On the gap of finite metric spaces of p-negative type
 Reinhard Wolf

Universität Salzburg, Fachbereich Mathematik, Austria

ARTICLEINFO

Article history:

Received 10 August 2010
Accepted 29 July 2011
Available online 15 September 2011
Submitted by V. Mehrmann

Keywords:

Finite metric spaces
p-negative type
Matrices of negative type

Abstract

Let (X, d) be a metric space of p-negative type. Recently I. Doust and A . Weston introduced a quantification of the p-negative type property, the so called gap Γ of X. This paper gives some formulas for the gap Γ of a finite metric space of strict p-negative type and applies them to evaluate Γ for some concrete finite metric spaces. © 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, d) be a metric space and $p \geqslant 0$. Recall that (X, d) has p-negative type if for all natural numbers n, all $x_{1}, x_{2}, \ldots, x_{n}$ in X and all real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ with $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=0$ the inequality

$$
\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right)^{p} \leqslant 0
$$

holds.
Moreover if (X, d) has p-negative type and

$$
\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right)^{p}=0, \text { together with } x_{i} \neq x_{j}, \text { for all } i \neq j
$$

implies $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$, then (X, d) has strict p-negative type. $\left(d(x, y)^{0}\right.$ is defined to be 0 if $x=y$).

[^0]0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2011.08.031

Following [2,3] we define the p-negative type gap Γ_{X}^{p} (= Γ for short) of a p-negative type metric space (X, d) as the largest nonnegative constant, such that

$$
\frac{\Gamma}{2}\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right)^{2}+\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right)^{p} \leqslant 0
$$

holds for all natural numbers n, all $x_{1}, x_{2}, \ldots, x_{n}$ in X with $x_{i} \neq x_{j}$, for all $i \neq j$, and all real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ with $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=0$.

The above defined p-negative type gap Γ_{X}^{p} can be used to enlarge the p-parameter, for which a given finite metric space is of strict p-negative type:

It is shown in [6] (Theorem 3.3) that a finite metric space X with cardinality $n=|X| \geqslant 3$ of strict p-negative type is of strict q-negative type for all $q \in[p, p+\xi$) where

$$
\left.\xi=\frac{\ln \left(1+\frac{\Gamma_{X}^{p}}{D(X)^{p} \cdot \gamma(n)}\right.}{}\right)
$$

with $D(X)=\max _{x, y \in X} d(x, y), \mathfrak{D}(X)=D(X) / \min _{x, y \in X, x \neq y} d(x, y)$ and $\gamma(n)=1-\frac{1}{2} \cdot\left(\left\lfloor\frac{n}{2}\right\rfloor^{-1}+\left\lceil\frac{n}{2}\right\rceil^{-1}\right)$.
For basic information on p-negative type spaces (1-negative type spaces are also known as quasihypermetric spaces) see for example [2,4,6-11].

This paper explores formulas for the p-negative type gap of a finite p-negative type metric space. The main result is given in Theorem 3.5 (Section 3), which is itself a corollary of a more general result (Theorem 3.4, Section 3) concerning real symmetric matrices of strict negative type on certain subspaces of \mathbb{R}^{n}. Moreover we present a characterization of a finite metric space of p-negative type enjoying the additional property of being of strict p-negative type (Corollary 3.2).

In Section 4 we give some applications of the general results of Section 3. After calculating the 1-negative type gap Γ of a cycle graph with n vertices (considered as a finite metric space with the usual path length metric) we present short proofs for the evaluation of the 1-negative type gap of a finite discrete metric space, done by Weston in [11], and of a finite metric tree, done by Doust and Weston in [2]. I. Doust and A. Weston showed the surprising result, that the gap of a finite metric tree only depends on the weights associated to the edges of the tree.

2. Notation

For a given real $m \times n$ matrix A we denote by A^{T} the transposed matrix of A and by A^{-1} the inverse matrix of A, if it exists. Elements x in \mathbb{R}^{n} are interpretated as column vectors, so $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The canonical inner product of two elements x, y in \mathbb{R}^{n} is given by $(x \mid y)$ and the canonical unit vectors are denoted by $e_{1}, e_{2}, \ldots, e_{n}$. The element $\underline{1}$ in \mathbb{R}^{n} is defined as $\underline{1}^{T}=(1,1, \ldots, 1)$. As usual we abbreviate $\left\{\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right), \sigma_{1}, \ldots, \sigma_{n}\right.$ in $\left.\{-1,1\}\right\}$ by $\{-1,1\}^{n}$. The linear span and convex hull of a subset M in \mathbb{R}^{n} are denoted by $[M]$ and conv M. Further let ker T be the kernel of a given linear map T.

If E is a linear subspace of \mathbb{R}^{n} and $\|$.$\| is a norm on E$ we denote by $\|.\|^{*}$ the dual norm of $\|$.$\| on E$ with respect to the canonical inner product, i.e.

$$
\|x\|^{*}=\sup _{y \in E,\|y\| \leqslant 1}|(x \mid y)| .
$$

For $p \geqslant 1$ we let $\|x\|_{p}$ be the usual p-norm of some element x in \mathbb{R}^{n}. For a given real symmetric $n \times n$ matrix A which is positive semi-definite on a linear subspace E of $\mathbb{R}^{n}((A x \mid x) \geqslant 0$, for all x in $E)$ we define the resulting semi-inner product on E by

$$
(x \mid y)_{A}=(A x \mid y) ; \quad x, y \text { in } E .
$$

Further the semi-norm $\|x\|_{A}$ of some element x in E is given by

$$
\|x\|_{A}^{2}=(A x \mid x)
$$

For a fixed $u \neq 0$ in \mathbb{R}^{n} let

$$
F_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=\alpha\right\}, \quad \alpha \text { in } \mathbb{R} .
$$

For short let $F=F_{0}$.

3. General results

Let E be a linear subspace of \mathbb{R}^{n} and A be a real symmetric $n \times n$ matrix of negative (strict negative) type on E, i.e.

$$
\begin{aligned}
& (A x \mid x) \leqslant 0, \quad \text { for all } x \text { in } E \text { and } \\
& (A x \mid x)<0, \quad \text { for all } x \neq 0 \text { in } E \text { resp. }
\end{aligned}
$$

For further discussion it is useful to define the negative type gap $\Gamma_{A, E}(=\Gamma$ for short) of A on E as the largest nonnegative constant, such that

$$
\frac{\Gamma}{2}\|x\|_{1}^{2}+(A x \mid x) \leqslant 0
$$

holds for all x in E. This is equivalent to

$$
\left(\frac{\Gamma}{2}\right)^{\frac{1}{2}}\|x\|_{1} \leqslant\|x\|_{-A}, \quad \text { for all } x \text { in } E .
$$

If A is of strict negative type on E, consider the identity operator i from the normed space $\left(E,\|\cdot\|_{-A}\right)$ onto the normed space $\left(E,\|\cdot\|_{1}\right)$,

$$
i:\left(E,\|\cdot\|_{-A}\right) \rightarrow\left(E,\|\cdot\|_{1}\right) ; i(x)=x, \quad \text { for all } x \text { in } E .
$$

Since E is of finite dimension, we obtain that i is bounded and by definition of $\|i\|$ we get

$$
\|i\|=\inf \left\{c>0 \mid\|x\|_{1} \leqslant c\|x\|_{-A} \text {, for all } x \text { in } E\right\}=\sup _{x \in E,\|x\|_{-A} \leqslant 1}\|x\|_{1} .
$$

It follows, that $\Gamma=\frac{2}{\|i\|^{2}}>0$ and
(*) $\left(\frac{2}{\Gamma}\right)^{\frac{1}{2}}=\sup _{x \in E,\|x\| \|_{-A \leqslant 1}}\|x\|_{1}$.

To continue, fix some $u \neq 0$ in \mathbb{R}^{n} and recall

$$
F_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=\alpha\right\}, \quad \alpha \text { in } \mathbb{R}
$$

and $F=F_{0}$.
Furthermore let A be a real symmetric $n \times n$ matrix of negative type on F and not of negative type on \mathbb{R}^{n} (note that this condition is equivalent to A is of negative type on F and there is some w in F_{1} with $(A w \mid w)>0)$. Following some ideas of [7-10] we define $M_{F_{1}}(A)(=M$ for short $)$ as

$$
M=\sup _{x \in F_{1}}(A x \mid x)(>0) .
$$

Theorem 3.1. Let $u \neq 0$ in $\mathbb{R}^{n}, F=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=0\right\}$ and $F_{1}=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=1\right\}$. Further let A be a real symmetric $n \times n$ matrix of negative type on F and not of negative type on \mathbb{R}^{n}. Let $M=\sup _{x \in F_{1}}$ ($A x \mid x$).

We have

1. A is of strict negative type on F if and only if A is nonsingular and $\left(A^{-1} u \mid u\right) \neq 0$.
2. If A is of strict negative type on F then we have
(a) there is a unique (maximal) element z in F_{1} such that $M=(A z \mid z)$.
(b) $A z=M u$ and $M=\left(A^{-1} u \mid u\right)^{-1}$.

Proof. Assume first that A is of strict negative type on F and let $A x=0$ for some x in \mathbb{R}^{n}. Choose some w in F_{1} with $(A w \mid w)>0$. If $(x \mid u) \neq 0$, we get $\left(\left.A\left(w-\frac{x}{(x \mid u)}\right) \right\rvert\, w-\frac{x}{(x \mid u)}\right) \leqslant 0$ and hence $(A w \mid w) \leqslant 0$, a contradiction. Therefore we have x in F and so $x=0$, which shows that A is nonsingular. Now let y in \mathbb{R}^{n} be the unique element with $A y=u$.

If y is in F we obtain $(A y \mid y)=0$ and hence $y=0$, a contradiction. Therefore we have $\left(A^{-1} u \mid u\right)=$ $(y \mid u) \neq 0$. Let $z=\frac{1}{(y \mid u)} y, z$ in F_{1}. So $A z=\frac{1}{(y \mid u)} u$ and it follows that for all x in $F_{1}, x \neq z$ we get $(A(x-z) \mid x-z)<0$ and hence $(A x \mid x)<\frac{1}{(y \mid u)}$. Since $(A z \mid z)=\frac{1}{(y \mid u)}$ we get $M=\frac{1}{(y \mid u)}=\frac{1}{\left(A^{-1} u \mid u\right)}$ and $A z=M u$.

It remains to show that A nonsingular and $\left(A^{-1} u \mid u\right) \neq 0$ implies that A is of strict negative type on F.

Let $(A x \mid x)=0$ for some x in F. Since $|(A x \mid y)|^{2} \leqslant(A x \mid x)(A y \mid y)$ for all y in F we get
$A x=\lambda u, \quad$ for some λ in \mathbb{R}.
Hence $0=(x \mid u)=\lambda\left(A^{-1} u \mid u\right)$ and therefore $\lambda=0$, which implies $A x=0$ and so $x=0$.

The following application was done in [10] (Theorem 2.11) for finite metric spaces of 1-negative type (finite quasihypermetric spaces).

Corollary 3.2. Let (X, d) with $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite metric space of p-negative type of at least two points and let $\underline{1}=(1,1, \ldots, 1) .(X, d)$ is of strict p-negative type if and only if

$$
A=\left(d\left(x_{i}, x_{j}\right)^{p}\right)_{i, j=1}^{n}
$$

is nonsingular and $\left(A^{-1} \underline{1} \mid \underline{1}\right) \neq 0$.
Proof. Take $u=\underline{1}$, and note that $(A w \mid w)=\frac{d\left(x_{i}, x_{j}\right)^{p}}{2}>0$, for $w=\frac{e_{i}+e_{j}}{2}$ in F_{1} and $x_{i} \neq x_{j}$ and so we are done by Theorem 3.1, part 1.

Now let A be of strict negative type on

$$
F=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=0\right\}, \quad u \neq 0 \text { in } \mathbb{R}^{n} .
$$

By Theorem 3.1 we know that $M=\sup _{x \in F_{1}}(A x \mid x)$ is finite and there is a unique (maximal) element z in F_{1}, such that $M=(A z \mid z)$ and $A z=M u$.

Define

$$
C=M u u^{T}-A .
$$

Again by Theorem 3.1, C is positive semi-definite on \mathbb{R}^{n} with $\operatorname{ker} C=[z]$. Therefore we can extend the inner product (.|. $)_{-A}$ defined on F to a semi-inner product on \mathbb{R}^{n} given by
$(x \mid y)_{C}=(C x \mid y), \quad$ for x, y in \mathbb{R}^{n}.

Furthermore we define

$$
B=\frac{1}{M} z z^{T}-A^{-1} .
$$

Since $(B A x \mid A x)=(C x \mid x)$, for all x in \mathbb{R}^{n}, it follows that B is positive semi-definite on \mathbb{R}^{n} with ker $B=[u]$.
Before formulating the next lemma, dealing with dual norms on F, we define for $x^{T}=\left(x_{1}, x_{2}, \ldots\right.$, x_{n}) in \mathbb{R}^{n} and a given (fixed) $u \neq 0$ in \mathbb{R}^{n}

$$
o(x)=\max \left(\max _{i, j \in \operatorname{supp} u} \frac{\left|u_{i} x_{j}-u_{j} x_{i}\right|}{\left|u_{i}\right|+\left|u_{j}\right|}, \max _{i \notin \operatorname{supp} u}\left|x_{i}\right|\right),
$$

where

$$
\operatorname{supp} u=\left\{1 \leqslant i \leqslant n \mid u_{i} \neq 0\right\} .
$$

Note that $o(x+\lambda u)=o(x)$, for all x in \mathbb{R}^{n} and λ in \mathbb{R} (this follows immediately from the definition of $o($.$) and the definition of \operatorname{supp} u)$. Moreover it is easy to see, that $o($.$) defines a semi-norm on \mathbb{R}^{n}$ and $o(x)=0$ if and only if x is in $[u]$.

Lemma 3.3. We have

1. The dual norm of $\|\cdot\|_{1}$ on F is given by $\|x\|_{1}^{*}=o(x)$, for all x in F.
2. The dual norm of $\|.\|_{-A}$ on F is given by $\|x\|_{-A}^{*}=\|x\|_{B}$, for all x in F.
3. $\left\{x \in F \mid\|x\|_{1}^{*} \leqslant 1\right\}=$ conv E, where

$$
E=\left\{x-\frac{(x \mid u)}{\|u\|_{2}^{2}} u, x \in\{-1,1\}^{n}\right\}
$$

Proof. ad 1. It is clear, that the set A of extreme points of $\left\{x \in F \mid\|x\|_{1} \leqslant 1\right\}$ is obtained by intersecting F with the edges conv $\left\{ \pm e_{i}, \pm e_{j}\right\}(1 \leqslant i \neq j \leqslant n)$ of the cross-polytope conv $\left\{ \pm e_{i}, 1 \leqslant i \leqslant n\right\}=$ $\left\{x \in \mathbb{R}^{n} \mid\|x\|_{1} \leqslant 1\right\}$.

Now fix some $1 \leqslant i \neq j \leqslant n$. An element x is in $F \cap$ conv $\left\{ \pm e_{i}, \pm e_{j}\right\}$ if and only if there exists some $0 \leqslant \lambda \leqslant 1$, such that $(x \mid u)=0$ and $x= \pm(1-\lambda) e_{i} \pm \lambda e_{j}$, which is equivalent to the equation $0= \pm(1-\lambda) u_{i} \pm \lambda u_{j}$, under the constraint $0 \leqslant \lambda \leqslant 1$.

The case $i, j \in \operatorname{supp} u$ leads to $x= \pm \frac{u_{i} e_{j}-u_{j} e_{i}}{\left|u_{i}\right|+\left|u_{j}\right|}$.
If $i \in \operatorname{supp} u, j \notin \operatorname{supp} u($ resp. $i \notin \operatorname{supp} u, j \in \operatorname{supp} u)$ we obtain $x= \pm e_{j}\left(\right.$ resp. $\left.x= \pm e_{i}\right)$.
Finally $i, j \notin \operatorname{supp} u$ leads to $F \cap$ conv $\left\{ \pm e_{i}, \pm e_{j}\right\}=\operatorname{conv}\left\{ \pm e_{i}, \pm e_{j}\right\}$ and hence the contribution to the set A of extreme points of $\left\{x \in F \mid\|x\|_{1} \leqslant 1\right\}$ is given by $\pm e_{i}$ and $\pm e_{j}$. Summing up we get

$$
A=\left\{ \pm \frac{u_{i} e_{j}-u_{j} e_{i}}{\left|u_{i}\right|+\left|u_{j}\right|}, i, j \in \operatorname{supp} u(i \neq j)\right\} \cup\left\{ \pm e_{i}, i \notin \operatorname{supp} u\right\}
$$

By convexity of the function $y \mapsto|(x \mid y)|$ (for some fixed x) we get

$$
\|x\|_{1}^{*}=\sup _{y \in F,\|y\|_{1} \leqslant 1}|(x \mid y)|=\sup _{y \in A}|(x \mid y)|=o(x), \text { for all } x \in F \text {. }
$$

ad 2. Let x, y be in F. $(x \mid y)^{2}=\left(A^{-1} x \mid A y\right)^{2}=\left(A^{-1} x \mid y\right)_{-A}^{2}=\left(A^{-1} x \mid y\right)_{C}^{2}$, since $y \in F$ implies $C y=-A y$.

By Cauchy-Schwarz inequality, applied to the semi-inner product (.|.) $)_{c}$, we get

$$
(x \mid y)^{2}=\left(A^{-1} x \mid y\right)_{C}^{2} \leqslant\left(C A^{-1} x \mid A^{-1} x\right)(C y \mid y)=(B x \mid x)(y \mid y)_{-A}=(B x \mid x)\|y\|_{-A}^{2} .
$$

Hence $|(x \mid y)| \leqslant(B x \mid x)^{\frac{1}{2}}\|y\|_{-A}$.
By definition of the dual norm $\|\cdot\|_{-A}^{*}$ it follows that $\|x\|_{-A}^{*} \leqslant(B x \mid x)^{\frac{1}{2}}$.
Let $y_{0}=\frac{(x \mid z)}{M} z-A^{-1} x$. Note that y_{0} in F, since ker $B=[u]$, and $\left\|y_{0}\right\|_{-A}^{2}=(B x \mid x)$ and so $\|x\|_{-A}^{*} \geqslant\left(x \left\lvert\, \frac{y_{0}}{(B x \mid x)^{\frac{1}{2}}}\right.\right)=(B x \mid x)^{\frac{1}{2}}$.
ad 3. Let x be in $\{-1,1\}^{n}$. Now $o\left(x-\frac{(x \mid u)}{\|u\|_{2}^{2}} u\right)=o(x) \leqslant 1$ and hence $E \subseteq\left\{x \in F \mid\|x\|_{1}^{*} \leqslant 1\right\}$.
It is well known, that conv $E=\left\{x \in F \mid\|x\|_{1}^{*} \leqslant 1\right\}$ if and only if

$$
\sup _{x \in E}(y \mid x)=\sup _{x \in F,\|x\|_{1}^{*} \leqslant 1}(y \mid x) \text {, for all } y \in F \text {. }
$$

(For example see problem 16, page 347 in [5] and note that the bidual $F^{* *}$ of F is isometrically isomorphic to F). Since of course

$$
\|y\|_{1}=\sup _{x \in F,\|x\|_{1}^{*} \leqslant 1}(y \mid x)
$$

we have to show that

$$
\|y\|_{1}=\sup _{x \in E}(y \mid x), \text { for all } y \in F
$$

For a given y in F choose $\alpha^{T}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in $\{-1,1\}^{n}$ such that $\|y\|_{1}=(y \mid \alpha)$. So $\left(y \left\lvert\, \alpha-\frac{(\alpha \mid u) u}{\|u\|_{2}^{2}}\right.\right)=(y \mid \alpha)=\|y\|_{1}$ and hence
$\|y\|_{1} \leqslant \sup _{x \in E}(y \mid x)$.
Of course we have

$$
\|y\|_{1} \geqslant \sup _{x \in E}(y \mid x)
$$

and hence

$$
\|y\|_{1}=\sup _{x \in E}(y \mid x) .
$$

Theorem 3.4. Let $u \neq 0$ be in \mathbb{R}^{n} and $F=\left\{x \in \mathbb{R}^{n} \mid(x \mid u)=0\right\}$. Further let A be a real symmetric $n \times n$ matrix of strict negative type on F, and not of negative type on \mathbb{R}^{n}.
The gap $\Gamma_{A}(F)(=\Gamma)$ of A on F is given by $\Gamma=\frac{2}{\beta}$, where

1. $\beta=\sup _{x \in F, o(A x) \leqslant 1}(-A x \mid x)$,
2. $\beta=\max _{x \in\{-1,1\}^{n}}(B x \mid x)$,
where

$$
B=\left(A^{-1} u \mid u\right)^{-1}\left(A^{-1} u\right)\left(A^{-1} u\right)^{T}-A^{-1} .
$$

3. $\beta=\|B\|$, where B is defined as in 2. and viewed as a linear operator from $\left(\mathbb{R}^{n},\|\cdot\| \infty\right)$ to $\left(\mathbb{R}^{n},\|\cdot\|_{1}\right)$.

Proof. We have
ad. 1 By formula $(*)$ at the beginning of Section 3 we have $\Gamma=\frac{2}{\beta}$ with

$$
\beta^{\frac{1}{2}}=\sup _{x \in F,\|x\|_{-A} \leqslant 1}\|x\|_{1}
$$

By Lemma 3.3, part 1,2 we get

$$
\beta^{\frac{1}{2}}=\sup _{x \in F,\|x\|_{-A} \leqslant 1}\|x\|_{1}=\sup _{x \in F,\|x\|_{1}^{*} \leqslant 1}\|x\|_{-A}^{*}=\sup _{x \in F, o(x) \leqslant 1}\|x\|_{B} .
$$

Recall that ker $B=[u]$ and $o(x+\lambda u)=o(x)$, for all x in \mathbb{R}^{n} and λ in \mathbb{R} (as mentioned after the definition of $o()$.$) . Hence$

$$
\beta=\sup _{x \in F, o(x) \leqslant 1}\|x\|_{B}^{2}=\sup _{x \in \mathbb{R}^{n}, o(x) \leqslant 1}\|x\|_{B}^{2}=\sup _{y \in \mathbb{R}^{n}, o(A y) \leqslant 1}\|A y\|_{B}^{2}
$$

since A is nonsingular by Theorem 3.1, part 1 . Since $\|A y\|_{B}^{2}=(C y \mid y)$ where $C=M u u^{T}-A, A z=$ $M u$ (see Theorem 3.1, part 2) we get

$$
\beta=\sup _{y \in \mathbb{R}^{n}, o(A y) \leqslant 1}(C y \mid y) .
$$

Since z is not in F, we can write each y in \mathbb{R}^{n} as $y=f+\lambda z$, for some f in F and λ in \mathbb{R}. Recall that $\operatorname{ker} C=[z]$ and $o(A y)=o(A f+\lambda M u)=o(A f)$ and so

$$
\beta=\sup _{y \in \mathbb{R}^{n}, o(A y) \leqslant 1}(C y \mid y)=\sup _{x \in F, o(A x) \leqslant 1}(-A x \mid x) .
$$

ad. 2 From above we have

$$
\beta=\sup _{x \in F,\|x\|_{1}^{*} \leqslant 1}\|x\|_{B}^{2}=\max _{x \in E}(B x \mid x)
$$

by Lemma 3.3, part 3, where

$$
E=\left\{x-\frac{(x \mid u)}{\|u\|_{2}^{2}} u, x \in\{-1,1\}^{n}\right\} .
$$

Again using the fact, that ker $B=[u]$ we get

$$
\beta=\max _{x \in\{-1,1\}^{n}}(B x \mid x) .
$$

ad. 3 Recall that B is positive semi-definite on \mathbb{R}^{n} and hence for all x, y in $\{-1,1\}^{n}$ we get $(B x \mid y)^{2} \leqslant$ $(B x \mid x)(B y \mid y)$ and so

$$
\beta=\max _{x, y \in\{-1,1\}^{n}}(B x \mid y)=\max _{x \in\{-1,1\}^{n}}\|B x\|_{1}=\|B\| .
$$

Now let (X, d) be a finite metric space of strict p-negative type, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, n \geqslant 2$. Let $A=\left(d\left(x_{i}, x_{j}\right)^{p}\right)_{i, j=1}^{n}$ and $u=\underline{1}$. By Corollary 3.2 we know that A is nonsingular and $\left(A^{-1} \underline{1} \mid \underline{1}\right) \neq 0$. Recall that $(A w \mid w)=\frac{d\left(x_{i}, x_{j}\right)^{p}}{2}>0$, for $w=\frac{e_{i}+e_{j}}{2}, i \neq j$. Further observe that $u=\underline{1}$ implies $o(x)=\max _{i, j} \frac{\left|x_{i}-x_{j}\right|}{2}$, for all $x \in \mathbb{R}^{n}$ and x is in $\{-1,1\}^{n}$ if and only $x+\underline{1}$ is in $\{0,2\}^{n}$ with $o(x)=o(x+1)$. Applying Theorem 3.4 we get

Theorem 3.5. Let (X, d) with $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite metric space of strict p-negative type of at least two points. Let

$$
A=\left(d\left(x_{i}, x_{j}\right)^{p}\right)_{i, j=1}^{n} .
$$

The p-negative type gap Γ of X is given by $\Gamma=\frac{2}{\beta}$, where

1. $\beta=\sup \left\{(-A y \mid y) \mid y_{1}+y_{2}+\cdots+y_{n}=0\right.$ and $\left|\left(A y \mid e_{i}-e_{j}\right)\right| \leqslant 2$, for all $\left.1 \leqslant i, j \leqslant n\right\}$,
2. $\beta=\max _{x \in\{-1,1\}^{n}}(B x \mid x)=4 \max _{x \in\{0,1\}^{n}}(B x \mid x)$, where $B=\left(A^{-1} \underline{1} \mid \underline{1}\right)^{-1}\left(A^{-1} \underline{1}\right)\left(A^{-1} \underline{1}\right)^{T}-A^{-1}$,
3. $\beta=\|B\|$,
where B is defined as in 2. and viewed as a linear operator from $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ to $\left(\mathbb{R}^{n},\|\cdot\|_{1}\right)$.
The following easy example illustrates how Theorem 3.5 can be used to calculate the p-negative type gap Γ for a given finite metric space of strict p-negative type:

Example 3.6. Consider \mathbb{R}^{2} equipped with the 1 -norm induced metric and let X be the 4 -point subspace given by

$$
X=\left\{(0,0),\left(\frac{1}{2}, 0\right),\left(-\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right)\right\} .
$$

The distance matrix D of X is

$$
D=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 1 & 1 \\
\frac{1}{2} & 1 & 0 & 1 \\
\frac{1}{2} & 1 & 1 & 0
\end{array}\right) .
$$

For $p>0$ the matrix A considered in Theorem 3.5 is given by

$$
A=\left(\begin{array}{cccc}
0 & 2^{-p} & 2^{-p} & 2^{-p} \\
2^{-p} & 0 & 1 & 1 \\
2^{-p} & 1 & 0 & 1 \\
2^{-p} & 1 & 1 & 0
\end{array}\right)
$$

Now let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in \mathbb{R}^{4} with $x_{1}+x_{2}+x_{3}+x_{4}=0$.
We have

$$
(A x \mid x)=-\left(\left(2^{1-p}-1\right) x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)
$$

If $2^{-p} \geqslant \frac{1}{3}$ we get

$$
\begin{aligned}
& \left(2^{1-p}-1\right) x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \geqslant-\frac{1}{3}\left(x_{2}+x_{3}+x_{4}\right)^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}= \\
& =\frac{1}{3}\left(\left(x_{2}-x_{3}\right)^{2}+\left(x_{2}-x_{4}\right)^{2}+\left(x_{3}-x_{4}\right)^{2}\right) \geqslant 0
\end{aligned}
$$

and therefore

$$
(A x \mid x) \leqslant 0 .
$$

On the other hand if $2^{-p}<\frac{1}{3}$ we obtain for $x=(3,-1,-1,-1)$ $(A x \mid x)=-6\left(3.2^{-p}-1\right)>0$.

Summing up the space X is of p-negative type if and only if $p \leqslant \frac{\ln 3}{\ln 2}$ and of strict p-negative type if and only if $p<\frac{\ln 3}{\ln 2}$.

For short let $\alpha=2^{-p}$. We get

$$
A=\left(\begin{array}{cccc}
0 & \alpha & \alpha & \alpha \\
\alpha & 0 & 1 & 1 \\
\alpha & 1 & 0 & 1 \\
\alpha & 1 & 1 & 0
\end{array}\right)
$$

$$
A^{-1}=\frac{1}{3 \alpha^{2}}\left(\begin{array}{cccc}
-2 & \alpha & \alpha & \alpha \\
\alpha & -2 \alpha^{2} & \alpha^{2} & \alpha^{2} \\
\alpha & \alpha^{2} & -2 \alpha^{2} & \alpha^{2} \\
\alpha & \alpha^{2} & \alpha^{2} & -2 \alpha^{2}
\end{array}\right)
$$

$$
\left(A^{-1} \underline{1}\right)^{T}=\frac{1}{3 \alpha^{2}}(3 \alpha-2, \alpha, \alpha, \alpha)
$$

$$
\left(A^{-1} \underline{1} \mid \underline{1}\right)=\frac{2}{3} \alpha(3 \alpha-1)
$$

$$
\left(A^{-1} \underline{1}\right)\left(A^{-1} \underline{1}\right)^{T}=\frac{1}{9 \alpha^{4}}\left(\begin{array}{cccc}
(3 \alpha-2)^{2} & \alpha(3 \alpha-2) & \alpha(3 \alpha-2) \alpha(3 \alpha-2) \\
\alpha(3 \alpha-2) & \alpha^{2} & \alpha^{2} & \alpha^{2} \\
\alpha(3 \alpha-2) & \alpha^{2} & \alpha^{2} & \alpha^{2} \\
\alpha(3 \alpha-2) & \alpha^{2} & \alpha^{2} & \alpha^{2}
\end{array}\right)
$$

and hence

$$
B=\frac{1}{2(3 \alpha-1)}\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 4 \alpha-1 & 1-2 \alpha & 1-2 \alpha \\
-1 & 1-2 \alpha & 4 \alpha-1 & 1-2 \alpha \\
-1 & 1-2 \alpha & 1-2 \alpha & 4 \alpha-1
\end{array}\right)
$$

(Note that X is a simple example showing that A is nonsingular does not imply the strict p-negative type property: see Corollary 3.2 together with $\left(A^{-1} \underline{1} \mid \underline{1}\right)=0$ for $p=\frac{\ln 3}{\ln 2}$.)

Routine calculations lead to

$$
\beta=\max _{x \in\{-1,1\}^{4}}(B x \mid x)=\left\{\begin{array}{l}
\frac{6}{3 \alpha-1}, \frac{1}{3}<\alpha \leqslant \frac{3}{4}, \\
\frac{8 \alpha}{3 \alpha-1}, \frac{3}{4} \leqslant \alpha .
\end{array}\right.
$$

Therefore the p-negative type gap $\Gamma=\frac{2}{\beta}$ of X is given by

$$
\Gamma= \begin{cases}\frac{3}{4}-\frac{1}{4} 2^{-p}, & p \leqslant 2-\frac{\ln 3}{\ln 2} \\ 2^{-p}-\frac{1}{3}, & 2-\frac{\ln 3}{\ln 2} \leqslant p<\frac{\ln 3}{\ln 2}\end{cases}
$$

4. Applications

Corollary 4.1. Let n be a natural number greater or equal to 3 and let C_{n} be the cycle graph with n vertices, viewed as a finite metric space, equipped with the usual path metric. Then we have

1. C_{n} is of 1-negative type and of strict 1-negative type if and only if n is odd.
2. The 1-negative type gap Γ of C_{n} is given by

$$
\Gamma= \begin{cases}0, & n \text { even } \\ \frac{1}{2} \frac{n}{n^{2}-2 n-1}, & n \text { odd }\end{cases}
$$

Proof. Take the vertices $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of a regular n-gon on a circle C of radius $r=\frac{n}{2 \pi}$. It is evident, that C_{n} can be viewed as the subspace $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of the metric space (C, d), where d is the arclength metric on C. It is shown in [4] (see Theorem 4.3 and Theorem 9.1) that (C, d) is of 1-negative type and a finite subspace of (C, d) is of strict 1-negative type if and only if this subspace contains at most one pair of antipodal points. Hence part 1 follows at once. The definition of Γ implies that $\Gamma=0$ if n is even, so let us assume that $n=2 k+1$, for some k in \mathbb{N}.

Let A be the distance matrix of $C_{n}=C_{2 k+1}$. It is shown in [1] (Theorem 3.1) that A^{-1} is given by

$$
A^{-1}=-2 I-C^{k}-C^{k+1}+\frac{2 k+1}{k(k+1)} \underline{1} \underline{1}^{T}
$$

where I is the identity matrix and C is the matrix (with respect to the canonical bases) of the linear map on \mathbb{R}^{n}, which sends each $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)$. Now $A^{-1} \underline{1}=\frac{1}{k(k+1)} \underline{1}$ and so B (as defined in Theorem 3.5) is given by $B=2 I+C^{k}+C^{k+1}-\frac{4}{2 k+1} 1^{T}$ and so

$$
(B x \mid x)=2\|x\|_{2}^{2}-\frac{4}{2 k+1}(x \mid \underline{1})^{2}+2\left(x_{1} x_{k+1}+\cdots+x_{k+1} x_{2 k+1}+x_{k+2} x_{1}+\cdots+x_{2 k+1} x_{k}\right)
$$

for each $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{2 k+1}\right)$ in $\mathbb{R}^{2 k+1}$.
Now let x be in $\{0,1\}^{2 k+1}$ and let $s=\left|\left\{1 \leqslant i \leqslant 2 k+1 \mid x_{i}=1\right\}\right|$. In the case $s=0$ and $s=2 k+1$ we get $(B x \mid x)=0$, so assume that $1 \leqslant s \leqslant 2 k$. Since

$$
x_{1} x_{k+1}+\cdots+x_{k+1} x_{2 k+1}+x_{k+2} x_{1}+\cdots+x_{2 k+1} x_{k}<\|x\|_{2}^{2}=s
$$

we get

$$
(B x \mid x) \leqslant 2 s-\frac{4}{2 k+1} s^{2}+2(s-1)=2\left(2 s-1-\frac{2}{2 k+1} s^{2}\right)
$$

It follows immediately, that

$$
\max _{1 \leqslant s \leqslant 2 k}\left(2 s-1-\frac{2}{2 k+1} s^{2}\right)=\frac{2 k^{2}-1}{2 k+1}
$$

and hence

$$
\max _{x \in\{0,1\}^{2 k+1}}(B x \mid x) \leqslant \frac{4 k^{2}-2}{2 k+1}
$$

On the other hand define \bar{x} in $\{0,1\}^{2 k+1}$ as $\bar{x}^{T}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 k+1}\right)$, with $\alpha_{i}=1$ if and only if $i \in\{1,2, \ldots, m, 2 m+1,2 m+2, \ldots 3 m+1\}$ if $k=2 m$ and $\alpha_{i}=1$ if and only if $i \in\{1,2, \ldots, m$,
$2 m+2,2 m+3, \ldots, 3 m+2\}$ if $k=2 m+1, m$ in \mathbb{N}. In each case ($k=2 m, 2 m+1$) we get $(B \bar{x} \mid \bar{x})=\frac{4 k^{2}-2}{2 k+1}$. Summing up we have $\max _{x \in\{0,1\}^{2 k+1}}(B x \mid x)=\frac{4 k^{2}-2}{2 k+1}$ and hence Theorem 3.5, part 2 implies $\Gamma=\frac{2 k+1}{8 k^{2}-4}=\frac{1}{2} \frac{n}{n^{2}-2 n-1}$.

Corollary 4.2 (= Theorem 3.2 of [11]). Let (X, d) be a finite discrete space consisting of n points, $n \geqslant 2$. The 1-negative type gap Γ of X is given by

$$
\Gamma=\frac{1}{2}\left(\frac{1}{\left\lfloor\frac{n}{2}\right\rfloor}+\frac{1}{\left\lceil\frac{n}{2}\right\rceil}\right) .
$$

Proof. Let A be the distance matrix of X. We have $A=\underline{1} \underline{1}^{T}-I$ (I the identity matrix) and hence $A^{-1}=\frac{1}{n-1} \underline{1} \underline{1}^{T}-I$. So the matrix B defined as in Theorem 3.5 is given by $B=I-\frac{1}{n} \underline{1} \underline{1}^{T}$. Applying Theorem 3.5, part 2 we get

$$
\beta=\max _{x \in\{-1,1\}^{n}}(B x \mid x)=n-\frac{1}{n} \min _{x \in\{-1,1\}^{n}}(x \mid \underline{1})^{2}= \begin{cases}n, & n \text { even, } \\ n-\frac{1}{n}, & n \text { odd }\end{cases}
$$

and so $\Gamma=\frac{2}{\beta}=\frac{1}{2}\left(\frac{1}{\left\lfloor\frac{n}{2}\right\rfloor}+\frac{1}{\left\lceil\frac{n}{2}\right\rceil}\right)$.
Recall that for a given finite connected simple graph $G=(V, E)$ and a given collection $\{w(e), e \in E\}$ of positive weights associated to the edges of G, the graph G becomes a finite metric space, where the metric is given by the natural weighted path metric on G. A finite metric tree $T=(V, E)$ is a finite connected simple graph that has no cycles, endowed with the above given edge weighted path metric. It is shown in [4] (Corollary 7.2) that metric trees are of strict 1-negative type.

Corollary 4.3 (=Corollary 4.14 of [2]). Let $T=(V, E)$ be a finite metric tree. The 1-negative type gap Γ of G is given by $\Gamma=\left(\sum_{e \in E} \frac{1}{w(e)}\right)^{-1}$, where $w(e)$ denotes the weight of the edge e.

Proof. It is shown in [1] (Theorem 2.1) that the inverse matrix A^{-1} of the distance matrix A of a finite metric tree is given by

$$
A^{-1}=-\frac{1}{2} L+\left(2 \sum_{e \in E} w(e)\right)^{-1} \delta \delta^{T}
$$

where L denotes the Laplacian matrix for the weighting of T that arises by replacing each edge weight by its reciprocal and δ in \mathbb{R}^{n} is given by $\delta^{T}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ with $\delta_{i}=2-d(i), d(i)$ denotes the degree of the vertex i. It follows easily that the matrix B defined as in Theorem 3.5 is given by $B=\frac{1}{2} L$. Routine calculations show, that

$$
(B x \mid x) \leqslant 2 \sum_{e \in E} \frac{1}{w(e)}, \quad \text { for all } x \text { in }\{-1,1\}^{n}
$$

Moreover we get $(B \bar{x} \mid \bar{x})=2 \sum_{e \in E} \frac{1}{w(e)}$, for $\bar{x}^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in $\{-1,1\}^{n}$, a 2 -colouring of the
vertices $1,2, \ldots, n$. By Theorem 3.5, part 2 we get $\Gamma=\left(\sum_{e \in E} \frac{1}{w(e)}\right)^{-1}$.

References

[1] R. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209.
[2] I. Doust, A. Weston, Enhanced negative type for finite metric trees, J. Funct. Anal. 254 (2008) 2336-2364.
[3] I. Doust, A. Weston, Corrigendum to enhanced negative type for finite metric trees, J. Funct. Anal. 255 (2008) 532-533.
[4] P. Hjorth, P. Lisonek, Steen Markvorsen, Carsten Thomassen, Finite metric spaces of strictly negative type, Linear Algebra Appl. 270 (1998) 255-273.
[5] R. Larsen, Functional Analysis an Introduction, Marcel Dekker Inc., New York, 1973.
[6] H. Li, A. Weston, Strict p-negative type of a metric space, Positivity 14(3) (2010) 529-545.
[7] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. I, Bull. Aust. Math. Soc. 80 (2009) 1-25.
[8] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. II, Math. Nachr. 284 (2011) 332-341.
[9] Peter Nickolas, Reinhard Wolf, Distance geometry in quasihypermetric spaces. III, Math. Nachr. 284 (2011) 747-760.
[10] Peter Nickolas, Reinhard Wolf, Finite quasihypermetric spaces, Acta Math. Hungar. 124 (3) (2009) 243-262.
[11] Anthony Weston, Optimal lower bound on the supremal strict p-negative type of a finite metric space, Bull. Aust. Math. Soc. 80 (2009) 486-497.

[^0]: E-mail address: reinhard.wolf@sbg.ac.at

