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Abstract Design and switch of catalytic activity in enzymology
remains a subject of intense investigation. Here, we employ a
DNAzyme–RNAzyme combination strategy for construction of
a 10–23 deoxyribozyme-hammerhead ribozyme combination that
targets different sites of the b-lactamase mRNA. The 10–23
deoxyribozyme-hammerhead ribozyme combination gene was
cloned into phagemid vector pBlue-scriptIIKS (+). In vitro the
single-strand recombinant phagemid vector containing the com-
bination sequence exhibited 10–23 deoxyribozyme activity, and
the linear transcript displayed hammerhead ribozyme activity.
In bacteria, the 10–23 deoxyribozyme-hammerhead ribozyme
combination inhibited the b-lactamase expression and repressed
the growth of drug-resistant bacteria. Thus, we created a DNA-
zyme–RNAzyme combination strategy that provides a useful ap-
proach to design and switch of catalytic activities for nucleic acid
enzymes.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Design and switch of catalytic activity has made enzymes the

subject of the most intense studies of biochemists. Ribozymes

and deoxyribozymes are important fields in enzymology, and

structural and biochemical research have provided detailed

information about the active sites of these enzymes [1–3].

Hammerhead ribozyme is a small RNA motif consisting of

three helices that intersect at a conserved core containing

GUX triplet (where X is A, C, or U) [4–6]. 10–23 deoxyribo-

zyme, the most active deoxyribozyme, was obtained by

in vitro selection [7] and is composed of a conserved catalytic

core of 15 nucleotides and two antisense arms of variable

length and sequence [8–11]. The hammerhead ribozyme, com-

posed of RNA, was found to be unstable and easily degrad-

able, and additionally lacks a regulation domain, which

normally facilitates the formation of complicated spatial struc-

ture with moderate rigidity and flexibility. To address the

instability of the hammerhead ribozyme, we obtained a circu-

lar RNA–DNA enzyme by in vitro selection, which was com-

posed of the hammerhead ribozyme as the active site, as well as
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backbone DNA with a regulating sequence [12]. Compared to

the linear hammerhead ribozyme, the stability of the circular

RNA–DNA enzyme was substantially enhanced. Furthering

this approach, we substituted the hammerhead ribozyme with

the more efficient and more stable 10–23 deoxyribozyme, while

the backbone DNA was replaced by the single-stranded repli-

cation-competent vector M13mp18 (7.25 kb), thus successfully

constructing a novel replicating circular deoxyribozyme, which

displayed 10–23 deoxyribozyme activities both in vitro and in

bacteria [13,14].

Here, we report the combination of 10–23 deoxyribozyme

and hammerhead ribozyme as the catalytic core, which targets

the b-lactamase mRNA in initiation and coding regions. The

DNAzyme–RNAzyme combination gene was cloned into

phagemid vector pBlue-script II KS (+) (2.96 kb). In vitro

the single-strand replicas of the recombinant phagemid vector

exhibited the 10–23 deoxyribozyme activity and the linear

transcript displayed the hammerhead ribozyme activity. In

bacteria, both the b-lactamase activity and the bacterial

growth of a drug-resistant strain harboring the recombinant

phagemid vector containing the DNAzyme–RNAzyme combi-

nation gene were inhibited, and these effects were dependent on

the catalytic activity. The recombinant phagemid vector con-

taining the DNAzyme–RNAzyme combination sequence had

higher RNA-cleaving activity in bacteria than the recombinant

phagemid vectors containing either the 10–23 deoxyribozyme

or the hammerhead ribozyme. Our experiments indicate that

the DNAzyme-RNAzyme combination is capable of replica-

tion and transcription in E. coli cells and that the activities

of the 10–23 deoxyribozyme and the hammerhead ribozyme

are intact in vitro and in bacteria. Thus, the switch of catalytic

activity could be achieved through the DNAzyme–RNAzyme

combination strategy.
2. Materials and methods

2.1. Constructing the recombinant phagemid vectors containing the gene
of the 10–23 deoxyribozyme-hammerhead ribozyme combination,
the 10–23 deoxyribozyme, the hammerhead ribozyme and their
inactive mutants

The complementary DNA fragments (10–23 deoxyribozyme-ham-
merhead ribozyme, DR; 10–23 deoxyribozyme, D; hammerhead ribo-
zyme, R; inactive mutant 10–23 deoxyribozyme-hammerhead
ribozyme, MDR; inactive mutant 10–23 deoxyribozyme, MD and
inactive mutant hammerhead ribozyme, MR) (Sangon, Shanghai) for
constructing the recombinant phagemid vectors were annealed and li-
gated (T4 DNA Ligase, TaKaRa, Dalian) with the linear pBlue-script
II KS (+) (Merck, German) digested with HindIII/BamHI (TaKaRa,
Dalian). The recombinant phagemid vectors were transformed into
blished by Elsevier B.V. All rights reserved.
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E. coli XL1-MRF0 competent cells and spread inoculated onto LB
agar plates containing IPTG and X-gal, and the positive clones could
be detected for the color varying. Furthermore, the results were tested
by sequencing (Sangon, Shanghai).
2.2. Determining the in vitro activities of the replicas and the transcripts
of the recombinant vectors

The single-strand circular replicas of the phagemid vectors con-
taining the 10–23 deoxyribozyme-hammerhead ribozyme combina-
tion and the 10–23 deoxyribozyme were prepared according to the
instruction manual of pBluescript II KS (+) phagemid vector, as
well, the linear transcripts of the 10–23 deoxyribozyme-hammerhead
ribozyme combination gene and the hammerhead ribozyme were
acquired by transcription in vitro (MAXIscript T3 Kit, Ambion).
The replicas and the transcripts were purified through agarose gel
and PAGE gel, respectively under no RNase contamination condi-
tions. The yields of the replicas and the transcripts were determined
from the absorbance of the samples at 260 nm. The multiple-turn-
over cleavage rates kcat and KM of the 10–23 deoxyribozymes and
the hammerhead ribozymes were determined using different 5 0-32P-la-
belled (T4 polynucleotide kinase, TaKaRa, Dalian) substrates. The
substrate of the 10–23 deoxyribozyme was 5 0-UGUAUGAGUAUU-
CAACAUUUUC-3 0 (22 nt, TaKaRa, Dalian). The substrate of the
hammerhead ribozyme was 5 0-UGAGCGUGGGUCUCGCGG-30

(18 nt, TaKaRa, Dalian).
The experiments of determining the in vitro kinetic parameters of the

10–23 deoxyribozymes were performed at 37 �C in a buffer containing
50 mM Tris–HCl, pH 7.5, 10 mM MgCl2 and 0.01% SDS. The concen-
tration of the non-labelled 10–23 deoxyribozymes was 2 nM, and those
of the 5 0-32P-labelled substrates from 10 to 240 nM. Aliquots were re-
moved at 5, 15, 30, 60 min, and the reaction was quenched by addition
of an equal volume of stop mix (9 M urea, 50 mM EDTA, 0.05% xylene
cyanol and 0.05% bromophenol blue). The substrates and the products
were separated on 16% polyacrylamide–7 M urea denaturing gel and
visualized by autoradiography. The extent of cleavage was determined
from measurements of radioactivity in the substrate and the 5 0 products
with a Bio-Rad PhosphorImager (Molecular Imager). The kinetic
parameters, kcat and KM, were fitted to the Eadie–Hofstee plot.

Reactions to determine kcat and KM of the hammerhead ribozymes
in 50 mM Tris–HCl, pH 7.5, 100 mM MgCl2 at 37 �C were conducted
with hammerhead ribozymes concentration of 25 nM and substrate
concentrations ranging from 50 to 500 nM. Aliquots were removed
for analysis at different time points (10, 30, 60, and 120 min). Other
operations were similar to those of the 10–23 deoxyribozymes de-
scribed above.
2.3. The activity of the 10–23 deoxyribozyme-hammerhead ribozyme
combination in bacteria

Either the plain pBlue-script II KS (+) vector or the recombinant
phagemid vectors containing the gene of the 10–23 deoxyribozyme-
hammerhead ribozyme combination, the 10–23 deoxyribozyme, the
hammerhead ribozyme and their mutants, were electroporated (Micro-
Pulser 165–2100, Bio-Rad) into Ampicillin-resistant strain TEM1
(minimum inhibitory concentration, 256 mg/l, obtained from the Bac-
teria Department of Beijing Hospital). Modified liquid SOC media, in
which the concentrations of Amp and the Mg2+ were changed to
150 lg/ml and 10 mM, respectively, were used. In order to ensure
phase synchronization, similar transformation efficiencies of about
3–5 · 107 plaques/lg the 10–23 deoxyribozyme-hammerhead ribozyme
combination, the 10–23 deoxyribozyme, the hammerhead ribozyme
and their mutants were obtained for all transformation experiments.
The growth of the bacteria could be determined from the spectropho-
tometric absorption of cell culture suspensions at 600 nm. The growth
inhibition rates were represented by (ODctrl-ODCDR orCD orCR)/ODctrl

(in this formula, ctrl, CDR, CD and CR represented the different groups
that the drug-resistant strain were electroporated with unrecombinant
and recombinant phagemid vectors, respectively). At the same time,
the b-lactamase activities of the transformed bacteria were measured
according to the iodometry method respectively [15]. The operations
were similar with that in Chen’s paper [13]. The b-lactamase activity
was defined as DA490 = Aa � As + Ab � Ac. As represented the absor-
bance of the sample at 490 nm. Aa, Ab and Ac was the absorbance of
the three control experiments respectively, (a) the phosphate buffer
(1.25 ml) plus the Amp solution (0.25 ml), (b) the sample cell extract
(20 ll) plus the phosphate buffer (1.5 ml) without Amp, and (c) phos-
phate buffer alone (1.5 ml).
3. Results

3.1. Designing and constructing the 10–23 deoxyribozyme-

hammerhead ribozyme combination

The design and schematic construction for the 10–23 deoxy-

ribozyme-hammerhead ribozyme (DR) combination is shown

in Fig. 1 and Table 1. We selected two efficient cleavage sites

(AU and GUC) within the translation initiation site and the

relative conserved sequence of the b-lactamase mRNA as tar-

get for the 10–23 deoxyribozyme (D)-hammerhead ribozyme

(R) combination [16–22]. Factoring in length of the antisense

arms, binding affinity, and the separation of the substrate from

the catalytic site, we designed 12/9 nt for the 10–23 deoxyribo-

zyme as well as 6/11 nt for the hammerhead ribozyme in the

10–23 deoxyribozyme-hammerhead ribozyme combination

[23,24]. We cloned the designed DR gene into the phagemid

vector pBlue-script II KS (+). We simultaneously generated

a panel of experimental constructs by cloning wild-type D

alone, wild-type R alone, inactive DR mutant (MDR), inactive

D mutant (MD) and inactive R mutant (MR) separately into

phagemid vectors. Through transforming (E. coli XL1-MRF 0)

and subsequent selection, we acquired the recombinant phage-

mid vectors, and designated the engineered phagemids con-

taining DR, D, R and their inactive mutants as CDR, CD,

CR, CMDR, CMD, and CMR, respectively (see Table 1).
3.2. Determining the in vitro activities of the 10–23

deoxyribozymes and the hammerhead ribozymes

We obtained the single-strand CDR and CD from phagemid

preparations of the recombinant vectors. The uncloned sense-

strand DNA of the linear 10–23 deoxyribozyme (LD) was used

for the control. We then analyzed the in vitro 10–23 deoxyribo-

zyme activities of CDR and CD using synthetic RNA substrate.

Furthermore, we measured the kinetic parameters of the 10–23

deoxyribozyme for CDR, CD and LD (Table 2). The catalytic

efficiencies (kcat/KM) for CDR and CD were 1.17 · 107 and

1.13 · 107 M�1 min�1, respectively, and compared to CDR

and CD activities, the values of LD were approximately 3-fold

greater (3.27 · 107 M�1 min�1).

We next analyzed the hammerhead ribozyme activities of the

linear transcripts from the recombinant phagemid vectors con-

taining the 10–23 deoxyribozyme-hammerhead ribozyme com-

bination (LDR) and the hammerhead ribozyme (LR). The

kinetic parameters of LDR and LR were determined using syn-

thetic RNA substrate under the same conditions. As Table 2

showed, the catalytic efficiency of LR (1.55 · 105 M�1 min�1)

was higher than that of LDR (4.28 · 104 M�1 min�1).

To determine the substrate specificity of the 10–23 deoxyri-

bozyme-hammerhead ribozyme combination, the RNA-cleav-

ing activity of CMD towards the 10–23 deoxyribozyme

substrate and CMR activity towards the hammerhead ribozyme

substrate were both tested. Neither CMD nor CMR exhibited

in vitro activity, indicating that the 10–23 deoxyribozyme-

hammerhead ribozyme combination possesses high in vitro

substrate specificity.



Fig. 1. The design and schematic construction for the 10–23 deoxyribozyme-hammerhead ribozyme (DR) combination. Step 1. The 10–23
deoxyribozyme (D)-hammerhead ribozyme (R) combination was designed to cleave the TEM spectrum b-lactamase mRNA at the indicated sites in
the initiation (7–8 for the 10–23 deoxyribozyme) and coding regions (717–719 for the hammerhead ribozyme). Step 2. The complementary cloning
fragments (DR) for construction of circular DNAzyme–RNAzyme combination were annealed and ligated with the linear pBlue-script II KS (+)
digested with HindIII/BamHI. Step 3. In the presence of helper phage VCSM13, we acquired the single-strand recombinant vector, which displayed
the 10–23 deoxyribozyme activity. Step 4. Lined with SacI, in vitro the transcript (with T3 RNA polymerase) of the DNAzyme–RNAzyme
combination gene showed the hammerhead ribozyme activity.
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3.3. The dependence of 10–23 deoxyribozyme and hammerhead

ribozyme activities on divalent metal ions in vitro

Divalent metal ions are well known and essential cofactors

for deoxyribozymes and ribozymes, and play an important role

in structure stabilization as well as catalytic activity [25,26]. To

determine the dependency of CDR and LDR activity on ion

cofactors, several common divalent metal ions were selected

and cleavage reactions were performed at pH 7.5 and 37 �C.

The results (Fig. 2A and B) revealed that both CDR and LDR

activity exhibited metal ion dependency. CDR and LDR showed

high activity from 1 mM Mg2+ and does not change much until

over 50 mM. Neither CDR nor LDR showed activity in the ab-

sence of divalent metal ions. Among all the divalent metal ions

selected, Mn2+, Mg2+ and Ca2+ remarkably stimulated the

activity of both CDR and LDR. Mn2+ and Mg2+ were the most

efficient activators, while, in contrast, Zn2+ and Ba2+ had no

effect on the activities of either CDR or LDR. Since Mg2+ is re-

quired for optimal activity, we further tested the dependence of

rate of cleavage activity of CDR and LDR in respect to varying

concentrations of Mg2+ (Fig. 2C and D). The results indicated
that, within the range of concentrations analyzed, the activities

of both CDR and LDR increased with increasing concentrations

of Mg2+ as cofactor.

3.4. The activity of the 10–23 deoxyribozyme-hammerhead

ribozyme combination in bacteria

The 10–23 deoxyribozyme-hammerhead ribozyme combina-

tion could target b-lactamase mRNA, thus acting as b-lacta-

mase inhibitor [27]. This predicts that Ampr bacteria

harboring the 10–23 deoxyribozyme-hammerhead ribozyme

combination will lose ampicillin resistance by the inhibition

of the b-lactamase expression. To evaluate the RNA-cleaving

activity of the 10–23 deoxyribozyme-hammerhead ribozyme

combination in bacteria, we transfected Ampr bacteria TEM-

1 by electroporation with the empty pBlue-script II KS (+) vec-

tor (ctrl), CDR, CD, CR, or their mutants. The growth curves of

the corresponding Ampr bacteria as well as the b-lactamase

activities were determined. The ctrl, CDR, CD and CR groups

with and without ampicillin were analyzed simultaneously,

and CDR, CD and CR had no detectable effect on TEM-1



Table 1
Cloning DNA fragments

Enzymes and mutants Cloning DNA
fragments

CDR    +(P)5’-A G C T T C C G C G A C T G A T G A G T C C G T G G G G A C G A A A C C C A C G C T C A

–3’-A G G C G C T G A C TA C T C A G G C A C C C C T G C T T T G G G T G C G A G T  

G A A A AT G T T G A A G G C TA G C T A C A A C G A A C T C ATA C A G -3’ 

C T T T T A C A A C T T C C G A T C G A T G T T G C T T G A G T A T G T C C T A G -5’(P) 

CD + (P)5’-A G C T T G A A A AT G T T G A A G G C T A G C T A C A A C G A A C T C ATA C A G  -3’ 

–3’- A C T T T T A C A A C T T C C G A T C G A T G T T G C T T G A G T A T G T C C T A G -5’(P) 

CR     + (P)5’-A G C T T C C G C G A C T G AT G A G T C C G T G G G G A C G A A A C C C A C G C T C A G -3’ 

–3’- A G G C G C T G A C TA C T C A G G C A C C C C T G C T T T G G G T G C G A G T C C TA G -5’(P) 

CMDR     +(P)5’-A G C T T C C G C G A C T G A T G A G T C C G T G G G G A C a A A A C C C A C G C T C A

–3’-A G G C G C T G A C TA C T C A G G C A C C C C T G t T T T G G G T G C G A G T 

G A A A AT G T T G A A G G a TA G C TA C A A C G A A C T C ATA C A G -3’ 

C T T T T A C A A C T T C C t AT C G AT G T T G C T T G A G T AT G T C C T A G -5’(P) 

CMD      + (P)5’-A G C T T G A A A AT G T T G A A G G a TA G C TA C A A C G A A C T C ATA C A G  -3’ 

–3’- A C T T T T A C A A C T T C C t AT C G AT G T T G C T T G A G T AT G T C C T A G -5’(P) 

CMR     + (P)5’-A G C T T C C G C G A C T G AT G A G T C C G T G G G G A C a A A A C C C A C G C T C A G -3’ 

–3’- A G G C G C T G A C TA C T C A G G C A C C C C T G t T T T G G G T G C G A G T C C TA G -5’(P)

The DNA fragments for constructing CDR, CD, CR and their inactive mutants. The catalytic core of deoxyribozyme or ribozyme is boxed and
antisense arms are underlined. The choice of mutant base for the 10–23 DNAzyme is same with our previous results [13]. According to the results of
Haseloff [21], the mutant base for the hammerhead ribozyme was designed. The conservation nucleotide mutation of deoxyribozyme or ribozyme are
shown as bold lowercase letters, C fi a for deoxyribozyme, G fi a for ribozyme. As well the shadowed letters at both ends of the fragments represent
the restriction site of HindIII/BamHI.

Table 2
The kinetic parameters of the deoxyribozymes and the ribozymes

Enzymes kcat (min�1) KM (nM) kcat/KM (M�1 min�1)

CDR 0.42 ± 0.06 35.76 ± 7.32 1.17 · 107

CD 0.48 ± 0.06 42.47 ± 7.89 1.13 · 107

LD 0.89 ± 0.05 27.21 ± 2.21 3.27 · 107

LDR 0.12 ± 0.02 2800 ± 297 4.28 · 104

LR 0.21 ± 0.02 1360 ± 120 1.55 · 105

The data represent means ± S.D. (n = 3).
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bacteria growing in the absence of ampicillin. The bacteria also

expressed a much lower b-lactamase activity. The results

proved that CDR, CD or CR groups with ampicillin inhibit

the bacteria growth by cleaving the b-lactamase mRNA. As

the data in Fig. 3A shows, in the presence of ampicillin, CDR

inhibited the growth of drug-resistant strains more efficiently

than CD or CR. At 10 h when bacteria were in logarithmic

growth phase, we observed an OD600 difference (DO-

D = ODctrl � ODCDR) of 0.64 with CDR, 0.30 with CD, 0.32

with CR. The growth inhibition rate of CDR, defined as

(ODctrl � ODCDR)/ODctrl, was approximately 66%. Fig. 3B

showed that at 10 h, the corresponding b-lactamase activity
in CDR treated TEM-1 cells (DA490 = 0.18) were approximately

68% less than levels observed in cells with empty control vector

(DA490 = 0.56). In addition, the three inactive mutants (CMDR,

CMD, and CMR) neither inhibited cell growth nor reduced b-

lactamase activities, indicating that the growth inhibition was

induced by the RNA-cleaving activities of the 10–23 deoxyri-

bozyme-hammerhead ribozyme combination rather than the

suppressing of antisense DNA or DNA transfection. Together

these results suggest that catalytic activities of CDR, CD or CR

transfected into drug-resistant bacteria results in the suppres-

sion of b-lactamase, likely by b-lactamase mRNA cleavage.
4. Discussion

Cloning the 10–23 deoxyribozyme-hammerhead ribozyme

combination gene into pBlue-script II KS (+), the recombinant

vectors was constructed and we achieved the switch of catalytic

activity through DNAzyme–RNAzyme combination strategy.

The 10–23 deoxyribozyme and hammerhead ribozyme activi-

ties were confirmed, suggesting the 10–23 deoxyribozyme-ham-

merhead ribozyme combination gene indeed propagated with

the phagemid vector.



Fig. 2. Dependence of the in vitro activities of CDR and LDR on divalent metal ions. (A) Dependence of the in vitro activity of CDR on divalent metal
ions. (B) Dependence of the in vitro activity of LDR on divalent metal ions. (C) Dependence of cleavage rate for CDR on the concentration of Mg2+.
(D) Dependence of cleavage rate for LDR on the concentration of Mg2+. Ctrl, substrate without divalent metal ion; S, substrate; P, the products
catalyzed with CDR or LDR. Here, 0 concentration of cation indicated no any divalent metal ions were added into the reaction system.
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In vitro the deoxyribozyme catalytic efficiencies (kcat/KM) of

both CDR and CD were lower than that of LD, which suggested

that the active core of CDR and CD may be conformationally

masked, or trapped, by the super coil of the pBlue-script II

KS (+) vector [28]. Variations in the catalytic efficiency of

CDR in comparison to CD, were not detectable, implying that

the added hammerhead ribozyme gene had little effect on the

catalytic efficiency of CDR. LDR contains both the 10–23

deoxyribozyme sequence and the hammerhead ribozyme se-

quence, thus the extra secondary structure from these se-

quences is a likely explanation for decreased catalytic

efficiency of LDR compared to LR. Divalent metal ions are

important in promoting binding of deoxyribozymes or ribo-

zymes with their substrates and subsequent catalysis. In addi-

tion to 10–23 deoxyribozyme and the hammerhead ribozyme

binding with divalent metal ions, the vector sequences of

CDR and the transcribed deoxyribozyme of LDR could also

potentially bind metal ions. This is a possible explanation to

why CDR and LDR showed high activity from 1 mM Mg2+

and does not change much until over 50 mM, which is different

from the linear 10–23 deoxyribozyme or ribozyme alone. In

addition, the pBlue-script II KS (+) vector binds metal ions

which alter the flexibility and the rigidity of the vector, and

accordingly affects to what extent the 10–23 deoxyribozyme-

hammerhead ribozyme combination is exposed or masked

within the super coil of vectors [29]. Thus, any effect of in-

creased Mg2+ concentration on substrate cleavage rate would

be weak. The designed RNA substrates were cleaved by CDR

and LDR, and the catalytic efficiencies of CDR and LDR were

compared to LD and LR, as well as the dependence of activities
on divalent metal ions in vitro were analyzed. Together these

results led to the conclusion that CDR and LDR may adopt sim-

ilar mechanisms as the10–23 deoxyribozyme and hammerhead

ribozyme. Although a few differences distinguish CDR and LDR

from the 10–23 deoxyribozyme and hammerhead ribozyme,

the catalytic mechanism of CDR and LDR was not affected

[3,25,26].

In bacteria, due to the continuous and accumulative effect of

the 10–23 deoxyribozyme and the hammerhead ribozyme, CDR

had higher RNA-cleaving activity than either CD or CR alone.

Because the single-stranded circular DNA and the transcript

RNA may compete with each other during hybridization to

the target b-lactamase mRNA, the cleavage reactions of 10–

23 deoxyribozyme and hammerhead ribozyme may interfere

with each other. This could explain why the combinatorial ef-

fect is not so obvious as we expect. The activity of DNAzyme–

RNAzyme combination could be enhanced if the DNAzyme

was designed so as not to be transcripted. In the absence of

helper phage, pBlue-script II KS (+) exists mainly in its dou-

ble-strand form in bacteria, thus, contrary to the in vitro data,

in these experimental settings CR showed a higher growth inhi-

bition rate and lower b-lactamase expression than CD.

Through the switch of catalytic activity, continuous activi-

ties at replicating and transcription levels were achieved and

the 10–23 deoxyribozyme-hammerhead ribozyme combination

exhibits higher RNA-cleaving activity than either the 10–23

deoxyribozyme or the hammerhead ribozyme alone. The strat-

egy described here provides a useful model for design and

switch of catalytic activity of enzymes. In addition to 10–23

deoxyribozyme and hammerhead ribozyme analyzed in this



Fig. 3. Activities of CDR, CD and CR in the TEM-1 bacteria in the
presence of ampicillin. (A) Growth curves of the TEM-1 cells
transfected with CDR, CD, CR and their inactive mutants, respectively.
(B) Growth rates (measured as OD600) and b-lactamase activities
(shown as DA490) of cultured TEM-1 cells 10 h after the electropor-
ation of the indicated phagemid DNAs. To ensure identical extent of
transfection and transcription for different vectors, the same transfor-
mation efficiencies were obtained for the transformation experiments.
F-test was performed to compare the different experiment groups (Ctrl,
CDR, CD and CR). At 10 h, we obtained an F value of 3.96 (>F0.05),
and P < 0.05 with OD600, and the same value of b-lactamase activity
was 4.18(>F0.05), and P < 0.05. All data represented means ± S.D.
(n = 4).
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report, other deoxyribozymes and ribozymes could comprise

further novel DNAzyme–RNAzyme combinations. Our model

provides a novel approach to design and switch of catalytic

activities for nucleic acid enzymes with many practical applica-

tions.
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