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1. Introduction

Consider a simply connected polygon P with k sides. Code each the billiard orbit by the sequence of sides it hits. We
study the following question: can the arising sequence be realized as the coding of a billiard orbit in another polygon? Of course if
the orbit is not dense in the boundary ∂ P , then we can modify P preserving the orbit by adding sides on the untouched
part of the boundary. In the case that the orbit is periodic we have even more, there is an open neighborhood of P in
a co-dimension one submanifold of the set of all k-gons for which the periodic orbit persists [6]. It is therefore natural to
study this question under the assumption that the orbit is dense in the boundary. More precisely, we say that two polygons
P , Q are code equivalent if there are forward billiard orbits u, v whose projections to the boundaries ∂ P , ∂ Q are dense.
We study this question under this assumption and under various regularity conditions on the orbit u.

We first assume a weak regularity condition, a direction θ is called non-exceptional if there is no generalized diagonal
in this direction. All but countably many directions are non-exceptional. Under this assumption we show that an irrational
polygon cannot be code equivalent to a rational polygon (Theorem 5.3) and if two rational polygons are code equivalent then
the angles at corresponding corners are equal (Theorem 7.1), for triangles this implies they must be similar (Corollary 7.2).
Next we assume a stronger regularity condition on the angle, unique ergodicity of the billiard flow in the direction θ , which
is verified for almost every direction in a rational polygon. Under this assumption we show that two rational polygons which
are code equivalent must be affinely similar and if the greatest common denominator of the angles is at least 3 then they
must be similar (Theorem 7.4, Corollary 7.5).

In [1] we proved analogous results under the assumption that P , Q are order equivalent. Our investigation of code
equivalence is motivated by Benoit Rittaud’s review article on these results [4]. We compare our results with those of [1]. We
show that under the weak regularity condition order equivalence implies code equivalence (Theorem 8.2), while under the
strong regularity condition they are equivalent (Theorem 8.3, Corollary 8.4). The proof of this equivalence uses Corollary 7.5.
We do not know if under the weak regularity condition code equivalence implies order equivalence.
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2. Polygonal billiards

A polygonal billiard table is a polygon P . Our polygons are assumed to be planar, simply connected, not necessarily
convex, and compact, with all angles nontrivial, i.e. in (0,2π) \ {π}. The billiard flow {Tt}t∈R in P is generated by the free
motion of a point mass subject to elastic reflections in the boundary. This means that the point moves along a straight
line in P with a constant speed until it hits the boundary. At a smooth boundary point the billiard ball reflects according
to the well-known law of geometrical optics: the angle of incidence equals the angle of reflection. If the billiard ball hits
a corner, (a non-smooth boundary point), its further motion is not defined. Additionally to corners, the billiard trajectory is
not defined for orbits tangent to a side.

By D we denote the group generated by the reflections in the lines through the origin, parallel to the sides of the
polygon P . The group D is either

• finite, when all the angles of P are of the form πmi/ni with distinct co-prime integers mi , ni , in this case D = DN the
dihedral group generated by the reflections in lines through the origin that meet at angles π/N , where N is the least
common multiple of ni ’s,

or

• countably infinite, when at least one angle between sides of P is an irrational multiple of π .

In the two cases we will refer to the polygon as rational, respectively irrational.
Consider the phase space P × S1 of the billiard flow Tt , and for θ ∈ S1, let Rθ be its subset of points whose second

coordinate belongs to the orbit of θ under D . Since a trajectory changes its direction by an element of D under each
reflection, Rθ is an invariant set of the billiard flow Tt in P . The set P × θ will be called a floor of the phase space of the
flow Tt .

As usual, π1, resp. π2 denotes the first natural projection (to the foot point), resp. the second natural projection (to the
direction). A direction, resp. a point u from the phase space is exceptional if it is the direction of a generalized diagonal
(a generalized diagonal is a billiard trajectory that goes from a corner to a corner), resp. π2(u) is such a direction. Obviously
there are countably many generalized diagonals hence also exceptional directions. A direction, resp. a point u from the
phase space, which is not exceptional will be called non-exceptional.

In a rational polygon a billiard trajectory may have only finitely many different directions. The set Rθ has the structure
of a surface. For non-exceptional θ ’s the faces of Rθ can be glued according to the action of DN to obtain a flat surface
depending only on the polygon P but not on the choice of θ – we will denote it R P .

Let us recall the construction of R P . Consider 2N disjoint parallel copies P1, . . . , P2N of P in the plane. Orient the even
ones clockwise and the odd ones counterclockwise. We will glue their sides together pairwise, according to the action of
the group DN . Let 0 < θ = θ1 < π/N be some angle, and let θi be its i-th image under the action of DN . Consider Pi and
reflect the direction θi in one of its sides. The reflected direction is θ j for some j. Glue the chosen side of Pi to the identical
side of P j . After these gluings are done for all the sides of all the polygons one obtains an oriented compact surface R P .

Let pi be the i-th vertex of P with the angle πmi/ni and denote by Gi the subgroup of DN generated by the reflections
in the sides of P , adjacent to pi . Then Gi consists of 2ni elements. According to the construction of R P the number of
copies of P that are glued together at pi equals to the cardinality of the orbit of the test angle θ under the group Gi , that
is, equals 2ni .

The billiard map T : V P = ⋃
e × Θ ⊂ δP × (−π

2 , π
2 ) → V P associated with the flow Tt is the first return map to the

boundary δP of P . Here the union
⋃

e × Θ is taken over all sides of P and for each side e over the inner pointing
directions θ ∈ Θ = (−π

2 , π
2 ) measure with respect to the inner pointing normal. We will denote points of V P by u = (x, θ).

We sometimes use the map �1, �2 and � mapping (e × (−π
2 , π

2 ))2 into R
+ defined as �1(u, ũ) = |π1(u) − π1(ũ)|,

�2(u, ũ) = |π2(u) − π2(ũ)| and � = max{�1,�2}. Clearly the map � is a metric.
The bi-infinite (forward, backward) trajectory (with respect to T ) is not defined for all points from V P . The set of points

from V P for which the bi-infinite, forward and backward trajectory exists is denoted by B I V P , F V P and B V P respectively.
For a simply connected polygon we always consider counterclockwise orientation of its boundary δP . We denote [x, x′]

((x, x′)) a closed (open) arc with outgoing endpoint x and incoming endpoint x′ .
If P , Q are simply connected polygons, two sequences {xn}n�0 ⊂ ∂ P and {yn}n�0 ⊂ ∂ Q have the same combinatorial

order if for each non-negative integers k, l,m

xk ∈ [xl, xm] ⇐⇒ yk ∈ [yl, ym]. (1)

We proceed by recalling several well known and useful (for our purpose) results about polygonal billiards (see for
example [3]). Recall that a flat strip T is an invariant subset of the phase space of the billiard flow/map such that

(1) T is contained in a finite number of floors,
(2) the billiard flow/map dynamics on T is minimal in the sense that any orbit which does not hit a corner is dense in T ,
(3) the boundary of T is nonempty and consists of a finite union of generalized diagonals.

The set of the corners of P is denoted by C P . As usual, an ω-limit set of a point u is denoted by ω(u).



238 J. Bobok, S. Troubetzkoy / Topology and its Applications 159 (2012) 236–247
Proposition 2.1. ([3]) Let P be rational and u ∈ F V P . Then exactly one of the following three possibilities has to be satisfied.

(i) u is periodic.
(ii) orb(u) is a flat strip; the billiard flow/map is minimal on orb(u).

(iii) For the flow Tt , ω(u) = Rπ2(u) . The billiard flow/map is minimal on Rπ2(u) . We have

#
({

π2
(
T n(u)

)
: n � 0

}) = 2N,

and for every x ∈ ∂ P \ C P ,

#
{

u0 ∈ ω(u): π1(u0) = x
} = N,

where N = N P is the least common multiple of the denominators of angles of P . Moreover, in this case

π2
({

u0 ∈ ω(u): π1(u0) = x
}) = π2

({
u0 ∈ ω(u): π1(u0) = x′})

whenever x′ /∈ C P belongs to the same side as x. Case (iii) holds whenever u ∈ F V P is non-exceptional.

Corollary 2.2. Let P be rational and u ∈ F V P , then u is recurrent and the ω-limit set ω(u) coincides with the forward orbit closure
orb(u).

Theorem 2.3. ([1, Theorem 4.1]) Let P be irrational and u ∈ F V P .

(i) If π2(u) is non-exceptional then {π2(T nu): n � 0} is infinite.
(ii) If u is not periodic, but visits only a finite number of floors then (u is uniformly recurrent and) orb(u) is a flat strip.

Combining Proposition 2.1 and Theorem 2.3(ii) yields

Corollary 2.4. Let P be a polygon and u ∈ V P visits a finite number of floors. Then u is uniformly recurrent.

Let G be a function defined on a neighborhood of y. The derived numbers D+G(y), D+G(y) of G at y are given by

D+G(y) = lim sup
h→0+

G(y + h) − G(y)

h
, D+G(y) = lim inf

h→0+

G(y + h) − G(y)

h

and the analogous limits from the left are denoted by D−G(y), D−G(y).
Let (z, y) be the coordinates of R

2 and let pa,b ⊂ R
2 be the line with equation y = a + z tan b. For short we denote

p y0,G(y0) by pG(y0) . The following useful lemma was proven in [1].

Lemma 2.5. Let G : (c,d) → (−π
2 , π

2 ) be a continuous function. Fix C ⊂ (c,d) countable. Assume that for some y0 one of the four
possibilities

D+G(y0) > 0, D+G(y0) < 0, D−G(y0) > 0, D−G(y0) < 0

is fulfilled. Then there exists a sequence {yn}n�1 ⊂ (c,d) \ C such that limn yn = y0 and the set of crossing points {pG(y0) ∩ pG(yn):
n � 1} is bounded in the R

2 .

3. Coding by sides

For a simply connected k-gon P we always consider counterclockwise numbering of sides e1 = [p1, p2], . . . , ek =
[pk, p1]; we denote e◦

i = (pi, pi+1).
The symbolic bi-infinite (forward, backward) itinerary of a point u = (x, θ) ∈ B I V P (u ∈ F V P , u ∈ B V P ) with respect

to the sides of P is a sequence σ(u) = {σi(u)}∞i=−∞ , (σ+(u) = {σi(u)}i�0, σ−(u) = {σi(u)}i�0) of numbers from {1, . . . ,k}
defined by

π1
(
T iu

) ∈ e◦
σi

.

Let ΣP := {σ+(u): u ∈ F V P }. For a sequence σ = {σi}i�0 ∈ ΣP we denote by X(σ ) the set of points from V P whose
symbolic forward itinerary equals to σ .

Theorem 3.1. ([2]) Let P be a polygons and σ ∈ ΣP be periodic. Then each point from X(σ ) has a periodic trajectory.

We will repeatedly use the following result.
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Theorem 3.2. ([2]) Let P be a polygon and σ ∈ ΣP be non-periodic, then the set X(σ ) consists of one point.

For u ∈ F V P and m � 1 denote

F V P (u,m) = {
w ∈ F V P : σi(u) = σi(w), i = 0, . . . ,m − 1

}
and define positive numbers εi,m , i = 1,2 and εm by

εi,m = sup
{
�i(w, u): w ∈ F V P (u,m)

}
, εm = max{ε1,m, ε2,m}. (2)

We remind the reader the notion of an unfolded billiard trajectory. Namely, instead of reflecting the trajectory in a side
of P one may reflect P in this side and unfold the trajectory to a straight line. As a consequence of Theorem 3.2 we obtain

Proposition 3.3. If u ∈ F V P is non-periodic then limm εm = 0.

Proof. Unfolding billiard trajectories immediately yields limm ε2,m = 0. Note that εm is decreasing and assume that ε0 =
limm εm > 0. Then necessarily also ε0 = limm �1(u, wm) for some wm = (xm, θm) ∈ F V P (u,m), i.e., limm xm = x ∈ eσ0(u) and
|π1(u) − x| = ε0. Denoting x̃ the middle of an arc with the endpoints π1(u), x, we get σ+((x̃,π2(u)) = σ+(u), what is
impossible by Theorem 3.2. �

We let to the reader the verification of the following fact.

Proposition 3.4. Let P be a polygon. For every δ > 0 there exists an m = m(δ) ∈ N such that whenever u, ũ ∈ V P satisfy �2(u, ũ) > δ

and for some n, |n| � m, the symbols σn(u),σn(ũ) exist, then σn(u) �= σn(ũ).

An increasing sequence {n(i)}i�0 of positive integers is called syndetic if the sequence {n(i + 1) − n(i)}i�0 is bounded.
A symbolic itinerary σ+ is said to be (uniformly) recurrent if for every initial word (σ0, . . . , σm−1) there is a (syndetic)
sequence {n(i)}i�0 such that (σn(i), . . . , σn(i)+m−1) = (σ0, . . . , σm−1) for all i. For a polygon P and billiard map T : V P → V P ,
a point u = (x, θ) ∈ F V P is said to be (uniformly) recurrent if for every ε > 0 there is a (syndetic) sequence {n(i)}i�0 such
that

�
(
T n(i)u, u

)
< ε

for each i.
It is easy to see that a (uniformly) recurrent point u has a (uniformly) recurrent symbolic itinerary. It is a consequence of

Theorems 3.1, 3.2 that the opposite implication also holds true.

Proposition 3.5. Let P be a polygon and u ∈ F V P . Then σ+(u) is (uniformly) recurrent if and only if u is (uniformly) recurrent.

Proof. Suppose σ+(u) is (uniformly) recurrent. By Theorem 3.1 we are done if σ+(u) is periodic. If it is non-periodic,
Proposition 3.3 says that limm εm = 0, where εm were defined in (2). Choose an ε > 0. Then εm < ε for some m and we can
consider a (syndetic) sequence {n(i,m)}i�0 corresponding to the initial word (σ0, . . . , σm−1) of σ+(u). Clearly,

�
(
T n(i,m)u, u

)
� εm < ε

for each i. The converse is clear. �
4. Code equivalence

Definition 4.1. We say that polygons P , Q are code equivalent if there are points u ∈ F V P , v ∈ F V Q such that

(C1) {π1(T nu)}n�0 = ∂ P , {π1(Sn v)}n�0 = ∂ Q ,

(C2) the symbolic forward itineraries σ+(u), σ+(v) are the same;

the points u, v will be sometimes called the leaders.

Clearly any two rectangles are code equivalent, and also two code equivalent polygons P , Q have the same number
of sides. In this case we always consider their counterclockwise numbering e1 = [p1, p2], . . . , ek = [pk, p1] for P , resp.
f1 = [q1,q2], . . . , fk = [qk,q1] for Q . We sometimes write ei ∼ f i to emphasize the correspondence of sides ei, f i . The
verification that this relation is reflexive, symmetric and transitive is left to the reader.

Definition 4.2. Let P be a polygon and u, ũ ∈ F V P . We say that trajectories of u, ũ intersect before their symbolic separation
if either
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Fig. 1. Parallel versus Crossing with k0 = −2, the (n)-increasing case.

(p) for some positive integer �, σ�(u) �= σ�(ũ),

σk(u) = σk(ũ) whenever k ∈ {0, . . . , � − 1}
and for some k0 ∈ {0, . . . , � − 1}, the segments with endpoints

π1
(
T k0 u

)
, π1

(
T k0+1u

)
and π1

(
T k0 ũ

)
, π1

(
T k0+1ũ

)
intersect; or

(n) for some negative integer �, σ�(u) �= σ�(ũ),

σk(u) = σk(ũ) whenever k ∈ {� + 1, . . . ,0}
and for some k0 ∈ {�, . . . ,−1}, the segments with endpoints

π1
(
T k0 u

)
, π1

(
T k0+1u

)
and π1

(
T k0 ũ

)
, π1

(
T k0+1ũ

)
intersect.

For u ∈ F V P , a side e of P and θ ∈ (−π
2 , π

2 ) we put

I(u, e, θ) = {
n ∈ N ∪ {0}: π1

(
T nu

) ∈ e, π2
(
T nu

) = θ
}
. (3)

Throughout the section let un = T nu, xn = π1(un), vn = Sn v , yn = π1(vn).

Proposition 4.3. Let polygons P , Q be code equivalent with leaders u, v, u recurrent. For any m,n ∈ I(u, e, θ), the trajectories of
Sm v, Sn v cannot intersect before their symbolic separation.

Proof. The case when xm < xn and ym < yn , resp. yn < ym will be called increasing, resp. decreasing. Thus, using the two
parts of Definition 4.2 and assuming that the conclusion is not true we can distinguish the following four possibilities:
(p)-increasing, (p)-decreasing, (n)-decreasing and (n)-increasing. Let us prove the (n)-increasing case. In this case there are
m,n ∈ I(u, e, θ), some negative �,k0 such that

xm < xn, ym < yn

and the second part (n) of Definition 4.2 is fulfilled.
Note that we have only assumed that the forward iterates of x and y have the same code, but in the (n)-increasing

case we want to exclude the intersection of their backwards orbits. We overcome this problem by approximating xm and yn

by their forward orbits. This can be done since the leader u is recurrent, hence by Proposition 3.5 v is also recurrent. We
consider (see Fig. 1) sufficiently large integers m(1),n(1) ∈ (−�,∞) such that vm(1) , resp. vn(1) approximates vm , resp. vn .
Then σm(1)+�(v) �= σn(1)+�(v), σm(1)+k(v) = σn(1)+k(v) whenever k ∈ {� + 1, . . . ,0}; since for some k0 ∈ {�, . . . ,−1}, the
segments with endpoints

π1
(
T m(1)+k0 v

)
, π1

(
T m(1)+k0+1 v

)
and π1

(
T n(1)+k0 v

)
, π1

(
T n(1)+k0+1 v

)
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intersect and the points um(1), un(1) are (almost) parallel, we get

sgn
(
σm(1)+�(u) − σn(1)+�(u)

) �= sgn
(
σm(1)+�(v) − σn(1)+�(v)

)
,

what is not possible for the leaders u, v . The other three cases are analogous. �
In the last part of this section we present Corollaries 4.5–4.9 of Proposition 4.3 under the following

Assumption 4.4. Let P , Q be code equivalent polygons with leaders u, v and the set of directions {π2(T nu): n � 0} along
the trajectory of u is finite.

When proving Corollaries 4.5–4.9 we denote αn = π2(un), βn = π2(vn). By Definition 4.1(C1) the first projection of the
forward trajectory of u, resp. of v is dense in ∂ P , resp. ∂ Q , so in particular, neither u nor v is periodic. In any case, the
set I(u, e, θ) defined for a side e = ei in (3) is nonempty only for θ ’s from the set {π2(T nu): n � 0} which is assumed to be
finite. In what follows we fix such e and θ .

Applying Corollary 2.4 and Proposition 3.5 we obtain that both the leaders u and v are uniformly recurrent.
Obviously the set

J (e, θ) = {
yn: n ∈ I(u, e, θ)

}
(4)

is a perfect subset of a side f = f i ∼ e. The counterclockwise orientation of ∂ Q induces the linear ordering of f and we
can consider two elements min J (e, θ),max J (e, θ) ∈ f .

Define a function g : {yn}n∈I(u,e,θ) → (−π
2 , π

2 ) by g(yn) = βn .

Corollary 4.5. The function g can be extended continuously to the map G : J (e, θ) → [−π
2 , π

2 ]. Moreover, G(y) ∈ (−π
2 , π

2 ) for each

y ∈ J (e, θ) \ {
min J (e, θ),max J (e, θ)

}
.

Proof. Put G(yn) = βn . Proposition 4.3 clearly shows that for n(k) ∈ I(u, e, θ),

yn(k) →k y ∈ J (e, θ) implies βn(k) → β ∈
[
−π

2
,
π

2

]

and we can put G(y) = β .
Let y ∈ J (e, θ) \ {min J (e, θ),max J (e, θ)} and choose yn(i), yn( j) such that

y ∈ (yn(i), yn( j)). (5)

If G(y) = −π
2 , resp. G(y) = π

2 then by (5) and the continuity of G , for some vn(k) sufficiently close to (y,−π
2 ), resp.

(y, π
2 ), the trajectories of vn( j), vn(k) , resp. vn(i), vn(k) intersect before their symbolic separation, what contradicts Proposi-

tion 4.3. Thus G(y) ∈ (−π
2 , π

2 ). �
The notion of combinatorial order has been introduced in (1).

Corollary 4.6. The sequences {xn}n∈I(u,e,θ) ⊂ e and {yn}n∈I(u,e,θ) ⊂ f have the same combinatorial order.

Proof. The conclusion is true when #I(u, e, θ) � 1. Assume to the contrary that for some m,n ∈ I(u, e, θ),

xm < xn and yn < ym.

Since by Proposition 4.3 the trajectories of vm, vn cannot intersect before their symbolic separation,

sgn
(
σk(um) − σk(un)

) �= sgn
(
σk(vm) − σk(vn)

)
for some k ∈ N, what is not possible for the leaders u, v . The case xn < xm and ym < yn can be disproved analogously. �

Since⋃
e,θ

J (e, θ) = ∂ Q ,

where the number of summands on the left is by Assumption 4.4 finite, Baire’s theorem [5, Theorem 5.6] implies that there
exists a side e and an angle θ for which J (e, θ) has a nonempty interior. Denote [c,d] a nontrivial connected component
of J (e, θ). Put

τ = {(
y, G(y)

)
: y ∈ [c,d]}.
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Corollary 4.7. There is a countable subset τ0 of τ such that each point from τ \ τ0 has a bi-infinite trajectory (either the forward or
backward trajectory starting from any point of τ0 finishes in a corner of Q ).

Proof. Assume that there are two points v̂, ṽ ∈ τ such that π1(v̂) < π1(ṽ), for some k ∈ N π1(Sk v̂) = π1(Sk ṽ) is a common
corner and σi(v̂) = σi(ṽ) for i ∈ {0, . . . ,k − 1}. As before let vn = Sn v . Choose three of these points v�, vm, vn ∈ τ satisfying

• π1(vm) < π1(v�) < π1(vn)

• vm , resp. vn is (sufficiently) close to v̂ , resp. ṽ

Then the trajectories of either vm, v� or v�, vn intersect before their symbolic separation, contradicting Proposition 4.3.
Thus for each k � 1 and each v̂, ṽ ∈ τ with common symbolic itinerary of length k, we cannot have π1(Sk v̂) = π1(Sk ṽ) is

a corner, or equivalently each corner can have at most one preimage of order k for each forward symbolic itinerary segment
of length k. This implies that the set τ0,F = τ \ F V Q is at most countable. This is also true for τ0,B = τ \ B V Q and we can
put τ0 = τ0,F ∪ τ0,B . �
Corollary 4.8. The continuous function G : J (e, θ) → [−π

2 , π
2 ] defined in Corollary 4.5 has to be constant on each connected compo-

nent [c,d] of J (e, θ).

Proof. Since by Corollary 4.7 the projection C = π1(τ0) is countable and G is continuous, it is sufficient to show that
G ′( ỹ0) = 0 whenever ỹ0 ∈ (c,d) \ C .

To simplify the notation, choose the origin of S1 to be the direction perpendicular to the side of Q containing (c,d) and
fix ỹ0 ∈ (c,d) \ C ; then by Corollary 4.5 for a sufficiently small neighborhood U ( ỹ0) of ỹ0, G(U ( ỹ0)) ⊂ (−π

2 , π
2 ).

For ỹ ∈ U ( ỹ0) \ C consider the unfolded (bi-infinite) billiard trajectory of ( ỹ, G( ỹ)) under the billiard flow {St}t∈R in Q .
Via unfolding, this trajectory corresponds to the line pG( ỹ) with the equation y = ỹ + z tan G( ỹ).

Claim 4.9. There is no sequence { ỹn}n�1 ⊂ (c,d) \ C such that limn ỹn = ỹ0 and the set of crossing points {pG( ỹ0) ∩ pG( ỹn): n � 1} is
bounded.

Proof. Assuming the contrary of the conclusion we can consider sufficiently large n and some point vk , resp. v� approxi-
mating ( ỹ0, G( ỹ0)), resp. ( ỹn, G( ỹn)) such that the trajectories of vk, v� intersect before their symbolic separation, what is
impossible by Proposition 4.3. �

Now, applying Lemma 2.5 and Claim 4.9 we obtain that the function G satisfies G ′( ỹ0) = 0 for every ỹ0 ∈ (c,d) \ C , i.e.,
for some ϑ ∈ (−π

2 , π
2 ), G ≡ ϑ is constant on [c,d]. �

5. Rational versus irrational

Lemma 5.1. Let P , Q be code equivalent with leaders u, v; P rational. Then the set of directions{
π2

(
Sn v

)
: n � 0

}
along the trajectory of v is finite.

Proof. Applying Lemma 2.5 and Corollary 4.9 we obtain that the function G defined in Corollary 4.5 satisfies G ′( ỹ0) = 0 for
every ỹ0 ∈ (c,d)\C , i.e., for some ϑ ∈ (−π

2 , π
2 ), G ≡ ϑ is constant on [c,d], where [c,d] is a nontrivial connected component

of J (e, θ) defined in (4).
We know that the leader v is uniformly recurrent. Take a positive integer n ∈ I(u, e, θ) and a positive ε0 such that

(yn − ε0, yn + ε0) ⊂ (c,d).

There is a syndetic sequence {n(i)}i�0 ⊂ I(u, e, θ) for which

�
(

Sn(i)vn, vn
)
< ε0, π2

(
Sn(i)vn

) = ϑ

for each i. This shows that the set of directions {π2(Sn v): n � 0} along the trajectory of v is finite. �
Remark 5.2. In Lemma 5.1 we do not assume that u is non-exceptional.

Theorem 5.3. Let P , Q be code equivalent with leaders u, v; P rational, u non-exceptional. Then Q is rational with v non-exceptional.
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Proof. As before, we put xn = π1(T nu) and yn = π1(Sn v). Assume v is exceptional. By Definition 4.1 v is non-periodic. At
the same time Lemma 5.1 says that the set of directions{

π2
(

Sn v
)
: n � 0

}
along the trajectory of v is finite. Thus Proposition 2.1 implies that if Q is rational then v is minimal in a flat strip or in
an invariant surface Rπ2(v) . On the other hand if Q is irrational, Lemma 5.1 and Theorem 2.3(ii) imply that v is minimal in
a flat strip.

Suppose that v is exceptional, then it is parallel to a generalized diagonal d which is the boundary of a minimal flat
strip. The minimality implies that v is not only parallel to d, but v also approximates d. Denote y, resp. y′ an outgoing,
resp. incoming corner of d with

y′ = π1
(

S�(y, β)
)

(6)

for some � ∈ N and a direction β with respect to a side f = f i = [qi,qi+1]. Let us assume that y = qi and that v approxi-
mates d from the side f (the case when v approximates d from the other side, i.e. y = qi+1 is similar). Since v approximates
d and the set {π2(Sn v): n � 0} is finite we can consider a sequence {n(k)}k�0 such that for each k,

Sn(k)v = (yn(k), β), yn(k) ∈ f ,

Sn(k)+�v = (
yn(k)+�, β

′), yn(k)+� ∈ f ′,
limk→∞ yn(k) = y and limk→∞ yn(k)+� = y′ , where � is given by (6) and f ′ is the appropriate side of Q with endpoint y′ .

Let e = ei = [pi, pi+1], resp. e′ be the sides of P corresponding to f , resp. f ′ . Since P is rational, we can assume
that {n(k)}k�0 ⊂ I(u, e,α) and {n(k) + �}k�0 ⊂ I(u, e′,α′) for some α,α′ ∈ (−π

2 , π
2 ) and Corollary 4.6 can be used. By

that corollary the combinatorial order of the sequences {xn}n∈I(u,e,α) ⊂ e and {yn}n∈I(u,e,α) ⊂ f , resp. {xn}n∈I(u,e′,α′) ⊂ e′
and {yn}n∈I(u,e′,α′) ⊂ f ′ are the same. We assume the leader u to be non-exceptional hence by Proposition 2.1, the se-
quence {xn}n∈I(u,e,α) , resp. {xn}n∈I(u,e′,α′) is dense in the side e, resp. e′. Then necessarily limk→∞ xn(k) = x ∈ C P ∩ e and
limk→∞ xn(k)+� = x′ ∈ C P ∩ e′ , hence

x′ = π1
(
T �(x,α)

)
,

what contradicts our choice of non-exceptional u. Thus, the leader v has to be non-exceptional.
In order to verify that Q is rational, one can simply use Theorem 2.3(i) and Lemma 5.1. �

6. Rational versus rational – preparatory results

Throughout this section we will assume that P , Q are rational and code equivalent with non-exceptional leaders u, v ,
Theorem 5.3 implies that the assumption that v is non-exceptional is redundant.

Lemma 6.1. Let P , Q rational be code equivalent with non-exceptional leaders u, v. For every side ei and every direction θ ∈ π2((ei ×
(−π

2 , π
2 )) ∩ ω(u)) there exists a direction ϑ ∈ π2(( f i × (−π

2 , π
2 )) ∩ ω(v)) such that I(u, ei, θ) = I(v, f i, ϑ) and the sequences

{π1(T nu)}n∈I and {π1(Sn v)}n∈I have the same combinatorial order.

Proof. Let us fix a side ei and a direction θ ∈ π2((ei × (−π
2 , π

2 )) ∩ ω(u)). Using Corollaries 4.5, 4.8 we obtain for some
ϑ ∈ π2(( f i × (−π

2 , π
2 )) ∩ ω(v))

I(u, ei, θ) ⊂ I(v, f i,ϑ);
starting from f i , ϑ we get I(u, f i, ϑ) ⊂ I(v, ei, θ) hence I = I(u, f i, ϑ) = I(v, ei, θ). The fact that the sequences {π1(T nu)}n∈I
and {π1(Sn v)}n∈I have the same combinatorial order is a direct consequence of Corollary 4.6. �

Proposition 2.1 and Lemma 6.1 easily yield

Corollary 6.2. Let P , Q rational be code equivalent with non-exceptional leaders u, v. Then N P = N Q .

Lemma 6.3. Suppose P , Q are rational and code equivalent with non-exceptional leaders u, v; let σ+ = {σk}k�0 denote their common
itinerary. If σm = σn then

π2
(
T mu

)
< π2

(
T nu

) ⇐⇒ π2
(

Sm v
)
< π2

(
Sn v

)
.

Proof. As before we denote un = T nu, xn = π1(un), vn = Sn v , yn = π1(vn).
Let σm = σn = i ∈ {1, . . . ,k} for some m,n ∈ N ∪ {0}; it follows from Lemma 6.1 that θ1 = π2(um) �= π2(un) = θ2 if and

only if ϑ1 = π2(vm) �= π2(vn) = ϑ2. If our conclusion does not hold we necessarily have

−π
< θ1 < θ2 <

π
and −π

< ϑ2 < ϑ1 <
π

. (7)

2 2 2 2
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By Proposition 2.1, each of the two sequences

X j = {
xn: n ∈ I

(
u, ei, θ

j)}, j ∈ {1,2}
is dense in ei and an analogous statement is true for

Y j = {
yn: n ∈ I

(
u, f i,ϑ

j)}, j ∈ {1,2}.
Moreover, from Lemma 6.1 we know that the sequences X j and Y j , j ∈ {1,2} have the same combinatorial order.

Let m = max{m(|θ1 − θ2|),m(|ϑ1 − ϑ2|)} due to Proposition 3.4. To a given ε > 0 one can consider integers m(1),m(2) ∈
(m,∞), m(1) < m(2), for which

xm(1), xm(2) ∈ [pi, pi + ε], π2(um(1)) = θ1, π2(um(2)) = θ2

and also

ym(1), ym(2) ∈ [qi,qi + ε], π2(vm(1)) = ϑ1, π2(vm(2)) = ϑ2.

Then σm(1)−m(u), σm(2)−m(u), resp. σm(1)−m(v), σm(2)−m(v) exist and by Proposition 3.4 they are different. From (7) we
get

sgn
(
σm(1)−m(u) − σm(2)−m(u)

) �= sgn
(
σm(1)−m(v) − σm(2)−m(v)

)
,

what is impossible for the leaders u, v , a contradiction. �
For a polygon P and its corner p j ∈ C P , an element w ∈ V P points at p j if π1(T w) = p j . For u ∈ F V P we denote N(u, p j)

the number of elements from ω(u) that point at p j .

Lemma 6.4. Let P , Q rational be code equivalent with non-exceptional leaders u, v. Then N(u, p j) = N(v,q j), 1 � j � k, where k is
a common number of sides of P , Q .

Proof. Let (x, θ) ∈ ω(u) point at p j , x ∈ e = ei . Since u is non-exceptional, (x, θ) ∈ B V P is not periodic and it is a bothside
limit of {T nu}n∈I , where I = I(u, e, θ). Using Lemma 6.1 we can consider a direction ϑ ∈ π2(( f i × (−π

2 , π
2 )) ∩ ω(v)) such

that I(u, e, θ) = I(v, f , ϑ) and the (dense) sequences {π1(T nu)}n∈I , {π1(Sn v)}n∈I have the same combinatorial order. Clearly,
there is a unique element (y, ϑ) ∈ ω(v) (with the same address as (x, θ)) pointing at q j and satisfying (y, ϑ) ∈ B V Q ,
σ−((x, θ)) = σ−((y, ϑ)). The last equality and Theorem 3.2 imply N(u, p j) � N(v,q j). The argument is symmetric, thus we
obtain N(u, p j) = N(v,q j). �
7. Rational versus rational – main results

Let A(p) ∈ (0,2π) \ {π} denote the angle at the corner p ∈ C P .

Theorem 7.1. Let P , Q be code equivalent with leaders u, v; P rational, u non-exceptional. Then A(pi) = A(qi), 1 � i � k.

Proof. Theorem 5.3 implies that also Q is rational with a non-exceptional leader v . Let k = #C P = #C Q ; Since P , Q are
rational and simply connected, A(pi) = πmP

i /nP
i and A(qi) = πmQ

i /nQ
i , where mP

i , nP
i , resp. mQ

i , nQ
i are coprime integers.

In what follows, we will show that nP
i = nQ

i and mP
i = mQ

i .
We know from Corollary 6.2 that N P = N Q = N . Thus, both rational billiards correspond to the same dihedral group DN .
Second, consider the local picture around the i-th vertex pi . Denote the two sides which meet at pi by e and e′ . Suppose

there are 2nP
i copies of P which are glued at pi . Enumerate them in a cyclic counterclockwise fashion 1,2, . . . ,2nP

i . Since
u is non-exceptional its orbit is minimal, so it visits each of the copies of P glued at pi . In particular the orbit crosses each
of the gluings (copy j glued to copy j + 1).

Now consider the orbit of v . We need to show that there are the same number of copies of Q glued at qi . Fix a
j ∈ {1, . . . ,2nP

i } viewed as a cyclic group. Since u is non-exceptional the orbit of u must pass from copy j to copy j + 1
of P or vice versa from copy j + 1 to copy j. Suppose that we are at the instant that the orbit u passes from copy j to
copy j + 1 of P . At this same instant the orbit of v passes through a side. We label the two copies of Q by j and j + 1
respectively. This labeling is consistent for each crossing from j to j + 1.

Since this is true for each j, the combinatorial data of the orbit u glue the corresponding 2nP
i copies of Q together in

the same cyclic manner as the corresponding copies of P . Note that the common point of the copies of Q is a common
point of f and f ′ – the sides of Q corresponding to e, e′ – thus it is necessarily the point qi . In particular, since Lemma 6.3
applies, we have 2nP

i copies of Q glued around qi to obtain an angle which is a multiple of 2π . Thus 2nQ
i must divide 2nP

i .

The argument is symmetric, thus we obtain 2nP
i divides 2nQ

i . We conclude that nP
i = nQ

i .

Third, let us show that mQ
i = mP

i . Realizing the gluing of 2nP
i copies of P together at pi we get a point p ∈ R P with

total angle of 2πmP . If mP > 1, the point p is a cone angle 2πmP singularity. In any case, for the direction θ and the
i i i
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corresponding constant flow on R P , there are mP
i incoming trajectories that enter p on the surface R P , hence also mP

i
points in V P that finish their trajectory after the first iterate at the corner pi . Repeating all arguments for Q and ϑ = π2(v),
one obtain mQ

i points in V Q that finish their trajectory after the first iterate at the corner qi . Since such a number has to

be preserved by Lemma 6.4, the inequality mP
i �= mQ

i contradicts our assumption that P and Q are code equivalent. Thus,

mQ
i = mP

i . �
A triangle is determined (up to similarity) by its angles, thus Theorem 7.1 implies

Corollary 7.2. Let P , Q be code equivalent with leaders u, v, P a rational triangle, u non-exceptional. Then Q is similar to P .

For a P rational, the union of edges of R P – we call it the skeleton of R P – will be denoted by K P .
It follows from Proposition 2.1 that for P rational with u ∈ V P non-exceptional, ω(u) = K P .

Proposition 7.3. Let P , Q be code equivalent with leaders u, v; P rational, u non-exceptional. The map Ψ : orb(u) → orb(v) defined
by Ψ (T nu) = Sn v, n ∈ N ∪ {0} can be extended to the homeomorphism Φ : K P → K Q satisfying (for all n ∈ Z for which the image is
defined)

Φ
(
T nũ

) = SnΦ(ũ), ũ ∈ K P .

Proof. Proposition 2.1, Theorem 5.3 and Lemma 6.3 enable us to extend Ψ to the required homeomorphism Φ:
K P → K Q . �

It is a well-known fact that the billiard map T has a natural invariant measure on its phase space V P , the phase length
given by the formula μ = sin θ dx dθ – see [3]. In the case, when P is rational and the corresponding billiard flow is dense
in the surface R P , the measure μ sits on the skeleton K P of R P . In particular, an edge e of K P associated with θ has the
μ-length |e| · sin θ .

For any rational polygon with N = 2 we can speak – up to rotation – about horizontal, resp. vertical sides. Two such
polygons, P and Q with sides ei resp. f i , are affinely similar if they have the same number of corners/sides, corresponding
angles equal and there are positive numbers a,b ∈ R such that |ei|/| f i | = a, resp. |ei|/| f i | = b for any pair of corresponding
horizontal, resp. vertical sides. Recall the map Φ defined in Proposition 7.3.

As before the number N is defined as the least common multiple of ni ’s, where the angles of a simply connected rational
polygon P are πmi/ni .

Theorem 7.4. Let P , Q be code equivalent with leaders u, v; P rational, u non-exceptional. Denote μ, ν the phase length measure
sitting on the skeleton K P , K Q respectively. If ν = Φ∗μ then

(1) if N = N P � 3, Q is similar to P ;
(2) if N = N P = 2, Q is affinely similar to P .

Proof. We know from Theorem 5.3 that under our assumptions also Q is rational with v non-exceptional. By Lemma 6.2,
N P = N Q .

(1) For a side e of P and a θ ∈ [−π
2 , π

2 ] denote [e, θ] an edge of K P associated with e and θ . Let [ f , ϑ] = Φ([e, θ])).
Since ν = Φ∗μ and μ,ν are the phase lengths,

|e| sin θ = | f | sinϑ. (8)

Assume that the least common multiple N of the denominators of angles of P is greater than or equal to 3. The polygons P ,
Q correspond to the same dihedral group DN generated by the reflections in lines through the origin that meet at angles
π/N . The orbit of θ+

0 = π2(u0), resp. ϑ+
0 = π2(u0) under DN consists of 2N angles

θ+
j = θ+

0 + 2 jπ/N, θ−
j = θ−

0 + 2 jπ/N,

resp.

ϑ+
j = ϑ+

0 + 2 jπ/N, ϑ−
j = ϑ−

0 + 2 jπ/N.

Since N � 3, for each side e, resp. f one can consider the angles

θ, θ + 2π/N, resp. ϑ,ϑ + 2π/N

such that by Lemma 6.3 Φ[e, θ] = ( f , ϑ) and Φ[e, θ + 2π/N] = [ f , ϑ + 2π/N]. Then as in (8),

|e| sin θ = | f | sinϑ, |e| sin(θ + 2π/N) = | f | sin(ϑ + 2π/N),

hence after some routine computation we get |e| = | f |.
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(2) By Theorem 7.1 the polygons P and Q are quasisimilar hence we can speak about corresponding horizontal, resp.
vertical sides. Similarly as above, for a side e of P , some θ ∈ [−π

2 , π
2 ] and [ f , ϑ] = Φ([e, θ]),

|e| sin θ = | f | sinϑ,

where θ , resp. ϑ can be taken the same for any pair of corresponding horizontal, resp. vertical sides. Thus, the number
a = |e|/| f |, resp. b = |e|/| f | does not depend on a concrete choice of a pair of corresponding horizontal, resp. vertical sides.
This finishes the proof of our theorem. �

In a rational polygon we say that a point u is generic if it is non-exceptional, has bi-infinite orbit and the billiard map
restricted to the skeleton K P of an invariant surface R P ∼ Rπ2(u) has a single invariant measure (this measure is then
automatically the measure μ).

Corollary 7.5. Let P , Q be code equivalent with leaders u, v; P rational, u generic. Then

(1) if N = N P � 3, Q is similar to P ;
(2) if N = N P = 2, Q is affinely similar to P .

Proof. Obviously the dynamical systems (K P , T ), (K Q , S) are conjugated via the conjugacy Φ , hence by our assumption
on the element u, both of them are uniquely ergodic. It means that ν = Φ∗μ, where μ,ν are the phase lengths and
Theorem 7.4 applies. �
8. Code versus order equivalence

In [1] we have defined another kind of equivalence relation on the set of simply connected polygons. Namely, we used

Definition 8.1. We say that polygons (or polygonal billiards) P , Q are order equivalent if for some u ∈ F V P , v ∈ F V Q

(O1) {π1(T nu)}n�0 = ∂ P , {π1(Sn v)}n�0 = ∂ Q ,

(O2) the sequences {π1(T nu)}n�0, {π1(Sn v)}n�0 have the same combinatorial order;

the points u, v will be called leaders.

It is easy to see that any two rectangles are order equivalent.
Let t = {xn}n�0 be a sequence which is dense in ∂ P . The t-address at(x) of a point x ∈ ∂ P is the set of all increasing

sequences {n(k)}k of non-negative integers satisfying limk xn(k) = x. It is clear that any x ∈ ∂ P has a nonempty t-address and
t-addresses of two distinct points from ∂ P are disjoint.

For order equivalent polygons P , Q with leaders u, v , we will consider addresses with respect to the sequences given by
Definition 8.1(O2):

t = {
π1

(
T nu

)}
n�0, s = {

π1
(

Sn v
)}

n�0.

It is an easy exercise to prove that the map φ : ∂ P → ∂ Q defined by

φ(x) = y if at(x) = as(y) (9)

is a homeomorphism.
As before, the set of the corners p1, . . . , pk of P is denoted by C P .

Theorem 8.2. Suppose P , Q are order equivalent with leaders u, v; P rational, u non-exceptional. Then P , Q are code equivalent
with leaders u, v.

Proof. It was shown in [1, Theorem 4.2, Lemma 3.3] that Q is rational, v is non-exceptional and φ(C P ) = C Q , hence φ

preserves also the sides:

φ
([pi, pi+1]

) = [qi,qi+1], i = 1, . . . ,k.

Since by (9) for the leaders u, v

φ
(
π1

(
T nu

)) = π1
(

Sn v
)
,

the symbolic forward itineraries σ+(u), σ+(v) are the same. �
Theorem 8.3. Suppose P , Q are code equivalent with leaders u, v; P rational, u generic. Then P , Q are order equivalent with leaders
u, v.
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Proof. Apply Corollary 7.5, then P and Q are similar (or affinely similar). Let Φ be the map defined in Proposition 7.3.

N = 3. By Proposition 7.3, Φ(u) = v . Since P and Q are similar, Theorem 3.2 implies that v = u (up to similarity) for the
same code of u, v hence P , Q are order equivalent with leaders u, v .

N = 2. Arguing as in the proof of Corollary 7.5 we get ν = Φ∗μ, where μ,ν are the phase lengths. Now, on different
edges k1 = [a1,b1], k2 = [a2,b2] of K P that correspond to the same side [a,b] of P the proportions given by μ are preserved,
i.e., for μi = μ|ki and each x ∈ (a,b) and corresponding xi ∈ ki ,

μi
([ai, xi]

)
/μi(ki) = λ

([a, x])/λ([a,b]).
Since ν = Φ∗μ and ν is the phase length, on �i = Φ(ki) the proportions given by ν are also preserved. It means that
the sequences {π1(T nu)}n�0, {π1(Sn v)}n�0 have the same combinatorial order and P , Q are order equivalent with leaders
u, v . �
Corollary 8.4. Suppose P is a rational polygon and u ∈ F V P is generic. Then P , Q are code equivalent with leaders u, v if and only if
P , Q are order equivalent with leaders u, v.

Proof. It follows from Theorems 8.2 and 8.3. �
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