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We present a new rational algorithm for solving Risch differential equations in towers of 
transcendental elementary extensions. In contrast to a recent algorithm of Davenport we do 
not require a progressive reduction of the denominators involved, but use weak normality to 
obtain a formula for the denominator of a possible solution. Implementation timings show this 
approach to be faster than a Hermite-like reduction. 

1. Introduction 

It has been known since the publication of the Riseh integration algorithm (Risch, 1969), 
that algorithms for the integration of elementary functions (or any class of functions 
involving exponentials) need to solve the equation 

y' + fy  = #, (R) 

for y in a given differential field K, where f, # a K. Risch (1969) gave an algorithm for the 
more general equation 

/11 

'+  _E 1 y f g =  cigl, (R') 
~= 

where f, gl ~ K, and the cls are undetermined constants. His algorithm, however, required 
factoring the denominators of f and the g~s, which is an obstacle to efficient 
implementations. 

Later, Rothstein (1976) and Davenport (1986) presented "rational" algorithms for 
equation (R)t, in the sense that all the computations can be done in K, Both algorithms 
rely on a square-free factorisation of the denominators of f and g in order to find a 
denominator for y. The algorithm in Davenport (1986) has been implemented in the 
Scratchpad II (see Jenks et al., 1988) and Maple (see Char et al., 1985) computer algebra 
systems. 

Our aim in this paper is to present a rational algorithm for equation (R), which has the 
following features: 

(1) we do not require part c) of the definition of weak normality in Davenport (1986). 
That part made the algorithm as presented there incomplete; 

(2) we have an explicit formula for the denominator of y, so no square-free 
factorisation (or progressive reduction) is required; 

t Kaltofen (1984) gave a different kind of rational algorithm for the base case only (K = C(x), where C' -- 0 
and x' = 1). 
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(3) an error in the exponential case of the algorithm in Davenport (1986) has been 
corrected. 

Our algorithm is very similar to the one described by Rothstein (1976), except that we 
use weak normality to prevent finite cancellation, rather than having to find integer roots 
of polynomials over the constant field of K in order to detect it. 

2. Preliminaries 

Let k be a differential field of characteristic 0, and K a differential field extension of k. 
We shall write ' for the derivation on K. We define 0 E K to be a monomial over k, if 0 is 
transcendental over k, k and k(O) have the same constant subfield, and either (00' ~ k, or 

/ * t  

( l i fo = q' for some q ~ k. 0 is said to be primitive over k when (i) holds, and exponential 

over k when (i/) holds. 
We define an element f of k(O) to be weakly normalised with respect to 0 if: 

(a) f has an integral which is elementary over k(0); 
(b) no logarithm whose argument depends on 0 occurs linearly in the integral with a 

positive integer coefficient, where the integral is written so that the argument of any 
logarithm not in k(O) is a polynomial in 0 (with coefficients in k). 

Our definition corresponds to parts (a) and (b) of the one in (Davenport, 1986). 
We will use the notion of P-valuation for any irreducible P ~ k[O]. We recall that 

v e : k(0)\{0} --* Z has the following properties: 

(1) for Q e k[0]\{0),  re(Q) = n >1 0 such that P"]Q and P"+I X Q, 

(2) for Q e  k[0]\{0),  deg(Q)> 0 =~ ve ~'d(~d-~) = max(0, r e (Q) -  1), 

(3) for A, B e k[0]\{0), v~,(gcd(A, B)) = min(ve(A), re(B)), 
(4) for f ,  O s k(0)\{0}, vt,(fg) = re ( f )  + vp(O), 
(5) for f ,  9 E k(0)\{0}, v e ( f + g  ) >i rain(re(f), re(g)), and equality holds if re ( f )  # re(o). 

We define P ~ k[O] to be normal with respect to ' if (P, P') = (1). Also, let 

k(O) = ( f ~  k(O) such that re(f)  I> 0 for any normal P ~ k[0]}. 

The following result will be used throughout this paper: 

LEMMA 1. Let P ~ k[O], 

(i) I f  0 is primitive over k, then P normal r P squarefree, 
(ii) I f  0 is exponential over k, then 

P normal ~ (P squarefree, (P, 0) = (1)). 

This is a direct consequence of the lemma in Rosenlicht (1972), which is also proven for 
transcendental elementary extensions in Davenport (1983), The proof of the primitive case 
is the same as the one for the logarithmic case. 

A consequence of 1emma 1 is that: 

~k[O], if 0 is primitive over k 
k(O) = (k[O, 0-1], if 0 is exponential over k. 
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We will also need a canonical representation for elements of k(O). Any f ~ k(O) can be 
P 

written uniquely as ~ ,  where P, Q e k[O], Q is monic, and (P, Q) = (1). We can also 

uniquely write Q = 0"4, where n >i 0 and (4, 0) = (1). Let then /5 = PO-"  e k[O, 0 -1] .  
We define the canonical representation of f to be: 

I . (~ '  if 0 is exponential over k. 

In either case, we will write f =  A, where A e k(O) ,  B ~ k[O], and all the irreducible 

factors of B are normal. We call A and B the numerator and denominator of fl We define 

the canonical representation of 0 to be 1" 

The following lemma, implicitly proven by Davenport (1986), motivates the definitions 
of this section: 

LEMMA 2. Let  f e  k(0)\{0} be weakly normalised with respect to O, y e k(0)\(0}, and 
P e k[O] be normal monic irreducible. Then, 

re (y )  < 0 ~ vp(y'  +fy )  = v~,(y) + min(vp(f), -- 1), 

PROOF: Suppose that re(y) = n < 0, and let 

y = B , P " + B , + I P " + I +  . . . 

be the P-adic expansion of y, where B~ e k[O], deg(Bi) < deg(P), and B, ~ 0. P is normal, 
so vp(P') = 0, so let C e k[0]\{0}, deg(C) < deg(P) be such that P' = C (rood P). The 
P-adic expansion of y' is then 

y' = nDP"-  1 + , . . ,  

where O ~ k[O], deg(D) < deg(P), and B , C  =- D (rood P). But, since P is irreducible, 
(B., P) = (C, P) = (1), so (B,,C, P) = (1), so D 4= O, so vp(y') = n--  1, so 
vp(y' +fy) i> min (n -  1, r e ( f )  + n) = n + m i n ( -  1, vp(f)) .  If vp( f )  r - 1, then we have 
equality, so suppose that re(f)  = --1, and let 

f =  A _ I P - I  + A o + A 1 P + A 2 P 2  + . . . .  

be the P-adic expansion off,  where As ~ k[O], deg(At) < deg(P), and A_I v ~ 0. The P-adie 
expansion of y' + f y  is then 

y' + f y  = (nD + E)P" -  1+ . . . ,  

where E e k[O], deg(E) < deg(P), and B , A _  1 = E (rood P). Thus either vp(y' + fy )  = n- -  1 
p, 

or (riD + E) ---- 0 (rood P). Suppose that (riD + E) = 0 (rood P), and let h = f +  n -~--. h has 

an elementary integral over k(O) (since f has one) and 

~f=fh-nlog(P). 
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But the P-adic expansion of h is 

h = H P - I +  . . . ,  

where H ~ k[O], deg(H) < deg(P), and (A_ t + nC) =- H (rood P). Thus, 

BnH =- (BnA_I +nBnC) =- (E +nD) =- 0(rood P), 

but (Bn, P) = (1) so H = 0 (mode), so re(h) >1 O, so the term - n log(P) does not cancel 
with any term in i h, so S f  contains the term - n  log(P), in contradiction with f being 
weakly normalised with respect to 0. Thus (nD + E) ~ 0 (rood P), so Vr( y' + fY) = n -  1. 

3. The one-step reduction 

In this section, we give a theorem that replaces the progressive reduction of 
Davenport (1986) by giving an explicit formula for the denominator of a solution of the 
Risch differential equation. 

We first show that part (b) of weak normality can always be achieved when part (a) is 
verified. 

LEMMA 3. Let f ,  g ~ k(O) and suppose that f has an integral which is elementary over k(O). 
Then there exist P E k[O], and h e k(0), such that h is weakly normalised with respect to O, 
and 

Y' +fY = 9 ~*" z' + hz = P9, where z = Py. 

PROOF: Suppose that f has an integral which is elementary over k(O). If f is weakly 
normalised with respect to 0, we take h = f ,  and P = 1. Otherwise, let 
nl log(P1) . . . . .  n~log(Pq) be the logarithms appearing in ~ f  with the n~s being positive 
integers, and Pi ~ k[O]. Let 

q 

P = ]-[ P7'  k[Ol 
1=1 

and 
p' p: 

h = f -  -ff = f -  ~ ~ ~ k(O). i=1 n~ p~ 

We have S h = Sf-E~= 1 n~ log(P~), so h is weakly norrnalised with respect to 0. Let 
y e k(O), and z = Py, then 

p, 
z' + hz = Py' + P' y + f e y -  - f  Py = P( y' + fy), 

so y' +fy = g,~,z '+hz = Pg. 
It should be noted that, when the equation arises from the integration of an elementary 

function, this normalisation procedure does not require the complete integration 
algorithm to compute ~f. Indeed, when the integration algorithm needs to solve a Risch 
differential equation, that equation is of the form y' + f ' y  -- # where f and a are in a given 
differential field F (and f is known). When the equation solver needs to solve a Risch 
differential equation recursively, that equation is of the form y' + ay = b, where S a ~ F. 
Having an explicit presentation of F, we know all the possible logarithms that can appear 
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in ~ a, so integrating a is then reduced to a Hermite reduction and a linear algebra 
problem, which is simpler than the general integration algorithm. 

THEOREM 1. Let k be a differential field of  characteristic 0, and 0 a monomial over k. Let 
f s k(O) be weakly normalised with respect to O, g e k(0)\{0}, and y ~ k(O) be a solution of 

,+ A B 
y f y  = g. Let f = - ~ ,  and g =-~, be the canonical representations of f and g. Let 

G = (D, E), and 

E, 

T =  (O o) 
Then 

O) Q = y T  ~ k(O), 
T 

(ii) for any P e k[O] such that P I T, y -ff ~ k(O), 

Part (0 states that T is a denominator for y, while (ii) means that T is the smallest 
possible denominator. 

PROOF: (i) Let Q = yT,  and let P e k[O] be normal monic irreducible. Since a 4 0, then 
y # 0 ,  so Q # 0 .  We want to show that vp(Q)>10. If vv(y)>~O, then 
vv(Q) = vv(y )+vv(r )  >! O, so suppose from now on that ve(y ) < O. 

Case 1: f = 0 or or(f)  > - I. Then vv(y' +fy) = Vp(y') = v p ( y ) -  1, so vp(y) = vv(g) + 1. 

Hence vv(g) < 0, so P I E and vv(g) = - vp(E). Also, P]/D, so P [ G, so vp G, - ~  = O, 

so ve( T ) = vv E, = vv( E) - 1  = - ( r e (g )+  1). Hence vp(Q) = re(y)+ vp( r )  = O. 

Case 2 : f r  0 and re( f )  ~< - 1 .  Then, by lemma 2, vp(y'+fy) = vp(fy) = ve(f)+vp(Y), 
so vv(y) = ve(g) -ve ( f ) .  But vp(y)< 0, so vp(g)< r e ( f ) <  0, so PIE and vp(g) = 
-vp(E) .  Also, P [ D, so PIG, and re(G) = min(vp(D), vp(E)) = min(-vp(f) ,  -re(g))  = 
- re(f) ,  so ve(T ) = ( re (E) -  1)-- (vp(G) - 1) = - re (g ) -  vp(G) = - re(g) + re(f),  hence 
vp(Q) = re(y) + re(T) = O. 

We have shown that re(Q) >f 0 for any normal P, hence Q = y T  ~ k(O). 
(ii) Let P e k[O] be monic irreducible, and suppose that PIT .  Then PIE, so P is 

normal and vp(E) > O, so re(g) < O. 
Suppose that vp(y) >t O, then Vp(y') >f O, and min(ve(y'), ve( f  ) + re(Y)) = vQ(y' +fy) = 

va(g ) < O, so vp( f )+vp(y)  <. vp(g) (since vp(y') >f 0), so vp(f) ~ vv(g). Also, re(D) = 
- v p ( f )  > O, and vp(T) = ( r e ( E ) - 1 ) - ( r e ( G ) - 1 )  > O, so v~,(E) > re(G) = min(vp(D), 
vp(E)), so vp(D) < vv(E), so vp(f) > vp(g), contradiction. 

Hence, P is normal and vp(y) < O. We have shown in (i) that this implies vv(yT) = O, 

soy  e y = - - l ,  s o y f f  

The following corollary gives us the resulting polynomial equation after theorem 1 is 
applied. 
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COROLLARY 1. Let the notation and hypothesis be as in theorem 1. I f  E X DT 2, then 
y' + f t  = 9 has no solution in k(O). Otherwise, for any solution y ~ k(O), Q = Ty is a solution 
of 

BDT 2 
D T Q ' + ( A T - D T ' ) Q  = ~ ,  (1) 

Q 
in k(O). Conversely, for any solution Q e k(O) of( l ) ,  y = -~- is a solution of y' +fy  = y. 

PROOF: Let y be a solution of y' +fy = g, and Q = yT.  Then, 

BT 
= T ( y '  + f y )  = 7"9 = E" 

Multiplying through by DT yields: 

BD T 2 
DTQ' + ( A T - D T ' ) Q  = - -  , 

E 

so Q satisfies equation (1). Conversely, if Q ~ k(O) is a solution of (1), then the same 

is a solution of y' + fy  = g. calculation shows that 

Suppose that y' +fy = g has a solution in k(O), then (1) has a solution in k(O). Since the 
left-hand side (1) belongs to k(O), there exists P ~ k(O) such that BDT 2 = EP. If 0 is 
primitive over k, then k ( O ) =  k[O], so EIBDT ~, but ( E , B ) =  (1), so E I D T  2. If 0 is 
exponential over k, then B =/30 b and P = PO p, where B, f i  e k[O], (/~, O) -- (/~, O) = (1), 
and b,p are integers. Let n =  m a x ( - b ,  - p ) ,  then Ob+"BDT2=EffO~+", so 
El 0~+"/~D T 2, but (E, O) = (E,B) = (1), so E I D T  2. 

4. Solving the equation 

In this section, we apply the previous results to solve the Risch differential equation in a 
transcendental elementary tower. 

THEOREM 2. Let k be a differential field of characteristic O, and 0 be a monomial over k. 
Suppose that there are algorithms for the solution of Risch differential equation over k, and 
for integration of elements of  k[O]~f. Let f ,  g e k(0), and suppose that f has an integral which 
is elementary over k(O). Then there is an algorithm to decide whether there exists y ~ k(O) 
such that y' +fy = 9, and to find one i f  it exists. 

P~OOF: By lemma 3 and corollary 1, we can reduce y' +fy = g to an equation of the form 

AO' + BQ = C, (2) 

where A ~ k[0]\{0} is normal, B, C ~ k(O). Formulas for bounds on deg(Q) (and vo(Q) in 
the exponential case) are well known and have been given by Risch (1969) and Rothstein 
(19"/6). Once bounds are known, the SPDE algorithm of Rothstein can then be used to 
solve equation (2). 

t Integration of elements of k is sufficient if we restrict the algorithm to elementary monomials, 
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For  completeness, we outline Rothstein's algorithm. Complete proofs of correctness are 
somewhat long (because of the large number of possible cases), and can be found in 
Rothstein (1976). 

Base  case: k' =- 0, 0' = 1. T h e n  k ( O )  = k[O1. 

Algorithm polyDE(A, B, C)--base  case. 

INPUT:  

0 A , B , C ~ k [ O 1 ,  A ~ O .  

O U T P U T :  either "no solution" or Q ~ k[O] such that AQ'+BQ = C. 

O if deg(A) < deg(B) + 1 then n +- deg (C) -  deg(B) 
O if deg(A) > deg(B)+ 1 then n ~ max(0 ,deg(C)-deg(A)+ 1) 
O if deg(A) = deg(B) + 1 then 

�9 a ~ leading coefficient of A 
�9 b ~ leading coefficient of B 
�9 r , , - - b / a  
�9 if r ~ Z then n ,,- max(r,deg(C)-deg(B)) 

else n ~ deg(C) -deg(B)  
�9 return SPDE(A, B, C, n) 

Primitive case: 0' e k, 0" ~ 0. Then k(O) = k[O]. 

Algorithm polyDE(A, B, C)--primitive case. 

INPUT:  

0 A, B, C E k[O],A ~: O. 

O U T P U T :  either "no solution" or Q ~ k[O] such that AQ' + BQ = C. 

O if deg(A) = deg(B) ~ 0 then 
�9 a ,-- leading coefficient of A 
�9 b ~ leading coefficient of B 

b 
�9 ~ , - -  e - I ~  
�9 if cr e k then 

<> H ~ polyDE(~A, ~'A + coB, C) 
<> if H = "no  solution" then return "no solution" 
<> return Q = ~H 

�9 n *- deg(C) - deg(B) 
O if deg(A) < deg(B) then n ~ deg(C)-deg(B)  
o if deg(A) > deg(B)+ 1 then n ~ max(0 ,deg(C)-deg(A)+ 1) 
O if deg(A) = deg(B) + 1 then 

�9 a ~ leading coefficient of A 
�9 b ~ leading coefficient of B 

O if I ~ k[0] then 
r ~ coefficient of 0 in I 
if r ~ Z then n ~ max(r,deg(C) - deg(B)) 

else n +-- d e g ( C ) -  deg(B) 
<> n ~ deg(C)-deg(B) 

�9 return SPDE(A, B, C, n) 
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Exponential ease: 0' = t/'0, r / e  k. Then k<O> = k[O, 0-1] ,  so we first need a bound on the 
order at 0 of  Q. We have, however, the additional property that (A, 0) = (1), so A(0) # 0. 

Algorithm polyDE(A, B, C)--exponential  case. 

I N P U T :  

o A E k[O], A(0) # 0, 
0 B, C e k[O, 0-1].  

O U T P U T :  either "no  solution" or Q e k[O, 0-1]  such that AQ'+ BQ = C. 

Step 1: {Find a lower bound b on the order at 0 of Q} 

o n B ~ o r d e r a t 0 o f B  
0 n c ~ o r d e r a t O o f C  
�9 if n B # 0 then b .-- min(O,nc-min(O,nB)) 
0 i f n  B = 0 t h e n  

�9 Ct ~-- e - ~  
�9 if ct = flO" for fl ~ k and n ~ Z then b ~ min(O,n,nc) 

else b ~- min(O,nc) 

Step 2: {Convert equation to one in k[0]} 

0 m ,-- max(0,--nB,b--nc) 
0 B +-- (b~?'A+B)O" 
0 A ~ A O "  
0 C ~  CO m-b 

{At this point, A, B, C ~ k[O], and if H E k[O] satisfies AH'  + B H  = C, then Q = HOb is a 
solution to the original equation} 

Step 3: {Find a bound on deg(H) and solve the polynomial equation} 

O if deg(A) < deg(B) then m *-- deg(C)--deg(B) 
O if deg(A) > deg(B) then m ~- max(0,deg(C)-- deg(A)) 
O if deg(A) = deg(B) then 

�9 a 4-- leading coefficient of A 
�9 b ,-- leading coefficient of B 

b 
�9 c< ~ e-I~ 
�9 if c~ = fl0" for/~ ~ k and n m Z then m +-- max(0,n,deg(C)-  deg(B)) 

else m ~ d e g ( C ) -  deg(B) 
O H ~ SPDE(A, B, C, m) 
O if H = "no  solution" then return "no solution" 
O return Q = HO ~ 

B(0) 
We note  that ~ of step 1 is not equal to the fo of lemma 6.5 of Davenport  0986), 

which explains why the algorithm described there improperly concludes that 

f d' - x 2 + 2x e f dx 

x2--1 1 
is not  elementary, where f =  ~ + The integral is 1 ey ' 

x ~ '  e ~ 
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Algorithm SPDE(A, B, C, n, pde_k). 

INPUT:  

�9 A ,B ,  C E k [ O ] , A r  
0 n~Z, 
�9 a procedure pde_k for the case A, B ~ k. 

O U T P U T :  either "no  solution" or  Q E k[O] such that deg(Q) ~< n and A Q ' + B Q  = C. 

O if C = 0 then return Q = 0 
�9 if n < 0 then return "no  solution" 
o G ~- gcd(A, B) 
0 if G ]/C then return "no solution" 
0 A ~ A / G  
0 B * - B / G  
0 C*--C/G 
O i f B = 0 t h e n  

�9 if Q ~ S C ~ k[O] and deg(Q) ~< n then return Q 
�9 return "no  solution" 

o if deg(A)> 0 then 
�9 find Z, R E k[O] such that deg(R) < deg(A), and C = A Z  + BR 
�9 if deg(R) > n then return "no solution" 
�9 H ~ SPDE(A, B + A', Z - R ' ,  n -deg(A) )  
�9 if H = "no solution" then return "no solution" 
�9 if deg(R) > n then return "no solution" 
�9 r e t u r n Q = A H + R  

�9 if deg(A) = 0 and deg(B) > 0 then 
�9 m , -  deg(C) -deg(B)  
�9 if m < 0 or m > n then return "no solution" 
�9 b , -  leading coefficient of B 
�9 c ~ leading coefficient of C 

�9 if H = "no  solution" then return "no  solution" 
c 

�9 return Q = ~ 0" + H 

O if deg(A) = 0 and deg(B) = 0 then return pde_k(A, B, C, n) 

In the base case, the case deg (A)=  deg(B)= 0 (called degradation in Rothstein) is 
handled in exactly the same way as the case deg (A)=  0, deg(B) > 0 (since 
deg(AQ') < deg(BQ)). Thus, pde_k is only required for the exponential and non-trivial 
primitive cases. 

Algorithm pde_k(a, b, C, n)--primitive case. 

INPUT:  

0 a, b s k ,  a r  
o c e k[O], 
o n E Z .  

O U T P U T :  either "no  solution" or Q e k[O] such that deg(Q) ~ n and a Q ' +  bQ = C. 

o if c = 0 then return Q = 0 
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O if n < 0 then re turn "no  solut ion"  
b 

O 0~ .-- eW~ 
O i f a ~ k t h e n  

�9 if Q *-- o~ -d-d e k[O] and deg(Q) ~< n then return Q 

�9 re turn  " n o  solut ion"  
o m *-- deg(C) 
O if  m > n then re turn "no  solut ion"  
O c ~ leading coefficient of  C 

b c 
O s o l v e r ' + - r = - f o r r ~ k  a a 

O if  r = " n o  so lu t ion"  then re turn  "no  solut ion"  
O H *-- l~ie_k(a, b, C - b r O ' - a ( r O ' ) ' ,  m -  1) 
O if  H = " n o  so lu t ion"  then re turn "no  solut ion"  
O re turn  Q = r O ' + H  

Algorithm igle_k(a, b, C, n) - -exponent ia l  ease. 

I N P U T :  

�9 a, b e k ,  a ~ O  
o c ~ k[O], 
O n ~ Z .  

O U T P U T :  either " n o  solut ion"  or  Q ~ k[O] such that  deg(Q) ~< n and aQ'+ bQ = C. 

0 if C --- 0 then re turn  (2 = 0 
�9 if n < 0 then re turn "no  solut ion"  

b 
0 0c .-- e-I~ 
O if 0~ = /~0"  for/~ ~ k and m ~ Z,  m >t 0 then 

�9 if Q *- e ~a s k[O] and deg(Q) ~< n then return Q 

�9 re turn  " n o  solut ion"  
o m ,~- deg(C) 
�9 if m > n then re turn " n o  so lu t ion"  
�9 r *-- leading coefficient of  C 

O solve r' + + m~/' r = - for r e k 
a 

O if r = "no  solut ion"  then re turn  "no  solut ion"  
O H *-- pde_k(a,  b, C -  cO', m -  1) 
O if H = " n o  so lu t ion"  then re turn  "no  solut ion"  
o re turn  Q = r O ' + H  

5. Implementation 

We have  implemented the above  algori thm in the Seratchpad I I  compute r  algebra 
system, and  compared  it to  the existing implementa t ion  of the algori thm of Davenpor t  
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(1986). The worst case of the progressive reduction is exhibited by the sequence of 
equations 

Y ' + f n ' Y = 9 ,  (Rn) 

where 

and 

1 
f , =  

hn -- 

(x-1)(x-2) 2 . . . ( x - - n ) "  

(x--2)(x-3)2... (x--n)  "-1 

( x + l ) ( x + 2 )  2 . . . ( x + n ) "  

o,, = h'. +f , ;  h,,. 

The following table gives the CPU times in resets for solving equation (R,) by 
Davenport 's  progressive reduction (PR), and by the one step reduction (OSR), on an 
IBM 3090 running Scratchpad II: 

n PR OSR 

1 1031 I60 
2 13365 1342 
3 67100 5531 
4 262213 24891 
5 1135330 151479 

6. Conclusions 

We have seen that weak normality allows us to transform (in O(1) gcds) a Risch 
differential equation in k(O) to one in k(O).  The next step would be to extend this 
technique to Risch differential equations over algebraic curves. The currently known 
algorithms for solving them (Risch, 1968; Davenport, 1984; Bronstein, 1987) are not  
practical and no implementation has been reported. We currently have an analogue of 
theorem 1, that allows us to reduce such an equation to one with integral coefficients, 
but  no rational algorithm for solving the integral equation is known at this time. With the 
advent of practical integration algorithms on algebraic curves (Trager, 1984; Bronstein, 
1987) this integral equation remains the major stumbling block to a practical a l g o r i t h m  
for integrating mixed elementary functions. 

I would like to thank John Abbott, Guy Cherry, Michael Singer, and Barry Trager for their 
numerous corrections and suggestions on this paper. 
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