3.4} \]

From (3.4) and Lemma 2.2, we immediately get
\[m(r, P') \leq m\left(r, \frac{P''}{P'}\right) + m(r, P') \]
\[\leq O\left\{\log r T(r, P')\right\} + O\left\{\log r T(r, f)\right\} \]
\[= O\left\{\log r T(r, f)\right\} \quad (r \to \infty, \ r \notin E). \tag{3.5} \]
Differentiating (3.2), we get
\[f^{(k+2)} = e^{P} P' f^{(k)} + 2e^{P} P'(f') - 1 + e^{P} f''. \]
(3.6)

Then combining (3.1), (3.2) and (3.6), we deduce
\[f^{(k+2)} = P'(f^{(k)} - z) + e^{P}(f^{(k+1)} - 1) + e^{P} f'' . \]
(3.7)

From (3.4), (3.5), (3.7) and Lemma 2.2, we deduce
\[
T(r, e^{P}) = m(r, e^{P}) \leq m\left(r, \frac{f^{(k+2)}}{f''} \right) + m(r, P') + 2m\left(r, \frac{f^{(k+1)} - 1}{f''} \right) + m\left(r, \frac{f^{(k+1)}}{f''} \right) + O(1)
\leq m\left(r, \frac{f^{(k+2)}}{f''} \right) + m(r, P') + 2m\left(r, \frac{f^{(k)}}{f''} \right) + 2m\left(r, \frac{f^{(k)}}{f''} \right) + m\left(r, \frac{1}{f''} \right)
+ 2m(r, P') + O(1)
\leq O \left(\log r T(r, f) \right) + 3m\left(r, \frac{1}{f''} \right)
\leq O \left(\log r T(r, f) \right) + 3m\left(r, \frac{f(0)}{f''} \right) + 3m\left(r, \frac{1}{f''} \right).
\]
(3.8)

Since \(m(r, \frac{1}{f''}) = O(\log r T(r, f)) \), from (3.8) we get
\[
T(r, e^{P}) = O \left(\log r T(r, f) \right) \quad (r \to \infty, \ r \notin E).
\]
(3.9)

Then, from (3.9) and Lemma 2.4, we can deduce
\[
\sigma_2(f) \geq \sigma(e^{P}) = \infty.
\]
(3.10)

This implies \(\sigma_2(f) = \infty \).

Theorem 1.1 is thus completely proved. \(\square \)

Proof of Theorem 1.2. Since \(f \) and \(f^{(n)} \) share \(z \) CM, we have
\[
\frac{f^{(n)} - z}{f - z} = e^{P(z)},
\]
(3.11)

where \(P(z) \) is an entire function. If \(P(z) \) is a non-constant polynomial, then from Lemma 2.5, we get \(\sigma_2(f) = \deg(P) \), which contradicts the assumption that \(\sigma_2(f) \) is not a positive integer. If \(P(z) \) is a transcendental entire function, then from (3.11), we get \(\sigma(f) = \infty \). Hence combining Lemma 2.3 and Theorem 1.1, we get \(\sigma_2(f) = \infty \). This contradicts \(\sigma_2(f) < \infty \). Therefore we have
\[
\frac{f^{(n)} - z}{f - z} = c,
\]
(3.12)

where \(c \neq 0 \) is a complex constant. Similarly we have
\[
\frac{f^{(m)} - z}{f - z} = c_1,
\]
(3.13)

where \(c_1 \neq 0 \) is a complex constant. From (3.12) and (3.13), we get
\[
\frac{f^{(m)} - z}{f^{(n)} - z} = c_2,
\]
(3.14)

where \(c_2 \neq 0 \) is a complex constant.

Set \(f^{(n)} = g \), from (3.14) we get
\[
\frac{g^{(m-n)} - z}{g - z} = c_2.
\]
(3.15)
Differentiating (3.15) yields
\[g^{(m-n+2)} - c_2 g'' = 0. \]
(3.16)

By the basic theory of differential equations, we can deduce
\[f^{(n)} = g = \sum_{j=1}^{m-n} d_j e^{\lambda_j z} + b_0 + b_1 z, \]
(3.17)

where \(\lambda_1, \ldots, \lambda_{m-n} \) are nonzero roots of the characteristic equation \(\lambda^{m-n+2} - c_2 \lambda^2 = 0 \), \(d_j (1 \leq j \leq m-n) \), \(b_0, b_1 \) are complex numbers.

Then by (3.17) we get
\[f(z) = \sum_{j=1}^{m-n} \frac{d_j}{\lambda_j^n} e^{\lambda_j z} + \frac{b_1}{(n+1)!} z^{n+1} + \frac{b_0}{n!} z^n + \sum_{j=0}^{n-1} a_j z^j, \]
(3.18)

where \(a_0, a_1, \ldots, a_{n-1} \) are complex constants.

Combining (3.12), (3.17) and (3.18), we deduce
\[\sum_{j=1}^{m-n} \left(1 - \frac{c}{\lambda_j^n} \right) d_j e^{\lambda_j z} = c b_1 \frac{z^{n+1}}{(n+1)!} + \frac{c b_0}{n!} z^n + \sum_{j=0}^{n-1} c a_j z^j + (1-c)z - b_1z - b_0. \]
(3.19)

We discuss the following two cases.

Case 1. If \(d_1 = d_2 = \cdots = d_{m-n} = 0 \), then from (3.19), we have
\[b_0 = b_1 = 0, \quad a_{n-1} = a_{n-2} = \cdots = a_2 = a_0 = 0, \quad a_1 = \frac{c-1}{c}. \]

Hence \(f(z) = \frac{c-1}{c} z \).

Case 2. If there exist some \(d_j \neq 0 \) \((1 \leq j \leq m-n) \), then from (3.19) and Lemma 2.1, we can deduce
\[\lambda_j^n = c, \quad b_0 = b_1 = 0, \quad a_{n-1} = a_{n-2} = \cdots = a_2 = a_0 = 0, \quad a_1 = \frac{c-1}{c}. \]
(3.20)

Hence from (3.17), (3.18) and (3.20), we get
\[f(z) = \sum_{j=1}^{m-n} \frac{d_j}{c} e^{\lambda_j z} + \frac{c-1}{c} z, \]
(3.21)

\[f^{(n)} = \sum_{j=1}^{m-n} d_j e^{\lambda_j z}, \]
(3.22)

\[f^{(m)} = \sum_{j=1}^{m-n} \lambda_j^{m-n} d_j e^{\lambda_j z} = \sum_{j=1}^{m-n} c_2 d_j e^{\lambda_j z}. \]
(3.23)

Substituting (3.22), (3.23) into (3.14), we get \(c_2 = 1 \). Then from the characteristic equation \(\lambda^{m-n+2} - c_2 \lambda^2 = 0 \) and (3.20), we deduce \(\lambda_j^n = \lambda_j^2 = c \).

Theorem 1.2 is thus completely proved.

Acknowledgments

The authors thank the referee for his valuable suggestions and comments.

References