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Tauberian conditions, under which statistical
convergence follows from statistical

summability(C,1) ✩
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Abstract

J.A. Fridly and M.K. Khan have recently extended Hardy’s and Landau’s Tauberian
theorems to the case of statistical convergence, which was introduced by H. Fast in 1951.

Let (xk : k = 0,1,2, . . .) be a sequence of real or complex numbers and setσn :=
(n + 1)−1 ∑n

k=0 xk for n = 0,1,2, . . . . We present necessary and sufficient conditions,
under which st-limxk = L follows from st-limσn = L, whereL is a finite number. If(xk)

is a sequence of real numbers, then these are one-sided Tauberian conditions. If(xk) is a
sequence of complex numbers, then these are two-sided Tauberian conditions. In particular,
our conditions are satisfied if(xk) is statistically slowly decreasing (or increasing) in the
case of real sequences; or if(xk) is statistically slowly oscillating in the case of complex
sequences. Even these special sufficient conditions imply those given by Fridy and Khan.
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1. Introduction and background

The concept of statistical convergence was introduced by Fast [1]. A sequence
(xk: k = 0,1,2, . . .) of (real or complex) numbers is said to be statistically
convergent to some numberL if for eachε > 0,

lim
n→∞

1

n + 1

∣∣{k � n: |xk − L| � ε}∣∣ = 0,

where byk � n we mean thatk = 0,1, . . . , n; and by|S| we mean the number of
the elements of the setS. In this case, we write

st-limxk = L. (1.1)

The following concept is due to Fridy [2]. A sequence(xk) is said to be
statistically Cauchy if for eachε > 0 there exists a numberN = N(ε) such that

lim
n→∞

1

n + 1

∣∣{k � n: |xk − xN | � ε}∣∣ = 0.

Fridy [2] proved that a sequence(xk) is statistically convergent if and only if it
is statistically Cauchy. Furthermore, he also proved that no matrix summability
method can include the method of statistical convergence. The latter statement
follows from the fact that if a setS of nonnegative integers has the “natural
density” zero, that is,

lim
n→∞

1

n + 1

∣∣{k � n: k ∈ S}∣∣ = 0,

and if (xk) is a sequence such thatxk = 0 wheneverk /∈ S, then st-limxk = 0, no
matter what values are assigned toxk whenk ∈ S. For example, one can take the
set of squares of the natural numbers in the capacity ofS.

2. New results

Define the (first) arithmetic meansσn of a sequence(xk) by setting

σn := 1

n + 1

n∑
k=0

xk, n = 0,1,2, . . . .

We say that(xk) is statistically summable(C,1) to L if

st-limσn = L. (2.1)

Schoenberg [7] proved that if a sequence(xk) is bounded, then

st-limxk = L implies st-limσn = L.
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Our primary interest is to find conditions under which the converse implication
holds. First, we formulate one-sided Tauberian conditions for sequences of real
numbers.

Theorem 1. Let (xk) be a sequence of real numbers which is statistically
summable(C,1) to a finite limit. Then(xk) is statistically convergent to the same
limit if and only if the following two conditions are satisfied: for eachε > 0,

inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

λn − n

λn∑
k=n+1

(xk − xn) � −ε

}∣∣∣∣∣ = 0 (2.2)

and

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

n − λn

n∑
k=λn+1

(xn − xk) � −ε

}∣∣∣∣∣ = 0, (2.3)

where byλn we denote the integral part of the productλn, in symbolλn := [λn].

Remark 1. From the proof of Theorem 1 (see in Part 3 below) it turns out that
even more is true: If conditions (1.1) and (2.1) (or equivalently, conditions (2.1)–
(2.3)) are satisfied, then we necessarily have

st-lim
1

λn − n

λn∑
k=n+1

(xk − xn) = 0 (2.4)

for all λ > 1, and

st-lim
1

n − λn

n∑
k=λn+1

(xn − xk) = 0 (2.5)

for all 0< λ < 1.

Remark 2. The proof of Theorem 1 can be modified so that its conclusion remains
valid if conditions (2.2) and (2.3) are exchanged for the following ones: for each
ε > 0,

inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

λn − n

λn∑
k=n+1

(xk − xn) � ε

}∣∣∣∣∣ = 0 (2.2′)

and

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

n − λn

n∑
k=λn+1

(xn − xk) � ε

}∣∣∣∣∣ = 0. (2.3′)

Following Schmidt [6], we say that a sequence(xk) is statistically slowly
decreasing if for eachε > 0,
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inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : min
n<k�λn

(xk − xn) � −ε
}∣∣∣ = 0 (2.6)

and

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : min
λn<k�n

(xn − xk) � −ε
}∣∣∣ = 0. (2.7)

Remark 3. We claim that conditions (2.6) and (2.7) are equivalent. To see this,
fix ε > 0 and introduce

I (λ) := lim sup
N→∞

1

N + 1

∣∣∣{n � N : min
n<k�λn

(xk − xn) � −ε
}∣∣∣

for λ > 1; and

I (λ) := lim sup
N→∞

1

N + 1

∣∣∣{n � N : min
λn<k�n

(xn − xk) � −ε
}∣∣∣

for 0 < λ < 1. It is clear thatI (λ) is decreasing for 0< λ < 1 and increasing for
λ > 1. This means that infλ>1 in (2.6) can be replaced by limλ→1+0, and inf0<λ<1
in (2.7) by limλ→1−0.

First, we show that forλ > 1, we haveI (1/λ) � I (λ). Indeed, this follows
from the facts that for some increasing sequence{Np: p = 1,2, . . .} of natural
numbers,

I (1/λ) = lim
p→∞

1

Np + 1

∣∣∣{k � Np: min[k/λ]<n�k
(xk − xn) � −ε

}∣∣∣,
and that for allλ > 1, k, andn,

[k/λ] < n < k ⇒ n < k � [λn].
In particular, it follows thatI (1− 0) � I (1+ 0).

Second, we state that if 1< λ1 < λ, say λ1 := (1 + λ)/2, then I (λ1) �
λ1I (1/λ). In fact, this time for some increasing sequence{Np} (different from
the one above), we have

I (λ1) = lim
p→∞

1

Np + 1

∣∣∣{n � Np: min
n<k�[λ1n](xk − xn) � −ε

}∣∣∣,
and for all 1< λ1 < λ, k, andn,

n < k � [λ1n] ⇒ [k/λ] < n < k,

whence it follows that

I (λ1) � lim sup
p→∞

1

Np + 1

∣∣∣{k � [λ1Np]: min
[k/λ]<n�k

(xk − xn) � −ε
}∣∣∣

� λ1I (1/λ),
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as we stated above. In particular, we haveI (1 + 0) � I (1 − 0). To sum up, we
conclude thatI (1 − 0) = I (1 + 0). This completes the proof of the equivalence
of conditions (2.6) and (2.7).

Conditions (2.2) and (2.3) clearly follow from conditions (2.6) and (2.7),
respectively. Thus, Theorem 1 implies immediately the following

Corollary 1. Let a sequence(xk) of real numbers be statistically slowly
decreasing. Then

st-lim σn = L implies st-lim xk = L. (2.8)

It is a routine to check that condition (2.6) is satisfied if the classical one-sided
Tauberian condition of Landau [5] is satisfied, that is, if there exists a positive
constantH such that

k(xk − xk−1) � −H (2.9)

for all k large enough, sayk > N1. In fact, given anyε > 0, chooseλ := eε/H .
Since forN1 < n < k � λn, by (2.9) we have

xk − xn =
k∑

�=n+1

(x� − x�−1) � −
∑

�=n+1

H

�
� −H lnλ = −ε,

for N > N1 the set{
N1 < n � N : min

n<k�λn

(xk − xn) � −ε
}

is empty. Consequently, condition (2.6) is satisfied.

Remark 4. Fridy and Khan [3] proved that if condition (2.9) is satisfied, then
implication (2.8) holds as well as

st-limxk = L implies limxk = L. (2.10)

Remark 5. One may say that a sequence(xk) is statistically slowly increasing if
for eachε > 0,

inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : max
n<k�λn

(xk − xn) � ε
}∣∣∣ = 0, (2.6′)

or equivalently (cf. Remark 3),

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : max
λn<k�n

(xn − xk) � ε
}∣∣∣ = 0. (2.7′)
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Remark 6. Conditions (2.2′) and (2.3′) clearly follow from conditions (2.6′) and
(2.7′), respectively. Therefore, Corollary 1 remains valid if the term “decreasing”
is exchanged for “increasing” in it. Furthermore, condition (2.6′) is satisfied if
there exists a positive constantH such that

k(xk − xk−1) � H

for all k large enough (cf. (2.9)).

Now, we formulate two-sided Tauberian conditions for sequences of complex
numbers.

Theorem 2. Let (xk) be a sequence of complex numbers which is statistically
summable(C,1) to a finite limit. Then(xk) is statistically convergent to the same
limit if and only if one of the following two conditions is satisfied: for eachε > 0,

inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :

∣∣∣∣∣ 1

λn − n

λn∑
k=n+1

(xk − xn)

∣∣∣∣∣ � ε

}∣∣∣∣∣ = 0 (2.11)

or

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :

∣∣∣∣∣ 1

n − λn

n∑
k=λn+1

(xn − xk)

∣∣∣∣∣ � ε

}∣∣∣∣∣ = 0.

(2.12)

Even more is true: If conditions (1.1) and (2.1) are satisfied, then we
necessarily have (2.4) for allλ > 1, and (2.5) for all 0< λ < 1.

We can draw similar corollaries from Theorem 2 as we did it in the case of
Theorem 1. Following Hardy [4], a sequence(xk) of complex numbers is said to
be statistically slowly oscillating if for eachε > 0,

inf
λ>1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : max
n<k�λn

|xk − xn| � ε
}∣∣∣ = 0, (2.13)

or equivalently (cf. Remark 3),

inf
0<λ<1

lim sup
N→∞

1

N + 1

∣∣∣{n � N : max
λn<k�n

|xn − xk| � ε
}∣∣∣ = 0. (2.14)

It is plain that conditions (2.11) and (2.12) follow from conditions (2.13) and
(2.14). This gives rise to the following corollary of Theorem 2.

Corollary 2. Let a sequence(xk) of complex numbers be statistically slowly
oscillating. Then implication(2.8)holds.
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Condition (2.13) is satisfied (cf. (2.9)) if there exists a constantH such that

k|xk − xk−1| � H

for all k large enough. This is the classical two-sided Tauberian condition of
Hardy [4].

3. Proofs

We begin with three lemmas. The well-known Lemma 1 expresses the fact that
the statistical limit relation is additive and homogeneous.

Lemma 1. If

st-lim xk = L1 and st-lim yk = L2,

then

st-lim(xk + yk) = L1 + L2;
and if c is a constant, then

st-lim(cxk) = cL1.

The next two lemmas play key roles in the proofs of Theorems 1 and 2.

Lemma 2. If a sequence(xk) is statistically summable(C,1) to a finite number
L, then for eachλ > 0,

st-lim σλn = L, whereλn := [λn]. (3.1)

Proof. Caseλ > 1. Clearly, for eachε > 0,{
n � N : |σλn − L| � ε

} ⊆ {
n � λN : |σn − L| � ε

}
,

whence

1

N + 1

∣∣{n � N : |σλn − L| � ε
}∣∣ � λ

λN + 1

∣∣{n � λN : |σn − L| � ε
}∣∣,

and (3.1) follows.
Case0 < λ < 1. We claim that the same termσm cannot occur more than

1+ λ−1 times in the sequence(σλn : n = 0, 1,2, . . .). In fact, if for some integers
k and�, we have

m = λk = λk+1 = · · · = λk+�−1 < λk+�,

or equivalently,



284 F. Móricz / J. Math. Anal. Appl. 275 (2002) 277–287

m � λk < λ(k + 1) < · · · < λ(k + � − 1) < m + 1 � λ(k + �),

then

m + λ(� − 1) � λ(k + � − 1) < m + 1,

whenceλ(� − 1) < 1, that is,� < 1+ λ−1. Accordingly,

1

N + 1

∣∣{n � N : |σλn − L| � ε
}∣∣

�
(

1+ 1

λ

)
λN + 1

N + 1

1

λN + 1

∣∣{n � λN : |σn − L| � ε
}∣∣

� 2(λ + 1)

λN + 1

∣∣{n � λN : |σn − L| � ε
}∣∣,

providedN is large enough in the sense that(λN +1)/(N +1) � 2λ. Again, (3.1)
follows. ✷
Lemma 3. If a sequence(xk) is statistically summable(C,1) to a finite number
L, then for eachλ > 1,

st-lim
1

λn − n

λn∑
k=n+1

xk = L; (3.2)

and for each0 < λ < 1,

st-lim
1

n − λn

n∑
k=λn+1

xk = L. (3.3)

Proof. Caseλ > 1. An easy exercise (relying only on the definition ofσn) to
show that ifλ > 1 andn is large enough in the sense thatλn > n, then

1

λn − n

λn∑
k=n+1

xk = σn + λn + 1

λn − n
(σλn − σn). (3.4)

Now, (3.2) follows from (2.1), Lemmas 1 and 2, and the fact that for large
enoughn,

λn + 1

λn − n
� 2λ

λ − 1
. (3.5)

Case0 < λ < 1. This time, we make use of the following equality:

1

n − λn

n∑
k=λn+1

xk = σn + λn + 1

n − λn

(σn − σλn), (3.6)
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provided 0< λ < 1 andn is large enough in the sense thatλn < n; and the
following inequality: for large enoughn,

λn + 1

n − λn

� 2λ

1− λ
. ✷ (3.7)

Proof of Theorem 1. Necessity. Assume that both (1.1) and (2.1) are satisfied.
Applying Lemmas 1 and 3 yields (2.4) for allλ > 1, and (2.5) for all 0< λ < 1.

Sufficiency. Assume that (2.1)–(2.3) are satisfied. In order to prove (1.1), it is
enough to prove that

st-lim(xn − σn) = 0. (3.8)

First, we consider the caseλ > 1. It follows from (3.4) that

xn − σn = λn + 1

λn − n
(σλn − σn) − 1

λn − n

λn∑
k=n+1

(xk − xn), (3.9)

whence, for anyε > 0,

{n � N : xn − σn � ε}
⊆

{
n � N :

λn + 1

λn − n
(σλn − σn) � ε

2

}

∪
{

n � N :
1

λn − n

λn∑
k=n+1

(xk − xn) � −ε

2

}
. (3.10)

Given anyδ > 0, by (2.2) there existsλ > 1 such that

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

λn − n

λn∑
k=n+1

(xk − xn) � −ε

2

}∣∣∣∣∣ � δ. (3.11)

On the other hand, by virtue of Lemmas 1 and 2, and (3.5), we have

lim
N→∞

1

N + 1

∣∣∣∣
{
n � N :

∣∣∣∣λn + 1

λn − n
(σλn − σn)

∣∣∣∣ � ε

2

}∣∣∣∣ = 0. (3.12)

Combining (3.10)–(3.12) gives

lim sup
N→∞

1

N + 1

∣∣{n � N : xn − σn � ε}∣∣ � δ.

This is true for allδ > 0. Consequently, for eachε > 0,

lim
N→∞

1

N + 1

∣∣{n � N : xn − σn � ε}∣∣ = 0. (3.13)

Second, we consider the case 0< λ < 1. It follows from (3.6) that
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xn − σn = λn + 1

n − λn

(σn − σλn) + 1

n − λn

n∑
k=λn+1

(xn − xk), (3.14)

whence, for anyε > 0,

{n � N : xn − σn � −ε} ⊆
{
n � N :

λn + 1

n − λn

(σn − σλn) � −ε

2

}

∪
{

n � N :
1

n − λn

n∑
k=λn+1

(xn − xk) � −ε

2

}
.

Using a similar argument as above, by virtue of Lemmas 1 and 2, (2.3) and (3.7),
we conclude that

lim
N→∞

1

N + 1

∣∣{n � N : xn − σn � −ε}∣∣ = 0. (3.15)

Combining (3.13) and (3.15) yields for eachε > 0,

lim
N→∞

1

N + 1

∣∣{n � N : |xn − σn| � ε
}∣∣ = 0.

This proves (3.8). By Lemma 1, we conclude (1.1) from (2.1) and (3.8).✷
Proof of Theorem 2. Necessity. If both (1.1) and (2.1) are satisfied, then
Lemmas 1 and 3 yield (2.4) for allλ > 1, and (2.5) for all 0< λ < 1.

Sufficiency. Assume that (2.1) and one of (2.11) and (2.12) are satisfied. In
order to prove (1.1), again it is sufficient to prove (3.8).

Let someε > 0 be given. In caseλ > 1, by (3.9) we have{
n � N : |xn − σn| � ε

}
⊆

{
n � N :

λn + 1

λn − n
|σλn − σn| � ε

2

}

∪
{

n � N :
1

λn − n

∣∣∣∣∣
λn∑

k=n+1

(xk − xn)

∣∣∣∣∣ � ε

2

}
; (3.16)

while in case 0< λ < 1, by (3.14) we have{
n � N : |xn − σn| � ε

}
⊆

{
n � N :

λn + 1

n − λn

|σn − σλn | �
ε

2

}

∪
{

n � N :
1

n − λn

∣∣∣∣∣
n∑

k=λn+1

(xn − xk)

∣∣∣∣∣ � ε

2

}
. (3.17)

Givenδ > 0, by (2.11) there existsλ > 1 such that
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lim sup
n→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

λn − n

∣∣∣∣∣
λn∑

k=n+1

(xk − xn)

∣∣∣∣∣ � ε

2

}∣∣∣∣∣ � δ,

or by (2.12) there exists 0< λ < 1 such that

lim sup
N→∞

1

N + 1

∣∣∣∣∣
{

n � N :
1

n − λn

∣∣∣∣∣
n∑

k=λn+1

(xn − xk)

∣∣∣∣∣ � ε

2

}∣∣∣∣∣ � δ.

By (3.16), (3.17), and Lemmas 1 and 2, in either case we obtain

lim sup
N→∞

1

N + 1

∣∣{n � N : |xn − σn| � ε
}∣∣ � δ,

whence it follows that

lim
N→∞

1

N + 1

∣∣{n � N : |xn − σn| � ε
}∣∣ = 0.

This proves (3.8). By Lemma 1, we conclude (1.1) from (2.1) and (3.8).✷
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