Linear Algebra and its Applications 436 (2012) 1246-1257

On the gap of finite metric spaces of *p*-negative type Reinhard Wolf

Universität Salzburg, Fachbereich Mathematik, Austria

ARTICLEINFO

Article history: Received 10 August 2010 Accepted 29 July 2011 Available online 15 September 2011

Submitted by V. Mehrmann

Keywords: Finite metric spaces *p*-negative type Matrices of negative type

ABSTRACT

Let (X, d) be a metric space of *p*-negative type. Recently I. Doust and A. Weston introduced a quantification of the *p*-negative type property, the so called gap Γ of *X*. This paper gives some formulas for the gap Γ of a finite metric space of strict *p*-negative type and applies them to evaluate Γ for some concrete finite metric spaces. © 2011 Elsevier Inc. All rights reserved.

1. Introduction

n

Let (X, d) be a metric space and $p \ge 0$. Recall that (X, d) has *p*-negative type if for all natural numbers *n*, all x_1, x_2, \ldots, x_n in *X* and all real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ with $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0$ the inequality

$$\sum_{i,j=1}^n \alpha_i \alpha_j d(x_i, x_j)^p \leqslant 0$$

holds.

Moreover if (X, d) has *p*-negative type and

$$\sum_{i,j=1}^{n} \alpha_i \alpha_j d(x_i, x_j)^p = 0, \text{ together with } x_i \neq x_j, \text{ for all } i \neq j$$

implies $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, then (X, d) has strict *p*-negative type. $(d(x, y)^0$ is defined to be 0 if x = y).

E-mail address: reinhard.wolf@sbg.ac.at

^{0024-3795/\$ -} see front matter s 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2011.08.031

Following [2,3] we define the *p*-negative type gap Γ_X^p (= Γ for short) of a *p*-negative type metric space (*X*, *d*) as the largest nonnegative constant, such that

$$\frac{\Gamma}{2}\left(\sum_{i=1}^{n}|\alpha_{i}|\right)^{2}+\sum_{i,j=1}^{n}\alpha_{i}\alpha_{j}d(x_{i},x_{j})^{p}\leqslant0$$

holds for all natural numbers n, all x_1, x_2, \ldots, x_n in X with $x_i \neq x_j$, for all $i \neq j$, and all real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ with $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0$.

The above defined *p*-negative type gap Γ_X^p can be used to enlarge the *p*-parameter, for which a given finite metric space is of strict *p*-negative type:

It is shown in [6] (Theorem 3.3) that a finite metric space *X* with cardinality $n = |X| \ge 3$ of strict *p*-negative type is of strict *q*-negative type for all $q \in [p, p + \xi)$ where

$$\xi = \frac{\ln\left(1 + \frac{\Gamma_X^p}{D(X)^p \cdot \gamma(n)}\right)}{\ln \mathfrak{D}(X)},$$

with $D(X) = \max_{x,y \in X} d(x, y)$, $\mathfrak{D}(X) = D(X) / \min_{x,y \in X, x \neq y} d(x, y)$ and $\gamma(n) = 1 - \frac{1}{2} \cdot (\lfloor \frac{n}{2} \rfloor^{-1} + \lceil \frac{n}{2} \rceil^{-1})$. For basic information on *p*-negative type spaces (1-negative type spaces are also known as quasi-hypermetric spaces) see for example [2,4,6–11].

This paper explores formulas for the *p*-negative type gap of a finite *p*-negative type metric space. The main result is given in Theorem 3.5 (Section 3), which is itself a corollary of a more general result (Theorem 3.4, Section 3) concerning real symmetric matrices of strict negative type on certain subspaces of \mathbb{R}^n . Moreover we present a characterization of a finite metric space of *p*-negative type enjoying the additional property of being of strict *p*-negative type (Corollary 3.2).

In Section 4 we give some applications of the general results of Section 3. After calculating the 1-negative type gap Γ of a cycle graph with *n* vertices (considered as a finite metric space with the usual path length metric) we present short proofs for the evaluation of the 1-negative type gap of a finite discrete metric space, done by Weston in [11], and of a finite metric tree, done by Doust and Weston in [2]. I. Doust and A. Weston showed the surprising result, that the gap of a finite metric tree only depends on the weights associated to the edges of the tree.

2. Notation

For a given real $m \times n$ matrix A we denote by A^T the transposed matrix of A and by A^{-1} the inverse matrix of A, if it exists. Elements x in \mathbb{R}^n are interpretated as column vectors, so $x^T = (x_1, x_2, \ldots, x_n)$. The canonical inner product of two elements x, y in \mathbb{R}^n is given by (x|y) and the canonical unit vectors are denoted by e_1, e_2, \ldots, e_n . The element $\underline{1}$ in \mathbb{R}^n is defined as $\underline{1}^T = (1, 1, \ldots, 1)$. As usual we abbreviate $\{(\sigma_1, \sigma_2, \ldots, \sigma_n), \sigma_1, \ldots, \sigma_n \text{ in } \{-1, 1\}\}$ by $\{-1, 1\}^n$. The linear span and convex hull of a subset M in \mathbb{R}^n are denoted by [M] and conv M. Further let ker T be the kernel of a given linear map T.

If *E* is a linear subspace of \mathbb{R}^n and $\|.\|$ is a norm on *E* we denote by $\|.\|^*$ the dual norm of $\|.\|$ on *E* with respect to the canonical inner product, i.e.

$$||x||^* = \sup_{y \in E, ||y|| \leq 1} |(x|y)|.$$

For $p \ge 1$ we let $||x||_p$ be the usual *p*-norm of some element *x* in \mathbb{R}^n . For a given real symmetric $n \times n$ matrix *A* which is positive semi-definite on a linear subspace *E* of $\mathbb{R}^n((Ax|x) \ge 0$, for all *x* in *E*) we define the resulting semi-inner product on *E* by

$$(x|y)_A = (Ax|y); x, y \text{ in } E.$$

Further the semi-norm $||x||_A$ of some element x in E is given by

$$||x||_A^2 = (Ax|x).$$

For a fixed $u \neq 0$ in \mathbb{R}^n let

 $F_{\alpha} = \{x \in \mathbb{R}^n | (x|u) = \alpha\}, \quad \alpha \text{ in } \mathbb{R}.$

For short let $F = F_0$.

3. General results

Let *E* be a linear subspace of \mathbb{R}^n and *A* be a real symmetric $n \times n$ matrix of negative (strict negative) type on *E*, i.e.

 $(Ax|x) \leq 0$, for all *x* in *E* and

(Ax|x) < 0, for all $x \neq 0$ in *E* resp.

For further discussion it is useful to define the negative type gap $\Gamma_{A,E}$ (= Γ for short) of A on E as the largest nonnegative constant, such that

$$\frac{\Gamma}{2}\|x\|_1^2 + (Ax|x) \leqslant 0$$

holds for all x in E. This is equivalent to

$$\left(\frac{\Gamma}{2}\right)^{\frac{1}{2}} \|x\|_{1} \leqslant \|x\|_{-A}, \quad \text{for all } x \text{ in } E.$$

If *A* is of strict negative type on *E*, consider the identity operator *i* from the normed space $(E, \|\cdot\|_{-A})$ onto the normed space $(E, \|\cdot\|_{-A})$,

 $i: (E, \|\cdot\|_{-A}) \to (E, \|\cdot\|_{1}); i(x) = x$, for all x in E.

Since *E* is of finite dimension, we obtain that *i* is bounded and by definition of ||i|| we get

$$\|i\| = \inf\{c > 0 \mid \|x\|_1 \leq c \|x\|_{-A}, \text{ for all } x \text{ in } E\} = \sup_{x \in E, \|x\|_{-A} \leq 1} \|x\|_1.$$

It follows, that $\Gamma = \frac{2}{\|i\|^2} > 0$ and

(*)
$$\left(\frac{2}{\Gamma}\right)^{\frac{1}{2}} = \sup_{x \in E, \|x\|_{-A} \leq 1} \|x\|_{1}.$$

To continue, fix some $u \neq 0$ in \mathbb{R}^n and recall

$$F_{\alpha} = \{x \in \mathbb{R}^n | (x|u) = \alpha\}, \quad \alpha \text{ in } \mathbb{R}$$

and $F = F_0$.

Furthermore let *A* be a real symmetric $n \times n$ matrix of negative type on *F* and not of negative type on \mathbb{R}^n (note that this condition is equivalent to *A* is of negative type on *F* and there is some *w* in *F*₁ with (Aw|w) > 0). Following some ideas of [7–10] we define $M_{F_1}(A) (= M$ for short) as

$$M = \sup_{x \in F_1} (Ax|x) (> 0).$$

Theorem 3.1. Let $u \neq 0$ in \mathbb{R}^n , $F = \{x \in \mathbb{R}^n | (x|u) = 0\}$ and $F_1 = \{x \in \mathbb{R}^n | (x|u) = 1\}$. Further let A be a real symmetric $n \times n$ matrix of negative type on F and not of negative type on \mathbb{R}^n . Let $M = \sup_{x \in F_1} (Ax|x)$.

1248

We have

- 1. A is of strict negative type on F if and only if A is nonsingular and $(A^{-1}u|u) \neq 0$.
- 2. If A is of strict negative type on F then we have
 - (a) there is a unique (maximal) element z in F_1 such that M = (Az|z).
 - (b) Az = Mu and $M = (A^{-1}u|u)^{-1}$.

Proof. Assume first that *A* is of strict negative type on *F* and let Ax = 0 for some *x* in \mathbb{R}^n . Choose some *w* in F_1 with (Aw|w) > 0. If $(x|u) \neq 0$, we get $\left(A\left(w - \frac{x}{(x|u)}\right)|w - \frac{x}{(x|u)}\right) \leqslant 0$ and hence $(Aw|w) \leqslant 0$, a contradiction. Therefore we have *x* in *F* and so x = 0, which shows that *A* is nonsingular. Now let *y* in \mathbb{R}^n be the unique element with Ay = u.

If y is in F we obtain (Ay|y) = 0 and hence y = 0, a contradiction. Therefore we have $(A^{-1}u|u) = (y|u) \neq 0$. Let $z = \frac{1}{(y|u)}y$, z in F_1 . So $Az = \frac{1}{(y|u)}u$ and it follows that for all x in F_1 , $x \neq z$ we get (A(x-z)|x-z) < 0 and hence $(Ax|x) < \frac{1}{(y|u)}$. Since $(Az|z) = \frac{1}{(y|u)}$ we get $M = \frac{1}{(y|u)} = \frac{1}{(A^{-1}u|u)}$

and
$$Az = Mi$$

It remains to show that A nonsingular and $(A^{-1}u|u) \neq 0$ implies that A is of strict negative type on F.

Let (Ax|x) = 0 for some x in F. Since $|(Ax|y)|^2 \leq (Ax|x)(Ay|y)$ for all y in F we get

 $Ax = \lambda u$, for some λ in \mathbb{R} .

Hence $0 = (x|u) = \lambda(A^{-1}u|u)$ and therefore $\lambda = 0$, which implies Ax = 0 and so x = 0. \Box

The following application was done in [10] (Theorem 2.11) for finite metric spaces of 1-negative type (finite quasihypermetric spaces).

Corollary 3.2. Let (X, d) with $X = \{x_1, x_2, ..., x_n\}$ be a finite metric space of *p*-negative type of at least two points and let $\underline{1} = (1, 1, ..., 1)$. (X, d) is of strict *p*-negative type if and only if

$$A = \left(d(x_i, x_j)^p\right)_{i,j=1}^n$$

is nonsingular and $(A^{-1}\underline{1}|\underline{1}) \neq 0$.

Proof. Take $u = \underline{1}$, and note that $(Aw|w) = \frac{d(x_i, x_j)^p}{2} > 0$, for $w = \frac{e_i + e_j}{2}$ in F_1 and $x_i \neq x_j$ and so we are done by Theorem 3.1, part 1. \Box

Now let A be of strict negative type on

$$F = \{x \in \mathbb{R}^n | (x|u) = 0\}, \quad u \neq 0 \text{ in } \mathbb{R}^n.$$

By Theorem 3.1 we know that $M = \sup_{x \in F_1} (Ax|x)$ is finite and there is a unique (maximal) element z in F_1 , such that M = (Az|z) and Az = Mu.

Define

 $C = Muu^T - A.$

Again by Theorem 3.1, *C* is positive semi-definite on \mathbb{R}^n with ker C = [z]. Therefore we can extend the inner product $(.|.)_{-A}$ defined on *F* to a semi-inner product on \mathbb{R}^n given by

$$(x|y)_C = (Cx|y), \text{ for } x, y \text{ in } \mathbb{R}^n.$$

Furthermore we define

$$B=\frac{1}{M}zz^{T}-A^{-1}.$$

Since (BAx|Ax) = (Cx|x), for all x in \mathbb{R}^n , it follows that B is positive semi-definite on \mathbb{R}^n with ker B = [u].

Before formulating the next lemma, dealing with dual norms on *F*, we define for $x^T = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n and a given (fixed) $u \neq 0$ in \mathbb{R}^n

$$o(x) = \max\left(\max_{i,j\in \text{ supp } u} \frac{|u_i x_j - u_j x_i|}{|u_i| + |u_j|}, \max_{i \notin \text{ supp } u} |x_i|\right),$$

where

supp
$$u = \{1 \leq i \leq n | u_i \neq 0\}$$
.

Note that $o(x + \lambda u) = o(x)$, for all x in \mathbb{R}^n and λ in \mathbb{R} (this follows immediately from the definition of o(.) and the definition of supp u). Moreover it is easy to see, that o(.) defines a semi-norm on \mathbb{R}^n and o(x) = 0 if and only if x is in [u].

Lemma 3.3. We have

- 1. The dual norm of $\|.\|_1$ on F is given by $\|x\|_1^* = o(x)$, for all x in F.
- 2. The dual norm of $\|.\|_{-A}$ on F is given by $\|x\|_{-A}^* = \|x\|_B$, for all x in F.
- 3. $\{x \in F | ||x||_1^* \leq 1\} = \text{conv } E$, where

$$E = \left\{ x - \frac{(x|u)}{\|u\|_2^2} u, x \in \{-1, 1\}^n \right\}.$$

Proof. ad 1. It is clear, that the set *A* of extreme points of $\{x \in F | ||x||_1 \leq 1\}$ is obtained by intersecting *F* with the edges conv $\{\pm e_i, \pm e_j\}(1 \leq i \neq j \leq n)$ of the cross-polytope conv $\{\pm e_i, 1 \leq i \leq n\} = \{x \in \mathbb{R}^n | ||x||_1 \leq 1\}$.

Now fix some $1 \le i \ne j \le n$. An element *x* is in $F \cap \text{conv} \{\pm e_i, \pm e_j\}$ if and only if there exists some $0 \le \lambda \le 1$, such that (x|u) = 0 and $x = \pm (1 - \lambda)e_i \pm \lambda e_j$, which is equivalent to the equation $0 = \pm (1 - \lambda)u_i \pm \lambda u_j$, under the constraint $0 \le \lambda \le 1$.

The case $i, j \in \text{supp } u$ leads to $x = \pm \frac{u_i e_j - u_j e_i}{|u_i| + |u_j|}$.

If $i \in \text{supp } u, j \notin \text{supp } u$ (resp. $i \notin \text{supp } u, j \in \text{supp } u$) we obtain $x = \pm e_i$ (resp. $x = \pm e_i$).

Finally $i, j \notin$ supp u leads to $F \cap \text{conv} \{\pm e_i, \pm e_j\} = \text{conv} \{\pm e_i, \pm e_j\}$ and hence the contribution to the set A of extreme points of $\{x \in F | ||x||_1 \leq 1\}$ is given by $\pm e_i$ and $\pm e_j$. Summing up we get

$$A = \left\{ \pm \frac{u_i e_j - u_j e_i}{|u_i| + |u_j|}, \, i, j \in \text{ supp } u(i \neq j) \right\} \cup \left\{ \pm e_i, i \notin \text{ supp } u \right\}$$

By convexity of the function $y \mapsto |(x|y)|$ (for some fixed x) we get

$$||x||_1^* = \sup_{y \in F, ||y||_1 \le 1} |(x|y)| = \sup_{y \in A} |(x|y)| = o(x), \text{ for all } x \in F.$$

ad 2. Let x, y be in F. $(x|y)^2 = (A^{-1}x|Ay)^2 = (A^{-1}x|y)^2_{-A} = (A^{-1}x|y)^2_C$, since $y \in F$ implies Cy = -Ay.

By Cauchy–Schwarz inequality, applied to the semi-inner product $(.|.)_{C}$, we get

$$(x|y)^{2} = (A^{-1}x|y)_{C}^{2} \leq (CA^{-1}x|A^{-1}x)(Cy|y) = (Bx|x)(y|y)_{-A} = (Bx|x)||y||_{-A}^{2}.$$

1250

Hence $|(x|y)| \leq (Bx|x)^{\frac{1}{2}} ||y||_{-A}$.

By definition of the dual norm $\|.\|_{-A}^*$ it follows that $\|x\|_{-A}^* \leq (Bx|x)^{\frac{1}{2}}$.

Let
$$y_0 = \frac{(x|Z)}{M} Z - A^{-1}x$$
. Note that y_0 in *F*, since ker $B = [u]$, and $||y_0||^2_{-A} = (Bx|x)$ and so
 $||x||^*_{-A} \ge \left(x | \frac{y_0}{(Bx|x)^{\frac{1}{2}}}\right) = (Bx|x)^{\frac{1}{2}}.$

ad 3. Let *x* be in $\{-1, 1\}^n$. Now $o\left(x - \frac{(x|u)}{\|u\|_2^2}u\right) = o(x) \le 1$ and hence $E \subseteq \{x \in F | \|x\|_1^* \le 1\}$. It is well known, that conv $E = \{x \in F | ||x||_1^* \leq 1\}$ if and only if

$$\sup_{x \in E} (y|x) = \sup_{x \in F, ||x||_1^* \leq 1} (y|x), \text{ for all } y \in F.$$

(For example see problem 16, page 347 in [5] and note that the bidual F^{**} of F is isometrically isomorphic to F). Since of course

$$||y||_1 = \sup_{x \in F, ||x||_1^* \leq 1} (y|x)$$

we have to show that

$$||y||_1 = \sup_{x \in E} (y|x), \text{ for all } y \in F.$$

For a given y in F choose $\alpha^T = (\alpha_1, \alpha_2, \dots, \alpha_n)$ in $\{-1, 1\}^n$ such that $||y||_1 = (y|\alpha)$. So $\left(y|\alpha - \frac{(\alpha|u)u}{\|u\|_2^2}\right) = (y|\alpha) = ||y||_1$ and hence $\|v\|_1 \leq \sup(v|x)$

$$\|y\|_1 \leq \sup_{x \in E} \langle y|x \rangle$$

Of course we have

$$\|y\|_1 \ge \sup_{x \in E} (y|x)$$

and hence

$$\|y\|_1 = \sup_{x \in E} (y|x). \quad \Box$$

Theorem 3.4. Let $u \neq 0$ be in \mathbb{R}^n and $F = \{x \in \mathbb{R}^n | (x|u) = 0\}$. Further let A be a real symmetric $n \times n$ matrix of strict negative type on F, and not of negative type on \mathbb{R}^n . The gap $\Gamma_A(F)(=\Gamma)$ of A on F is given by $\Gamma = \frac{2}{\beta}$, where

1. $\beta = \sup_{x \in F, o(Ax) \leq 1} (-Ax|x),$ 2. $\beta = \max_{x \in \{-1,1\}^n} (Bx|x),$ where

$$B = (A^{-1}u|u)^{-1}(A^{-1}u)(A^{-1}u)^{T} - A^{-1}.$$

3. $\beta = \|B\|$, where B is defined as in 2. and viewed as a linear operator from $(\mathbb{R}^n, \|.\|_{\infty})$ to $(\mathbb{R}^n, \|.\|_1)$.

Proof. We have

ad. 1 By formula (*) at the beginning of Section 3 we have $\Gamma = \frac{2}{\beta}$ with

$$\beta^{\frac{1}{2}} = \sup_{x \in F, \|x\|_{-A} \leqslant 1} \|x\|_1.$$

By Lemma 3.3, part 1,2 we get

$$\beta^{\frac{1}{2}} = \sup_{x \in F, \|x\|_{-A} \leqslant 1} \|x\|_{1} = \sup_{x \in F, \|x\|_{1}^{*} \leqslant 1} \|x\|_{-A}^{*} = \sup_{x \in F, o(x) \leqslant 1} \|x\|_{B}$$

Recall that ker B = [u] and $o(x + \lambda u) = o(x)$, for all x in \mathbb{R}^n and λ in \mathbb{R} (as mentioned after the definition of o(.)). Hence

$$\beta = \sup_{x \in F, o(x) \leq 1} \|x\|_B^2 = \sup_{x \in \mathbb{R}^n, o(x) \leq 1} \|x\|_B^2 = \sup_{y \in \mathbb{R}^n, o(Ay) \leq 1} \|Ay\|_B^2,$$

since *A* is nonsingular by Theorem 3.1, part 1. Since $||Ay||_B^2 = (Cy|y)$ where $C = Muu^T - A$, Az = Mu (see Theorem 3.1, part 2) we get

$$\beta = \sup_{y \in \mathbb{R}^n, o(Ay) \leqslant 1} (Cy|y)$$

Since *z* is not in *F*, we can write each *y* in \mathbb{R}^n as $y = f + \lambda z$, for some *f* in *F* and λ in \mathbb{R} . Recall that ker C = [z] and $o(Ay) = o(Af + \lambda Mu) = o(Af)$ and so

$$\beta = \sup_{y \in \mathbb{R}^n, o(Ay) \leqslant 1} (Cy|y) = \sup_{x \in F, o(Ax) \leqslant 1} (-Ax|x).$$

ad. 2 From above we have

$$\beta = \sup_{x \in F, \|x\|_1^* \le 1} \|x\|_B^2 = \max_{x \in E} (Bx|x)$$

by Lemma 3.3, part 3, where

$$E = \left\{ x - \frac{(x|u)}{\|u\|_2^2} u, x \in \{-1, 1\}^n \right\}.$$

Again using the fact, that ker B = [u] we get

$$\beta = \max_{x \in \{-1,1\}^n} (Bx|x).$$

ad. 3 Recall that *B* is positive semi-definite on \mathbb{R}^n and hence for all *x*, *y* in $\{-1, 1\}^n$ we get $(Bx|y)^2 \leq (Bx|x)(By|y)$ and so

$$\beta = \max_{x,y \in \{-1,1\}^n} (Bx|y) = \max_{x \in \{-1,1\}^n} \|Bx\|_1 = \|B\|. \quad \Box$$

Now let (X, d) be a finite metric space of strict *p*-negative type, $X = \{x_1, x_2, ..., x_n\}, n \ge 2$. Let $A = (d(x_i, x_j)^p)_{i,j=1}^n$ and $u = \underline{1}$. By Corollary 3.2 we know that *A* is nonsingular and $(A^{-1}\underline{1}|\underline{1}) \ne 0$. Recall that $(Aw|w) = \frac{d(x_i, x_j)^p}{2} > 0$, for $w = \frac{e_i + e_j}{2}, i \ne j$. Further observe that $u = \underline{1}$ implies $o(x) = \max_{i,j} \frac{|x_i - x_j|}{2}$, for all $x \in \mathbb{R}^n$ and *x* is in $\{-1, 1\}^n$ if and only $x + \underline{1}$ is in $\{0, 2\}^n$ with $o(x) = o(x + \underline{1})$. Applying Theorem 3.4 we get

1252

Theorem 3.5. Let (X, d) with $X = \{x_1, x_2, \ldots, x_n\}$ be a finite metric space of strict p-negative type of at least two points. Let

$$A = \left(d(x_i, x_j)^p\right)_{i,j=1}^n.$$

The p-negative type gap Γ of X is given by $\Gamma = \frac{2}{\beta}$, where

- 1. $\beta = \sup \{ (-Ay|y)|y_1 + y_2 + \dots + y_n = 0 \text{ and } |(Ay|e_i e_j)| \leq 2, \text{ for all } 1 \leq i, j \leq n \},$ 2. $\beta = \max_{x \in \{-1,1\}^n} (Bx|x) = 4 \max_{x \in \{0,1\}^n} (Bx|x), \text{ where } B = (A^{-1}\underline{1}|\underline{1})^{-1} (A^{-1}\underline{1})(A^{-1}\underline{1})^T A^{-1},$
- 3. $\beta = \|B\|,$ where B is defined as in 2. and viewed as a linear operator from $(\mathbb{R}^n, \|.\|_{\infty})$ to $(\mathbb{R}^n, \|.\|_1)$.

The following easy example illustrates how Theorem 3.5 can be used to calculate the *p*-negative type gap Γ for a given finite metric space of strict *p*-negative type:

Example 3.6. Consider \mathbb{R}^2 equipped with the 1-norm induced metric and let X be the 4-point subspace given by

$$X = \left\{ (0, 0), \left(\frac{1}{2}, 0\right), \left(-\frac{1}{2}, 0\right), \left(0, \frac{1}{2}\right) \right\}$$

The distance matrix *D* of *X* is

$$D = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 & 1 \\ \frac{1}{2} & 1 & 0 & 1 \\ \frac{1}{2} & 1 & 1 & 0 \end{pmatrix}.$$

For p > 0 the matrix A considered in Theorem 3.5 is given by

$$A = \begin{pmatrix} 0 & 2^{-p} & 2^{-p} & 2^{-p} \\ 2^{-p} & 0 & 1 & 1 \\ 2^{-p} & 1 & 0 & 1 \\ 2^{-p} & 1 & 1 & 0 \end{pmatrix}.$$

Now let $x = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 with $x_1 + x_2 + x_3 + x_4 = 0$. We have

$$(Ax|x) = -\left((2^{1-p}-1)x_1^2 + x_2^2 + x_3^2 + x_4^2\right).$$

If $2^{-p} \ge \frac{1}{3}$ we get

$$(2^{1-p} - 1)x_1^2 + x_2^2 + x_3^2 + x_4^2 \ge -\frac{1}{3}(x_2 + x_3 + x_4)^2 + x_2^2 + x_3^2 + x_4^2 = = \frac{1}{3}((x_2 - x_3)^2 + (x_2 - x_4)^2 + (x_3 - x_4)^2) \ge 0$$

and therefore

$$(Ax|x) \leq 0.$$

On the other hand if $2^{-p} < \frac{1}{3}$ we obtain for x = (3, -1, -1, -1) $(Ax|x) = -6(3.2^{-p} - 1) > 0.$

Summing up the space *X* is of *p*-negative type if and only if $p \leq \frac{\ln 3}{\ln 2}$ and of strict *p*-negative type if and only if $p < \frac{\ln 3}{\ln 2}$.

For short let $\alpha = 2^{-p}$. We get

$$A = \begin{pmatrix} 0 & \alpha & \alpha & \alpha \\ \alpha & 0 & 1 & 1 \\ \alpha & 1 & 0 & 1 \\ \alpha & 1 & 1 & 0 \end{pmatrix},$$

$$A^{-1} = \frac{1}{3\alpha^2} \begin{pmatrix} -2 & \alpha & \alpha & \alpha & \alpha \\ \alpha & -2\alpha^2 & \alpha^2 & \alpha^2 \\ \alpha & \alpha^2 & -2\alpha^2 & \alpha^2 \\ \alpha & \alpha^2 & \alpha^2 & -2\alpha^2 \end{pmatrix},$$
(47-14) T = 1 (2 - 2 - 2)

$$(A^{-1}\underline{1})^T = \frac{1}{3\alpha^2}(3\alpha - 2, \alpha, \alpha, \alpha),$$

$$(A^{-1}\underline{1}|\underline{1}) = \frac{2}{3}\alpha(3\alpha - 1),$$

$$(A^{-1}\underline{1})(A^{-1}\underline{1})^{T} = \frac{1}{9\alpha^{4}} \begin{pmatrix} (3\alpha - 2)^{2} \ \alpha(3\alpha - 2) \ \alpha(3\alpha - 2) \ \alpha(3\alpha - 2) \end{pmatrix}$$
$$\begin{pmatrix} (3\alpha - 2)^{2} \ \alpha(3\alpha - 2) \ \alpha^{2} \ \alpha^{2} \ \alpha^{2} \ \alpha^{2} \ \alpha(3\alpha - 2) \ \alpha^{2} \ \alpha$$

and hence

$$B = \frac{1}{2(3\alpha - 1)} \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 4\alpha - 1 & 1 - 2\alpha & 1 - 2\alpha \\ -1 & 1 - 2\alpha & 4\alpha - 1 & 1 - 2\alpha \\ -1 & 1 - 2\alpha & 1 - 2\alpha & 4\alpha - 1 \end{pmatrix}$$

(Note that *X* is a simple example showing that *A* is nonsingular does not imply the strict *p*-negative type property: see Corollary 3.2 together with $(A^{-1}\underline{1}|\underline{1}) = 0$ for $p = \frac{\ln 3}{\ln 2}$.) Routine calculations lead to

$$\beta = \max_{x \in \{-1,1\}^4} (Bx|x) = \begin{cases} \frac{6}{3\alpha - 1}, \ \frac{1}{3} < \alpha \leqslant \frac{3}{4}, \\ \frac{8\alpha}{3\alpha - 1}, \ \frac{3}{4} \leqslant \alpha. \end{cases}$$

Therefore the *p*-negative type gap $\Gamma = \frac{2}{\beta}$ of *X* is given by

$$\Gamma = \begin{cases} \frac{3}{4} - \frac{1}{4} 2^{-p}, & p \leqslant 2 - \frac{\ln 3}{\ln 2}, \\ 2^{-p} - \frac{1}{3}, & 2 - \frac{\ln 3}{\ln 2} \leqslant p < \frac{\ln 3}{\ln 2} \end{cases}$$

4. Applications

Corollary 4.1. Let n be a natural number greater or equal to 3 and let C_n be the cycle graph with n vertices, viewed as a finite metric space, equipped with the usual path metric. Then we have

- 1. C_n is of 1-negative type and of strict 1-negative type if and only if n is odd.
- 2. The 1-negative type gap Γ of C_n is given by

$$\Gamma = \begin{cases} 0, & n \text{ even} \\ \\ \frac{1}{2} \frac{n}{n^2 - 2n - 1}, & n \text{ odd.} \end{cases}$$

Proof. Take the vertices $\{x_1, x_2, \ldots, x_n\}$ of a regular *n*-gon on a circle *C* of radius $r = \frac{n}{2\pi}$. It is evident, that C_n can be viewed as the subspace $\{x_1, x_2, \ldots, x_n\}$ of the metric space (C, d), where d is the arclength metric on C. It is shown in [4] (see Theorem 4.3 and Theorem 9.1) that (C, d) is of 1-negative type and a finite subspace of (C, d) is of strict 1-negative type if and only if this subspace contains at most one pair of antipodal points. Hence part 1 follows at once. The definition of Γ implies that $\Gamma = 0$ if *n* is even, so let us assume that n = 2k + 1, for some *k* in \mathbb{N} .

Let *A* be the distance matrix of $C_n = C_{2k+1}$. It is shown in [1] (Theorem 3.1) that A^{-1} is given by

$$A^{-1} = -2I - C^{k} - C^{k+1} + \frac{2k+1}{k(k+1)} \underline{1} \underline{1}^{T},$$

where I is the identity matrix and C is the matrix (with respect to the canonical bases) of the linear map on \mathbb{R}^n , which sends each $x^T = (x_1, x_2, ..., x_n)$ to $(x_2, x_3, ..., x_n, x_1)$. Now $A^{-1}\underline{1} = \frac{1}{k(k+1)}\underline{1}$ and so *B* (as defined in Theorem 3.5) is given by $B = 2I + C^k + C^{k+1} - \frac{4}{2k+1} \underline{1} \underline{1}^T$ and so

$$(Bx|x) = 2||x||_{2}^{2} - \frac{4}{2k+1}(x|\underline{1})^{2} + 2(x_{1}x_{k+1} + \dots + x_{k+1}x_{2k+1} + x_{k+2}x_{1} + \dots + x_{2k+1}x_{k}),$$

for each $x^T = (x_1, x_2, ..., x_{2k+1})$ in \mathbb{R}^{2k+1} . Now let *x* be in $\{0, 1\}^{2k+1}$ and let $s = |\{1 \le i \le 2k+1 | x_i = 1\}|$. In the case s = 0 and s = 2k+1we get (Bx|x) = 0, so assume that $1 \leq s \leq 2k$. Since

$$x_1x_{k+1} + \cdots + x_{k+1}x_{2k+1} + x_{k+2}x_1 + \cdots + x_{2k+1}x_k < ||x||_2^2 = s,$$

we get

$$(Bx|x) \leq 2s - \frac{4}{2k+1}s^2 + 2(s-1) = 2\left(2s - 1 - \frac{2}{2k+1}s^2\right).$$

It follows immediately, that

$$\max_{k \le s \le 2k} \left(2s - 1 - \frac{2}{2k+1} s^2 \right) = \frac{2k^2 - 1}{2k+1}$$

and hence

$$\max_{x\in\{0,1\}^{2k+1}}(Bx|x)\leqslant \frac{4k^2-2}{2k+1}.$$

On the other hand define \bar{x} in $\{0, 1\}^{2k+1}$ as $\bar{x}^T = (\alpha_1, \alpha_2, \dots, \alpha_{2k+1})$, with $\alpha_i = 1$ if and only if $i \in \{1, 2, ..., m, 2m + 1, 2m + 2, ..., 3m + 1\}$ if k = 2m and $\alpha_i = 1$ if and only if $i \in \{1, 2, ..., m, m, m, m, m, m, m, m\}$

2m + 2, 2m + 3, ..., 3m + 2 if k = 2m + 1, m in \mathbb{N} . In each case (k = 2m, 2m + 1) we get $(B\overline{x}|\overline{x}) = \frac{4k^2 - 2}{2k + 1}$. Summing up we have $\max_{x \in \{0,1\}^{2k+1}} (Bx|x) = \frac{4k^2 - 2}{2k + 1}$ and hence Theorem 3.5, part 2 implies $\Gamma = \frac{2k + 1}{8k^2 - 4} = \frac{1}{2} \frac{n}{n^2 - 2n - 1}$. \Box

Corollary 4.2 (= Theorem 3.2 of [11]). Let (X, d) be a finite discrete space consisting of n points, $n \ge 2$. The 1-negative type gap Γ of X is given by

$$\Gamma = \frac{1}{2} \left(\frac{1}{\lfloor \frac{n}{2} \rfloor} + \frac{1}{\lceil \frac{n}{2} \rceil} \right).$$

Proof. Let *A* be the distance matrix of *X*. We have $A = \underline{1} \underline{1}^T - I$ (*I* the identity matrix) and hence $A^{-1} = \frac{1}{n-1} \underline{1} \underline{1}^T - I$. So the matrix *B* defined as in Theorem 3.5 is given by $B = I - \frac{1}{n} \underline{1} \underline{1}^T$. Applying Theorem 3.5, part 2 we get

$$\beta = \max_{x \in \{-1,1\}^n} (Bx|x) = n - \frac{1}{n} \min_{x \in \{-1,1\}^n} (x|\underline{1})^2 = \begin{cases} n, & n \text{ even,} \\ n - \frac{1}{n}, & n \text{ odd} \end{cases}$$

and so $\Gamma = \frac{2}{\beta} = \frac{1}{2} \left(\frac{1}{\lfloor \frac{n}{2} \rfloor} + \frac{1}{\lceil \frac{n}{2} \rceil} \right). \square$

Recall that for a given finite connected simple graph G = (V, E) and a given collection $\{w(e), e \in E\}$ of positive weights associated to the edges of G, the graph G becomes a finite metric space, where the metric is given by the natural weighted path metric on G. A finite metric tree T = (V, E) is a finite connected simple graph that has no cycles, endowed with the above given edge weighted path metric. It is shown in [4] (Corollary 7.2) that metric trees are of strict 1-negative type.

Corollary 4.3 (=Corollary 4.14 of [2]). Let T = (V, E) be a finite metric tree. The 1-negative type gap Γ of G is given by $\Gamma = \left(\sum_{e \in E} \frac{1}{w(e)}\right)^{-1}$, where w(e) denotes the weight of the edge e.

Proof. It is shown in [1] (Theorem 2.1) that the inverse matrix A^{-1} of the distance matrix A of a finite metric tree is given by

$$A^{-1} = -\frac{1}{2}L + \left(2\sum_{e\in E}w(e)\right)^{-1}\delta\delta^{T},$$

where *L* denotes the Laplacian matrix for the weighting of *T* that arises by replacing each edge weight by its reciprocal and δ in \mathbb{R}^n is given by $\delta^T = (\delta_1, \delta_2, \dots, \delta_n)$ with $\delta_i = 2 - d(i)$, d(i) denotes the degree of the vertex *i*. It follows easily that the matrix *B* defined as in Theorem 3.5 is given by $B = \frac{1}{2}L$. Routine calculations show, that

$$(Bx|x) \leq 2\sum_{e \in E} \frac{1}{w(e)}, \text{ for all } x \text{ in } \{-1, 1\}^n.$$

Moreover we get $(B\overline{x}|\overline{x}) = 2\sum_{e \in E} \frac{1}{w(e)}$, for $\overline{x}^T = (x_1, x_2, \dots, x_n)$ in $\{-1, 1\}^n$, a 2-colouring of the vertices 1, 2, ..., *n*. By Theorem 3.5, part 2 we get $\Gamma = \left(\sum_{e \in E} \frac{1}{w(e)}\right)^{-1}$. \Box

References

- [1] R. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193–209.
- [2] I. Doust, A. Weston, Enhanced negative type for finite metric trees, J. Funct. Anal. 254 (2008) 2336–2364.
- [3] I. Doust, A. Weston, Corrigendum to enhanced negative type for finite metric trees, J. Funct. Anal. 255 (2008) 532-533.
- [4] P. Hjorth, P. Lisonek, Steen Markvorsen, Carsten Thomassen, Finite metric spaces of strictly negative type, Linear Algebra Appl. 270 (1998) 255–273.
- [5] R. Larsen, Functional Analysis an Introduction, Marcel Dekker Inc., New York, 1973.
- [6] H. Li, A. Weston, Strict p-negative type of a metric space, Positivity 14(3) (2010) 529–545.
- [7] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. I, Bull. Aust. Math. Soc. 80 (2009) 1–25.
- [8] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. II, Math. Nachr. 284 (2011) 332–341.
- [9] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. III, Math. Nachr. 284 (2011) 747–760.
- [10] Peter Nickolas, Reinhard Wolf, Finite quasihypermetric spaces, Acta Math. Hungar. 124 (3) (2009) 243-262.
- [11] Anthony Weston, Optimal lower bound on the supremal strict *p*-negative type of a finite metric space, Bull. Aust. Math. Soc. 80 (2009) 486–497.