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1. Introduction

Let (X, d) be a metric space and p > 0. Recall that (X, d) has p-negative type if for all natural
numbers n, all X1, X2, ..., X, in X and all real numbers a1, o3, ..., oy Withoy + o3+ -4+, =0
the inequality

n
Z ajojd(xi, )P < 0
ij=1

holds.
Moreover if (X, d) has p-negative type and

n
Z ajoyd(x;, xj)p = 0, together withx; # x;, foralli # j

ij=1
implies ¢q = o3 = -+ = ay = 0, then (X, d) has strict p-negative type. (d(x, y)° is defined to be 0
ifx =y).
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Following [2,3] we define the p-negative type gap F; (=T" for short) of a p-negative type metric
space (X, d) as the largest nonnegative constant, such that

F n 2 n
5 Sl | + D aeyd(xi, x)P <0

i=1 ij=1
holds for all natural numbers n, all X1, X2, . .., X, in X with x; # x;, for all i # j, and all real numbers
1,0, ...,0, Withoy + 0o+ -+ +a, = 0.

The above defined p-negative type gap Fﬁ can be used to enlarge the p-parameter, for which a given
finite metric space is of strict p-negative type:

It is shown in [6] (Theorem 3.3) that a finite metric space X with cardinality n = |X| > 3 of strict
p-negative type is of strict g-negative type for all ¢ € [p, p + &) where

(14 Tk
1+ serym

5= InD(X)

)

withD(X) = maxy yex d(x, y), D(X) = D(X)/ miny yex xy d(x, y) andy () =1 —3-(|5 |71 +[577).

For basic information on p-negative type spaces (1-negative type spaces are also known as quasi-
hypermetric spaces) see for example [2,4,6-11].

This paper explores formulas for the p-negative type gap of a finite p-negative type metric space.
The main result is given in Theorem 3.5 (Section 3), which is itself a corollary of a more general
result (Theorem 3.4, Section 3) concerning real symmetric matrices of strict negative type on certain
subspaces of R™. Moreover we present a characterization of a finite metric space of p-negative type
enjoying the additional property of being of strict p-negative type ( Corollary 3.2).

In Section 4 we give some applications of the general results of Section 3. After calculating the
1-negative type gap I" of a cycle graph with n vertices (considered as a finite metric space with the
usual path length metric) we present short proofs for the evaluation of the 1-negative type gap of a
finite discrete metric space, done by Weston in [11], and of a finite metric tree, done by Doust and
Weston in [2]. I. Doust and A. Weston showed the surprising result, that the gap of a finite metric tree
only depends on the weights associated to the edges of the tree.

2. Notation

For a given real m x n matrix A we denote by A the transposed matrix of A and by A~! the inverse
matrix of A, if it exists. Elements x in R" are interpretated as column vectors, so xI = (X1,X2, ..., Xp).
The canonical inner product of two elements x, y in R" is given by (x|y) and the canonical unit vectors
are denoted by ej, e, ..., ey. The element 1 in R" is defined as 1T = (1,1, ..., 1). As usual we
abbreviate {(01, 03, ..., 0,), 01, ...,0pin{—1,1}} by {—1, 1}". The linear span and convex hull of
asubset M in R" are denoted by [M] and conv M. Further let ker T be the kernel of a given linear map T.

If E is a linear subspace of R™ and ||.|| is a norm on E we denote by ||.||* the dual norm of ||.|| on E
with respect to the canonical inner product, i.e.

[xII* = sup [(x|y)].
YEE,|lylI<1

Forp > 1 we let ||x||, be the usual p-norm of some element x in R". For a given real symmetricn X n
matrix A which is positive semi-definite on a linear subspace E of R"((Ax|x) > 0, for all x in E) we
define the resulting semi-inner product on E by

(xy)a = (Axly); x,yinE.
Further the semi-norm ||x||4 of some element x in E is given by

X7 = (Ax|x).
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For a fixed u % 0in R" let
Fy = {x € R"(x|u) = o}, «ainR.

For short let F = Fj.

3. General results

Let E be a linear subspace of R" and A be a real symmetric n x n matrix of negative (strict negative)
typeonkE,i.e.

(Ax|x) < 0, forallxinE and
(Ax|x) < 0, forallx 7 0inE resp.

For further discussion it is useful to define the negative type gap I'y g (=I" for short) of A on E as the
largest nonnegative constant, such that

r 2
§||X||1 + (Ax|x) <0

holds for all x in E. This is equivalent to

Iz .
(E) Ix|l1 < ||x|]|—a, forallxinE.

If Ais of strict negative type on E, consider the identity operator i from the normed space (E, || - ||—4)
onto the normed space (E, || - [|1),
it (E |- ll-a) = (E, [l - l1);i(x) =x, forallxinkE.

Since E is of finite dimension, we obtain that i is bounded and by definition of ||i|| we get

lill = inf{c > O | Ix|]ly < cllx[-a, forallxinE} =  sup |lx[;.
X€E, [[x]|-a<1

It follows, that I' = ﬁ > 0and

1

@ (2) = s

r XeE, [Ix]—a<1

To continue, fix some u % 0 in R" and recall
Fy ={x e R"(x|u) =a}, ainR

and F = Fy.

Furthermore let A be a real symmetric n x n matrix of negative type on F and not of negative type
on R" (note that this condition is equivalent to A is of negative type on F and there is some w in F;
with (Aw|w) > 0). Following some ideas of [7-10] we define M, (A)(= M for short) as

M = sup (Ax|x)(> 0).

XEF

Theorem 3.1. Letu # 0in R", F = {x € R"|(x|u) = 0} and F; = {x € R"|(x|u) = 1}. Further let A
be a real symmetric n x n matrix of negative type on F and not of negative type on R". Let M = SUPxeF,
(Ax|x).
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We have

1. Ais of strict negative type on F if and only if A is nonsingular and (A~ "ulu) # 0.
2. If Ais of strict negative type on F then we have

(a) there is a unique (maximal) element z in Fy such that M = (Az|z).

(b) Az=Muand M = (A" "uju)~.

Proof. Assume first that A is of strict negative type on F and let Ax = 0 for some x in R". Choose

X X
some w in F; with (Aw|w) > 0.If (x|u) # 0, we get (A (w — ) lw — ) < 0 and hence
(x|u) (xu)

(Aw|w) < 0, a contradiction. Therefore we have x in F and so x = 0, which shows that A is nonsingular.
Now let y in R" be the unique element with Ay = u.
If y is in F we obtain (Ay|y) = 0 and hence y = 0, a contradiction. Therefore we have (A" u|u) =

1 1
(y|lu) # 0.Letz = ——y,zin F;. So Az = ——u and it follows that for all x in F;, x # z we get
) . ) ) : :
(A(x — z)|x—2z) < 0 and hence (Ax|x) < ——. Since (Az|z) = —— wegetM = —— = ———
) vl olw (ATl
and Az = Mu.

It remains to show that A nonsingular and (A~'u|u) # 0 implies that A is of strict negative type
onF.
Let (Ax|x) = 0 for some x in F. Since | (Ax|y)|*> < (Ax|x)(Ay|y) for all y in F we get

Ax = Au, forsome A inR.
Hence 0 = (x|u) = A(A~'uju) and therefore A = 0, which implies Ax = 0 and sox = 0. O

The following application was done in [10] (Theorem 2.11) for finite metric spaces of 1-negative
type (finite quasihypermetric spaces).

Corollary 3.2. Let (X, d) withX = {x1, X2, ..., Xp} be a finite metric space of p-negative type of at least
two points and let 1 = (1, 1, ..., 1). (X, d) is of strict p-negative type if and only if

A= (dxi, %)),
is nonsingular and (A~11]1) # 0.
d(xi, x;)P

€

+e .
Proof. Take u = 1, and note that (Aw|w) = > 0, forw = T] in F; and x; # x; and so

we are done by Theorem 3.1, part 1. [

Now let A be of strict negative type on
F={xeR"(x|u) =0}, uz#0inR"

By Theorem 3.1 we know that M = sup,cr, (Ax|x) is finite and there is a unique (maximal) element z
in Fy, such that M = (Az|z) and Az = Mu.
Define

C = Mu” — A

Again by Theorem 3.1, C is positive semi-definite on R" with ker C = [z]. Therefore we can extend the
inner product (.|.) _4 defined on F to a semi-inner product on R" given by

(x[y)c = (Cx|y), forx,yinR"
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Furthermore we define
1 _
B=—z" — A"
M

Since (BAx|Ax) = (Cx|x),forallxinIR", it follows that B is positive semi-definite on R" with ker B = [u].
Before formulating the next lemma, dealing with dual norms on F, we define for x” = (x, x2, .. .,
xy) in R" and a given (fixed) u # 0 in R"

uixj — ujxi|
o(x) =max{ max —————, max |[x]],
ijesuppu |u;| + |uj| i¢ supp u

where

suppu = {1 <i < nluy; # 0}.

Note that o(x + Au) = o(x), for all xin R" and A in R (this follows immediately from the definition
of 0(.) and the definition of supp u). Moreover it is easy to see, that o(.) defines a semi-norm on R"
and o(x) = 0 if and only if x is in [u].

Lemma 3.3. We have

1. The dual norm of ||.||1 on F is given by ||x||7 = o(x), for allx in F.
2. The dual norm of ||.|| _4 on F is given by ||x||* , = ||x||p, for all x in F.
3. {x e F||Ix|I§ < 1} = conv E, where

(x]u)

E=1{x— u,x € {—1,1}"

2
llullz

Proof. ad 1.1tis clear, that the set A of extreme points of {x € F|||x||; < 1} is obtained by intersecting
F with the edges conv {z=e;, dz¢;}(1 < i # j < n) of the cross-polytope conv {%e;, 1 < i < n} =
{x € RMIx|ly < 1}

Now fix some 1 < i # j < n. An element x is in FN conv {+e;, d=¢;} if and only if there exists
some 0 < A < 1, such that (x|u) = 0and x = £=(1 — A)e; & Aej, which is equivalent to the equation
0 = £=(1 — Mu; = Auj, under the constraint0 < A < 1

The casei,j € suppuleadstox = + T;f";rij’

Ifi € suppu,j ¢ suppu(resp.i ¢ suppu,j € supp u)we obtain x = d=e; (resp. x = =e;).

Finally i, j & supp u leads to FN conv {=%e;, £ej} = conv {+e;, -¢;} and hence the contribution to
the set A of extreme points of {x € F|||x||; < 1} is given by +e; and +-e;. Summing up we get

uiej — uje; . o .
A=1+————ije suppu(i #j){ U{=Lejigsuppu}
|uil + lujl

By convexity of the function y — |(x|y)| (for some fixed x) we get

IxIIf = sup |(x|ly)| = sup |(x|y)| = o(x), forallx € F.
yeF,|lyli<1 YeEA

ad 2. Let x, ybe inF.
*[y)? = (A" x|Ay)? = (A" x|y)? , = (A" x|y)Z, since y € F implies Cy = —Ay.

By Cauchy-Schwarz inequality, applied to the semi-inner product (.|.)c, we get

xly)? = (A 'x|y)E < (A %A (Cyly) = BxIX)(V]Y)—a = Bx|0)IylI% 4
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1
Hence [(x|y)| < (Bx[x)2 ||y -a. 1
By definition of the dual norm ||.||* 4 it follows that [|x||* , < (Bx|x)z2.

(xl2)

etyp = z — A” 'X. Note that yg in F, since ker B = [u], and ||yo||Z4 = (Bx|x) and so
L A~"x. Note that yg in F, since ker B = [u], and [|yo[|? , = (Bx|x) and

Yo 1
lIx|I* 4 > <X| : ) = (Bx|x)2.

(Bx|x)2

(x[u)

lull3
It is well known, that conv E = {x € F|||x||7 < 1} if and only if

ad 3. Let x be in {—1, 1}”.Nowo(x — u)=o(x) < landhenceE C {x € F|||x||] < 1}.

sup(y|x) = sup (y|x), forally € F.

XekE xeF, x|} <1

(For example see problem 16, page 347 in [5] and note that the bidual F** of F is isometrically
isomorphic to F). Since of course

lyllh = sup (y|x)

xeF, [Ix[7<1
we have to show that

llyll1 = sup(y|x), forally € F.
X€E

For a given y in F choose a7 = (ay, 2, ...,ap) in {—1,1}" such that |ly|; = (¥|«). So
(a|u)u
vl = 557 ) = ) = Iyl and hence
2

lyllh < sup(ylx).
xeE
Of course we have
lylli = sup(ylx)
xeE
and hence
lylli = sup(ylx). O
xe€E

Theorem 3.4. Letu # 0 bein R" and F = {x € R"|(x|u) = 0}. Further let A be a real symmetricn X n
matrix of strict negative type on F, and not of negative type on R".

Thegap Ta(F)(=T) ofAonFisgivenby I' = E where

L. = sup (—Ax|x),
XxeF,0(Ax)<1
2. B = max (Bx|x),
B XeH’]}n( |x)
where
B=Auw '@ Tw@Aa 'y —a.

3. B = ||B||, where Bis defined as in 2. and viewed as a linear operator from (R", ||.||c0) to (R™, ||.|1).
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Proof. We have

2
ad. 1 By formula (x) at the beginning of Section 3 we have ' = — with

1
pz = sup x|l

x€F, [|x[|-a<1

By Lemma 3.3, part 1,2 we get

1
Bz = sup |x|li= sup [x|Z, = sup [Ix]s.
x€F,|lx||—a<1 x€eF, ||x|[1<1 xeF,o(x)<1

Recall that ker B = [u] and o(x + Au) = o(x), for all x in R" and A in R (as mentioned after the
definition of o(.)). Hence

2 2 2
B= sup |xllz= sup [lxllz=  sup  |Ayll,
xeF,0(x)<1 xeR",0(x)<1 yeR™ o(Ay)<1

since A is nonsingular by Theorem 3.1, part 1. Since ||Ay||12; = (Cyly) where C = Muu’ —A, Az =
Mu (see Theorem 3.1, part 2) we get

B= sup (Qyly).
yeR" o(Ay)<1

Since z is not in F, we can write each y in R" as y = f + Az, for some f in F and A in R. Recall
that ker C = [z] and o(Ay) = o(Af + AMu) = o(Af) and so

B= sup (Qly)= sup (—Ax[x).
yeR" o(Ay)<1 Xx€F,0(Ax)<1

ad. 2 From above we have

2
B = sup |ix|ly = max(Bx|x)
xeF, |x[3<1 xe

by Lemma 3.3, part 3, where

E= [x (X|u)u,x € {-1, 1}"}.

llull3

Again using the fact, that ker B = [u] we get

= B .
B (X }n( 24b9)

ad. 3 Recall that B is positive semi-definite on R" and hence for all x, y in {—1, 1}" we get (Bx|y)? <
(Bx|x)(By|y) and so

= max (Bx|ly)= max |[Bx|;=|B|. O
B X}ye{q’]}n( ) xe{q,un” I =Bl

Now let (X, d) be a finite metric space of strict p-negative type,
X ={x1,%2, ..., xp},n > 2. Let A = (d(x;, xj)p)?jzl and u = 1. By Corollary 3.2 we know that A is

d(x;, xj)P e+ e;
nonsingular and (A~'1]1) # 0. Recall that (Aw|w) = dxi, )" i e

[x;i — X1

> 0, forw =

, 1 # j. Further

observe that u = 1 implies o(x) = max
ij
isin {0, 2}" with o(x) = o(x + 1). Applying Theorem 3.4 we get

forallx € R"and xisin {—1, 1}" ifand only x + 1
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Theorem 3.5. Let (X, d) withX = {x1, X2, ..., X, } be a finite metric space of strict p-negative type of at
least two points. Let

A= (d(Xi, Xj)p)

n
iLj=1"

2
The p-negative type gap I of X is given by I' = E where

1L B =sup{(=Ayly)ly1 +y2+---+yn=0and [(Ayle; — )| < 2, forall1 <i,j<n},

2. = max (Bx|x) =4 max (Bx|x), whereB = (A711|D71(A711)(A711)T —A7Y,
xe{—1,1}" xe{0,1}"

3. =8I,
where B is defined as in 2. and viewed as a linear operator from (R", ||.||s0) to (R, ||.]/1).

The following easy example illustrates how Theorem 3.5 can be used to calculate the p-negative
type gap I for a given finite metric space of strict p-negative type:

Example 3.6. Consider R? equipped with the 1-norm induced metric and let X be the 4-point
subspace given by

<[00 (39 (29 ()]

The distance matrix D of X is

0313
b ?011
;101
;110

For p > 0 the matrix A considered in Theorem 3.5 is given by

0 27P27P 27P

P 0 1 1

A=
P 1 0 1
P11 0

Now let x = (x1, X2, X3, X4) in R* with x; + x5 + x3 + x4 = 0.
We have

(Ax|x) = — ((21_" — DX X2+ +xﬁ) .

If27F > %we get
(21*" - 1)xf +X5 5K > —%(xz +x3+x0)2 + X5+ XA =
= % (02 = x3)” + (62 = xa) + (x3 — x4)*) >0

and therefore

(Ax|x) < 0.

On the other hand if 27P < % we obtain forx = (3, —1, —1, —1)
(Ax|x) = —6(3.27P — 1) > 0.
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Summing up the space X is of p-negative type if and only if p < :23 and of strict p-negative type if
and only ifp < 13

In2*

For short let « = 27P. We get

0o oo
a 011
A= ,
al01
al10
-2 « o o
1 1 o —20% o o?
A = — )
302 | @ a2 —20% o
a o a? =202

(Afll)T = L(30{ —2,0,q, Q)
= 3“2 9 9 b 9
1 2
A1) = ga(3a -1,

Ba —2)? aBa—2) aBa —2) aBa — 2)

@payT= L |ese D e “ “
94 | a3 — 2) o? o? o?
a(Ba —2) o? o? o?
and hence
3 -1 -1 -1
1 —14a0—-11—-201—-2«x

26— | 1120 40 —11-2a
—11—-2a 1—20 40 — 1

(Note that X is a simple example showing that A is nonsingular does not imply the strict p-negative

type property: see Corollary 3.2 together with (A~'1|1) = O forp =

ln2 )
Routine calculations lead to

6 1 3

i 3 <A< g

B = max (Bx|x) = 3‘; r g 4
xel-11 a1 2 SO

Therefore the p-negative type gap I' = % of X is given by

31,
rola—227% P
2 %, 2—l p<13

n3
2= 2

N
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4. Applications

Corollary 4.1. Let n be a natural number greater or equal to 3 and let C, be the cycle graph with n vertices,
viewed as a finite metric space, equipped with the usual path metric. Then we have

1. G, is of 1-negative type and of strict 1-negative type if and only if n is odd.
2. The 1-negative type gap I' of G, is given by

0, neven
r = .
n

2wy Modd:

. . . n . .
Proof. Take the vertices {x1, X2, . .., X} of aregular n-gon on a circle C of radiusr = . Itis evident,

T

that C, can be viewed as the subspace {x1, X2, .. ., x,} of the metric space (C, d), where d is the arc-

length metric on C. It is shown in [4] (see Theorem 4.3 and Theorem 9.1) that (C, d) is of 1-negative
type and a finite subspace of (C, d) is of strict 1-negative type if and only if this subspace contains at
most one pair of antipodal points. Hence part 1 follows at once. The definition of I" implies that ' = 0
if nis even, so let us assume that n = 2k + 1, for some k in N.

Let A be the distance matrix of C; = Cyg41. It is shown in [1] (Theorem 3.1) that A~ s given by

Al = —21 — Ck _ CkJrl + 2k +1 T
k(k+1)" "
where [ is the identity matrix and C is the matrix (with respect to the canonical bases) of the linear
map on R", which sends each xT = (x1, X2, ..., Xp) to (X2, X3, . .., Xn, X1). NowA 1= —"1
k(k+1)
4
and so B (as defined in Theorem 3.5) is given by B = 2I + C* + ck+1 — ﬁl 1" and so
k
2 4 2
(Bx|x) = 2|Ix|l5 — K1 XD + 21 Xpe1 + - -+ Xep1Xoka1 + Xer2X1 + -+ Xopr1Xk)
for each x™ = (x1, X2, ..., Xapq1) in R2KH1,

Now let x be in {0, 1}?** T and let s = |{1 < i < 2k + 1|x; = 1}|.Inthe cases = Oand s = 2k + 1
we get (Bx|x) = 0, so assume that 1 < s < 2k. Since

2
X1Xk1 + - F XeprXokp1 + Xe2X1 + - F Xopixe < X5 =5,

we get

(Bx|x) < 25 —

2
52+2(s—1)=2(25—1— 52>.

2k +1 2k +1

It follows immediately, that

2 5\ 2kP—1
max (25—1— ):

—s
1<s<2k 2k +1 2k + 1
and hence
Exl) < 4k* —2
max X|x .
x€{0,1)2k+1 S o2k+1
On the other hand define X in {0, 1}?**! as X" = (ay, a2, ..., @z41), With @ = 1 if and only if

ie{1,2,....m2m+1,2m+2,...3m+ 1} ifk = 2mand «; = 1ifand onlyifi € {1,2, ..., m,
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2m+2,2m+ 3,...,3m + 2} if k = 2m + 1, m in N. In each case (k = 2m, 2m + 1) we get
12 _ 2
. Summing up we have max (Bx|x) =
2k+1 xe{0,1)2k+ 2k +1
) . 2k +1 1 n
implies " = == .0
8k2—4 2n2—-2n-1

(Bx|x) =

and hence Theorem 3.5, part 2

Corollary 4.2 (= Theorem 3.2 of [11]). Let (X, d) be a finite discrete space consisting of n points, n > 2.
The 1-negative type gap " of X is given by

()
S 2\L5 )

Proof. Let A be the distance matrix of X. We have A = 1 17 — | (I the identity matrix) and hence
Al

1 1
= 1 1T — I. So the matrix B defined as in Theorem 3.5 is given by B = I — 71 1 . Applying
Theorem 3 5 part 2 we get

1 ) ) n, neven,
B = max (Bx|x) =n—— min (x|1)° =
xe{—1,1}" n xe{—1,1}*

andsol"—z—](l—i—]) a
B2\ 151/

Recall that for a given finite connected simple graph G = (V, E) and a given collection {w(e), e € E}
of positive weights associated to the edges of G, the graph G becomes a finite metric space, where the
metric is given by the natural weighted path metric on G. A finite metric tree T = (V, E) is a finite
connected simple graph that has no cycles, endowed with the above given edge weighted path metric.
It is shown in [4] (Corollary 7.2) that metric trees are of strict 1-negative type.

1
n— ., n odd

Corollary 4.3 (=Corollary 4.14 of [2]). Let T = (V, E) be a finite metric tree. The 1-negative type gap I'
-1

ecE

1
of Gisgivenby I' = (Z ()) , where w(e) denotes the weight of the edge e.

Proof. It is shown in [1] (Theorem 2.1) that the inverse matrix A~ of the distance matrix A of a finite
metric tree is given by

ecE

-1
A~ —7L+ (zzw(e)) 88",

where L denotes the Laplacian matrix for the weighting of T that arises by replacing each edge weight
by its reciprocal and § in R™ is given by 8T = (81, 8, ..., 8,) with §; = 2 — d(i), d(i) denotes the

degree of the vertex i. It follows easily that the matrix B defined as in Theorem 3.5 is given by B = EL'

Routine calculations show, that

(Bx|x) < Z () forallxin {—1, 1}".
ecE
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1
Moreover we get (Bx|X) = 2 Z — forx! = (x1,x2,...,%p) in {—1, 1}", a 2-colouring of the
ecE
. -1
vertices 1, 2, ..., n. By Theorem 3.5, part 2 we get I" = Z —_—
ecE W(e)
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