ADVANCES IN
Mathematics

Universal deformation rings and generalized quaternion defect groups

Frauke M. Bleher ${ }^{1}$
Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, United States
Received 18 January 2009; accepted 7 April 2010
Available online 24 April 2010
Communicated by Henning Krause

Abstract

We determine the universal deformation rings $R(G, V)$ of certain $\bmod 2$ representations V of a finite group G which belong to a 2-modular block of G whose defect groups are isomorphic to a generalized quaternion group D. We show that for these V, a question raised by the author and Chinburg concerning the relation of $R(G, V)$ to D has an affirmative answer. We also show that $R(G, V)$ is a complete intersection even though $R(G / N, V)$ need not be for certain normal subgroups N of G which act trivially on V.

 © 2010 Elsevier Inc. All rights reserved.MSC: primary 20C20; secondary 20C15, 16G10
Keywords: Universal deformation rings; Quaternion defect groups; Dihedral defect groups

1. Introduction

Let k be an algebraically closed field of positive characteristic p, let $W=W(k)$ be the ring of infinite Witt vectors over k, and let G be a finite group. It is a classical question to ask whether a given finitely generated $k G$-module V can be lifted to W or to a more general complete local commutative Noetherian ring R with residue field k. It is useful to formulate this question in terms of deformation rings. For example, Green's liftability theorem can be stated as saying that there is a surjection from the versal deformation ring $R(G, V)$ of V to W if there are no nontrivial 2-extensions of V by itself. A natural question is then to determine $R(G, V)$. In this paper,

[^0]we determine $R(G, V)$ for certain mod 2 representations V of finite groups G which belong to 2-modular blocks of G with generalized quaternion defect groups.

The topological ring $R(G, V)$ is characterized by the property that every lift of V over a complete local commutative Noetherian ring R with residue field k arises from a local ring homomorphism $\alpha: R(G, V) \rightarrow R$ and that α is unique if R is the ring of dual numbers $k[\epsilon] /\left(\epsilon^{2}\right)$. In case α is unique for all $R, R(G, V)$ is called the universal deformation ring of V. For precise definitions, see Section 2. Note that all these rings R, including $R(G, V)$, have a natural structure as W-algebras.

One of the main motivations for studying universal deformation rings for finite groups is that they provide a good test case for various conjectures concerning the ring theoretic properties of universal deformation rings for profinite Galois groups. For example, in [6,7] it was shown that the universal deformation ring of the non-trivial irreducible $\bmod 2$ representation of the symmetric group S_{4} is not a complete intersection. This led to infinitely many examples of real quadratic fields L such that the universal deformation ring of the inflation of this representation to the Ga lois group over L of the maximal totally unramified extension of L is not a complete intersection. The advantage of computing universal deformation rings for representations of finite groups is that one can use deep results from modular representation theory due to Brauer, Erdmann [17], Linckelmann [23,24], Carlson and Thévenaz [13,14], and others.

Suppose now that G is an arbitrary finite group and V is a finitely generated $k G$-module such that the stable endomorphism ring $\operatorname{End}_{k G}(V)$ is isomorphic to k. By [5, Prop. 2.1], it follows that the versal deformation ring $R(G, V)$ of V is universal. In [5], the following question was raised which would relate $R(G, V)$ to the defect groups of the block of $k G$ associated to V.

Question 1.1. Let B be a block of $k G$, let D be a defect group of B, and suppose V is a finitely generated $k G$-module whose stable endomorphism ring is isomorphic to k such that the unique (up to isomorphism) non-projective indecomposable summand of V belongs to B. Is the universal deformation ring $R(G, V)$ of V isomorphic to a subquotient ring of the group ring $W D$?

In [2-5,9], the isomorphism types of $R(G, V)$ have been determined for V belonging to cyclic blocks, respectively to various tame blocks with dihedral defect groups. It was shown that Question 1.1 has a positive answer in all these cases. Moreover, in [4, Cor. 5.1.2] an infinite series of finite groups G and $\bmod 2$ representations V was given for which $R(G, V)$ is not a complete intersection.

In this paper, we consider the case when k has characteristic 2 and B is a block of $k G$ with generalized quaternion defect groups of order $2^{d+1} \geqslant 8$ such that the center of G / O_{B} has even order, where O_{B} is the maximal normal subgroup of G of odd order which acts trivially on all $k G$-modules belonging to B. Let $z \in G$ be an involution such that $z O_{B}$ lies in the center of G / O_{B}, let $N=\left\langle O_{B}, z\right\rangle$ and let \bar{B} be a block of $k[G / N]$ which is contained in the image of B under the natural surjection $\pi: k G \rightarrow k[G / N]$. Then \bar{B} has dihedral defect groups of order $2^{d} \geqslant 4$, and B and \bar{B} have the same number of isomorphism classes of simple modules (see Remark 3.3). In [11] (resp. [26]), Brauer (resp. Olsson) proved that a block with dihedral (resp. generalized quaternion) defect groups contains at most three simple modules up to isomorphism. In this paper, we consider the largest case when both B and \bar{B} have precisely three isomorphism classes of simple modules.

Note that all principal blocks with generalized quaternion defect groups and precisely three isomorphism classes of simple modules are included in our discussion (see Remark 3.2). If B is principal and $d \geqslant 3$, then \bar{B} is one of the blocks considered in [4] (see Remark 3.5).

We now summarize our main result; a more detailed statement can be found in Theorem 6.1. As above, if B is a block of $k G$ then O_{B} is the maximal normal subgroup of G of odd order which acts trivially on all $k G$-modules belonging to B.

Theorem 1.2. Suppose k has characteristic 2, G is a finite group, and B is a block of $k G$ with a generalized quaternion defect group D of order $2^{d+1} \geqslant 8$ such that there are precisely three isomorphism classes of simple B-modules and such that the center of G / O_{B} has even order. Let $z \in G$ be an involution such that $z O_{B}$ is central in G / O_{B}, let $N=\left\langle O_{B}, z\right\rangle$ and let \bar{B} be a block of $k[G / N]$ which is contained in the image of B under the natural surjection $\pi: k G \rightarrow k[G / N]$. Let V be a finitely generated $k G$-module whose stable endomorphism ring is isomorphic to k and which is inflated from a $k[G / N]$-module belonging to \bar{B}. Then either
(i) $R(G, V) / 2 R(G, V) \cong k$, in which case $R(G, V)$ is isomorphic to W, or
(ii) $R(G, V) / 2 R(G, V) \cong k[[t]] /\left(t^{2^{d-1}-1}\right)$, in which case $R(G, V)$ is isomorphic to $W[[t]] /$ $\left(p_{d+1}(t)\right)$ for a certain monic polynomial $p_{d+1}(t) \in W[t]$ of degree $2^{d-1}-1$ whose nonleading coefficients are all divisible by 2.

In all cases, $R(G, V)$ is isomorphic to a subquotient ring of $W D$ and a complete intersection.
It is an interesting question how the universal deformation ring changes when one inflates a module V from a quotient group of G to G. Theorem 1.2 together with the results in $[2,4]$ and Lemma 6.2 give an answer to this question for the quotient group G / N. Namely, using the notation of Theorem 1.2, the universal deformation ring $R(G / N, V)$ is as follows.

- If V is as in Theorem 1.2(i), then $R(G / N, V)$ is isomorphic to a quotient ring of W.
- If V is as in Theorem $1.2(\mathrm{ii})$, then $R(G / N, V) \cong W[[t]] /\left(t p_{d}(t), 2 p_{d}(t)\right)$, where we set $p_{2}(t)=1$. In particular, if $d \geqslant 3, R(G / N, V)$ is not a complete intersection.

It is natural to ask whether Theorem 1.2 can be used to construct deformation rings arising from arithmetic in the following sense. Suppose L is a number field and S is a finite set of places of L. Let L_{S} be the maximal algebraic extension of L which is unramified outside S, and denote by $G_{L, S}$ the Galois group of L_{S} over L. Suppose $k, G, G / N$ and V are as in Theorem 1.2, and let H be G or G / N. As in [7], one can ask whether there are L and S such that there is a surjection $\psi: G_{L, S} \rightarrow H$ which induces an isomorphism of deformation rings $R\left(G_{L, S}, V\right) \rightarrow R(H, V)$ when V is viewed as a representation for $G_{L, S}$ via ψ. It was shown in [7, Lemma 3.3] that a sufficient condition for $R\left(G_{L, S}, V\right) \rightarrow R(H, V)$ to be an isomorphism for all such V is that $\operatorname{Ker}(\psi)$ has no non-trivial pro-2 quotient. If this condition is satisfied, we say the group H caps L for 2 at S.

The prototypes for the groups G / N are $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$ where q is an odd prime power and the alternating group A_{7}. Suppose G / N is one of these groups and that 8 divides the order of G / N. One can show similarly to the proof of [7, Thm. 3.7(i)] that G / N does not cap \mathbb{Q} for 2 at any finite set of places S of \mathbb{Q}. However, it is an interesting question whether the group G does cap \mathbb{Q} for 2 at certain S. For example, it was shown in [8] that although the symmetric group S_{4} does not cap \mathbb{Q} for 2 at any S, the double cover \hat{S}_{4} does cap \mathbb{Q} for 2 at certain S. This situation was similar to the present one, since the universal deformation ring of the simple $k S_{4}$-module E of dimension 2 is $R\left(S_{4}, E\right) \cong W[[t]] /\left(t^{2}, 2 t\right)=W[[t]] /\left(t p_{3}(t), 2 p_{3}(t)\right)$, but the universal deformation ring of the inflation of E to \hat{S}_{4} is $R\left(\hat{S}_{4}, E\right) \cong W[[t]] /\left(t^{3}-2 t\right)=W[[t]] /\left(p_{4}(t)\right)$.

The paper is organized as follows. In Section 2, we recall the definitions of deformations and deformation rings and we state some useful results from [4,5]. In Section 3, we concentrate on finite groups G and their quotient groups G / N as in Theorem 1.2 and use [17] to describe the 2modular blocks B and \bar{B}. In Section 4, we determine all indecomposable $k G$-modules V whose stable endomorphism rings are isomorphic to k and which are inflated from $k[G / N]$-modules belonging to \bar{B}. In particular, we show that the endomorphism ring of each such V is isomorphic to k, leading to a finite set of possibilities for such V (see Remark 4.3). In Section 5, we describe results of Olsson [26] about the ordinary irreducible characters of G belonging to B. In Section 6, we determine the universal deformation rings of all the $k G$-modules V found in Section 4, by first determining the universal deformation rings modulo 2 and then using Olsson's results on ordinary characters to complete the computation (see Theorem 6.1).

We would like to thank the referee for helpful comments.

2. Preliminaries

In this section, we give a brief introduction to versal and universal deformation rings and deformations. For more background material, we refer the reader to [25] and [16].

Let k be an algebraically closed field of characteristic $p>0$, let W be the ring of infinite Witt vectors over k, and let F be the fraction field of W. Let $\hat{\mathcal{C}}$ be the category of all complete local commutative Noetherian rings with residue field k. The morphisms in $\hat{\mathcal{C}}$ are continuous W-algebra homomorphisms which induce the identity map on k.

Suppose G is a finite group and V is a finitely generated $k G$-module. A lift of V over an object R in $\hat{\mathcal{C}}$ is a pair (M, ϕ) where M is a finitely generated $R G$-module which is free over R, and $\phi: k \otimes_{R} M \rightarrow V$ is an isomorphism of $k G$-modules. Two lifts (M, ϕ) and ($M^{\prime}, \phi^{\prime}$) of V over R are isomorphic if there is an isomorphism $f: M \rightarrow M^{\prime}$ with $\phi=\phi^{\prime} \circ(k \otimes f)$. The isomorphism class $[M, \phi]$ of a lift (M, ϕ) of V over R is called a deformation of V over R, and the set of all such deformations is denoted by $\operatorname{Def}_{G}(V, R)$. The deformation functor

$$
\hat{F}_{V}: \hat{\mathcal{C}} \rightarrow \text { Sets }
$$

is a covariant functor which sends an object R in $\hat{\mathcal{C}}$ to $\operatorname{Def}_{G}(V, R)$ and a morphism $\alpha: R \rightarrow R^{\prime}$ in $\hat{\mathcal{C}}$ to the map $\operatorname{Def}_{G}(V, R) \rightarrow \operatorname{Def}_{G}\left(V, R^{\prime}\right)$ defined by $[M, \phi] \mapsto\left[R^{\prime} \otimes_{R, \alpha} M, \phi_{\alpha}\right]$, where $\phi_{\alpha}=\phi$ after identifying $k \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R, \alpha} M\right)$ with $k \otimes_{R} M$.

Suppose there exists an object $R(G, V)$ in $\hat{\mathcal{C}}$ and a deformation $\left[U(G, V), \phi_{U}\right]$ of V over $R(G, V)$ with the following property: For each R in $\hat{\mathcal{C}}$ and for each lift (M, ϕ) of V over R there exists a morphism $\alpha: R(G, V) \rightarrow R$ in $\hat{\mathcal{C}}$ such that $\hat{F}_{V}(\alpha)\left(\left[U(G, V), \phi_{U}\right]\right)=[M, \phi]$, and moreover α is unique if R is the ring of dual numbers $k[\epsilon] /\left(\epsilon^{2}\right)$. Then $R(G, V)$ is called the versal deformation ring of V and $\left[U(G, V), \phi_{U}\right]$ is called the versal deformation of V. If the morphism α is unique for all R and all lifts (M, ϕ) of V over R, then $R(G, V)$ is called the universal deformation ring of V and $\left[U(G, V), \phi_{U}\right]$ is called the universal deformation of V. In other words, $R(G, V)$ is universal if and only if $R(G, V)$ represents the functor \hat{F}_{V} in the sense that \hat{F}_{V} is naturally isomorphic to the Hom functor $\operatorname{Hom}_{\hat{\mathcal{C}}}(R(G, V),-)$.

By [25], every finitely generated $k G$-module V has a versal deformation ring. By a result of Faltings (see [16, Prop. 7.1]), V has a universal deformation ring if $\operatorname{End}_{k G}(V)=k$.

Remark 2.1. Note that the above definition of deformations differs from the definition used in [2,5] as follows. Let G and V be as above, let R be an object in $\hat{\mathcal{C}}$ and let (M, ϕ) be a lift of V over R. In [2,5], the isomorphism class of M as an $R G$-module was called a deformation of V over R, without taking into account the specific isomorphism $\phi: k \otimes_{R} M \rightarrow V$. Some authors call a deformation according to the latter definition a weak deformation of V over R (see [22, §5.2]).

In general, a weak deformation of V over R identifies more lifts than a deformation of V over R that respects the isomorphism ϕ of a representative (M, ϕ). However, if the stable endomorphism ring End ${ }_{k G}(V)$ is isomorphic to k, these two definitions of deformations coincide. This can be seen as follows.

Suppose first that $\alpha: A \rightarrow A_{0}$ is a surjective morphism of Artinian rings A, A_{0} in $\hat{\mathcal{C}}$ and (M, ϕ) is a lift of V over A. Let $\left(M_{0}, \phi_{0}\right)=\left(A_{0} \otimes_{A, \alpha} M, \phi_{\alpha}\right)$ and let $u_{0} \in \operatorname{End}_{A_{0} G}\left(M_{0}\right)$ be such that u_{0} factors through a projective $A_{0} G$-module P_{0}, say $u_{0}=h_{0} \circ g_{0}$. We claim that u_{0} can be lifted to an $A G$-module endomorphism u of M that factors through a projective $A G$-module P. By using induction on the length of A, it is enough to prove this when α is a small extension, i.e. when the kernel of α is a non-zero principal ideal $t A$ where t is annihilated by the maximal ideal m_{A} of A. Since M_{0} is a finitely generated $A_{0} G$-module, we can assume that P_{0} is a finitely generated projective $A_{0} G$-module. Let P be a projective $A G$-module with $A_{0} \otimes_{A, \alpha} P \cong P_{0}$. Consider the short exact sequence of $A G$-modules $0 \rightarrow t P \rightarrow P \xrightarrow{\alpha_{P}} P_{0} \rightarrow 0$ which results from tensoring $0 \rightarrow t A \rightarrow A \xrightarrow{\alpha} A_{0} \rightarrow 0$ with P over A. Since $k \otimes_{A} P$ is an injective $k G$-module, we have that $\operatorname{Ext}_{A G}^{1}(M, t P) \cong \operatorname{Ext}_{k G}^{1}\left(k \otimes_{A} M, k \otimes_{A} P\right)=0$. Therefore, $\operatorname{Hom}_{A G}(M, P) \xrightarrow{\left(\alpha_{P}\right)_{*}}$ $\operatorname{Hom}_{A G}\left(M, P_{0}\right)$ is surjective. This implies that $g_{0}: M_{0} \rightarrow P_{0}$ can be lifted to an $A G$-module homomorphism $g: M \rightarrow P$. Since P is a projective $A G$-module, it follows that $h_{0}: P_{0} \rightarrow M_{0}$ can be lifted to an $A G$-module homomorphism $h: P \rightarrow M$. Hence $u=h \circ g$ is an $A G$-module endomorphism of M which factors through P and which lifts u_{0}. Since by [5, Lemma 2.3] the ring homomorphism $\sigma_{M}: A \rightarrow \underline{\operatorname{End}}_{A G}(M)$ coming from the action of A on M via scalar multiplication is surjective, it follows that every endomorphism $f_{0} \in \operatorname{End}_{A_{0} G}\left(M_{0}\right)$ can be lifted to an endomorphism $f \in \operatorname{End}_{A G}(M)$.

Now suppose that R is an arbitrary ring in $\hat{\mathcal{C}}$, i.e. $R=\lim R / m_{R}^{n}$ where m_{R} is the maximal ideal of R. If (M, ϕ) and $\left(M^{\prime}, \phi^{\prime}\right)$ are two lifts of V over R, then $\left(\left(R / m_{R}^{n}\right) \otimes_{R} M, \phi_{n}\right)$ and $\left(\left(R / m_{R}^{n}\right) \otimes_{R} M^{\prime}, \phi_{n}^{\prime}\right)$ are lifts of V over R / m_{R}^{n} for all n, where $\phi_{n}=\phi$ (resp. $\left.\phi_{n}^{\prime}=\phi^{\prime}\right)$ after identifying $k \otimes_{R / m_{R}^{n}}\left(\left(R / m_{R}^{n}\right) \otimes_{R} M\right)$ with $k \otimes_{R} M$ (resp. $k \otimes_{R / m_{R}^{n}}\left(\left(R / m_{R}^{n}\right) \otimes_{R} M^{\prime}\right)$ with $k \otimes_{R}$ $\left.M^{\prime}\right)$. Suppose there exists an $R G$-module isomorphism $f: M \rightarrow M^{\prime}$. Then $f_{n}=\left(R / m_{R}^{n}\right) \otimes_{R}$ $f:\left(R / m_{R}^{n}\right) \otimes_{R} M \rightarrow\left(R / m_{R}^{n}\right) \otimes_{R} M^{\prime}$ is an $\left(R / m_{R}^{n}\right) G$-module isomorphism for all n. Define $g_{1}=\phi^{-1} \circ \phi^{\prime} \circ f_{1}$, which is a $k G$-module automorphism of $k \otimes_{R} M$. By what we showed above, we can inductively lift g_{1} to an $\left(R / m_{R}^{n}\right) G$-module endomorphism g_{n} of $\left(R / m_{R}^{n}\right) \otimes_{R} M$ such that g_{n+1} lifts g_{n} for all n. Since $k \otimes g_{n}=g_{1}$ is an automorphism of $k \otimes_{R} M$ and $\left(R / m_{R}^{n}\right) \otimes_{R} M$ is free over R / m_{R}^{n}, it follows that g_{n} is an $\left(R / m_{R}^{n}\right) G$-module automorphism of $\left(R / m_{R}^{n}\right) \otimes_{R} M$. For all $n \geqslant 1$, define $h_{n}=f_{n} \circ g_{n}^{-1}$. Then $h_{n}:\left(R / m_{R}^{n}\right) \otimes_{R} M \rightarrow\left(R / m_{R}^{n}\right) \otimes_{R} M^{\prime}$ is an $\left(R / m_{R}^{n}\right) G-$ module isomorphism such that $\phi_{n}^{\prime} \circ\left(k \otimes h_{n}\right)=\phi_{n}$ and such that h_{n+1} lifts h_{n} for all n. Hence $\left\{h_{n}\right\}$ defines an inverse system and its inverse limit defines an $R G$-module isomorphism $h: M \rightarrow M^{\prime}$ with $\phi^{\prime} \circ(k \otimes h)=\phi$. In particular, $[M, \phi]=\left[M^{\prime}, \phi^{\prime}\right]$.

The following three results were proved in [5] and in [4], respectively. Here Ω denotes the syzygy, or Heller, operator for $k G$ (see for example [1, §20]).

Proposition 2.2. (See [5, Prop. 2.1].) Suppose V is a finitely generated $k G$-module whose stable endomorphism ring $\underline{E n d}_{k G}(V)$ is isomorphic to k. Then V has a universal deformation ring $R(G, V)$.

Lemma 2.3. (See [5, Cors. 2.5 and 2.8].) Let V be a finitely generated $k G$-module with End $_{k G}(V) \cong k$.
(i) Then $\operatorname{End}_{k G}(\Omega(V)) \cong k$, and $R(G, V)$ and $R(G, \Omega(V))$ are isomorphic.
(ii) There is a non-projective indecomposable $k G$-module V_{0} (unique up to isomorphism) such that $\underline{E n d}_{k G}\left(V_{0}\right) \cong k, V$ is isomorphic to $V_{0} \oplus P$ for some projective $k G$-module P, and $R(G, V)$ and $R\left(G, V_{0}\right)$ are isomorphic.

Lemma 2.4. (See [4, Lemma 2.3.2].) Let V be a finitely generated $k G$-module such that there is a non-split short exact sequence of $k G$-modules

$$
0 \rightarrow Y_{2} \rightarrow V \rightarrow Y_{1} \rightarrow 0
$$

with $\operatorname{Ext}_{k G}^{1}\left(Y_{1}, Y_{2}\right) \cong k$. Suppose that for $i \in\{1,2\}$, there exists a $W G$-module X_{i} which defines a lift of Y_{i} over W. Suppose further that

$$
\operatorname{dim}_{F} \operatorname{Hom}_{F G}\left(F \otimes_{W} X_{1}, F \otimes_{W} X_{2}\right)=\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(Y_{1}, Y_{2}\right)-1
$$

Then there exists a $W G$-module X which defines a lift of V over W.
We also need the following result which is a more general version of [4, Lemma 2.3.1].
Lemma 2.5. Let Y be a finitely generated uniserial $k G$-module satisfying $\operatorname{End}_{k G}(Y) \cong k$ and $\operatorname{Ext}_{k G}^{1}(Y, Y) \cong k$. Suppose that the radical length of Y is $\ell \geqslant 1$ and that the composition factors in the descending radical series are given as $\left(T_{1}, T_{2}, \ldots, T_{\ell}\right)$ where T_{1}, \ldots, T_{ℓ} are simple $k G$ modules, not necessarily distinct. Assume there exists an integer $r \geqslant 2$ such that the projective cover $P_{T_{1}}$ of T_{1} has a quotient module \bar{U} which is a uniserial $k G$-module of radical length ℓr such that the composition factors in the descending radical series are given as

$$
\left(T_{1}, T_{2}, \ldots, T_{\ell}, T_{1}, T_{2}, \ldots, T_{\ell}, \ldots, T_{1}, T_{2}, \ldots, T_{\ell}\right)
$$

Suppose there are $k G$-module isomorphisms $\phi: \bar{U} / \operatorname{rad}^{\ell}(\bar{U}) \rightarrow Y$ and $\psi: \bar{U} / \operatorname{rad}^{\ell(r-1)}(\bar{U}) \rightarrow$ $\operatorname{rad}^{\ell}(\bar{U})$, and assume that $\operatorname{Ext}_{k G}^{1}(\bar{U}, Y)=0$. Then the universal deformation ring of Y modulo p is $\bar{R}=R(G, Y) / p R(G, Y) \cong k[t] /\left(t^{r}\right)$, and the universal mod p deformation of Y over \bar{R} is $[\bar{U}, \phi]$ where the action of t on \bar{U} is induced by ψ.

Proof. By assumption, $\operatorname{Ext}_{k G}^{1}(Y, Y) \cong k$, which implies that $\bar{R} \cong k[[t]]$ or $\bar{R} \cong k[t] /\left(t^{m}\right)$ for some $m \geqslant 2$. The action of t on \bar{U} is given by the composition

$$
\bar{U} \xrightarrow{\pi_{U}} \bar{U} / \operatorname{rad}^{\ell(r-1)}(\bar{U}) \xrightarrow{\psi} \operatorname{rad}^{\ell}(\bar{U}) \xrightarrow{t_{U}} \bar{U}
$$

where π_{U} (resp. ι_{U}) is the natural surjection (resp. inclusion). It follows that $\operatorname{rad}^{\ell}(\bar{U})=t \bar{U}$ and that \bar{U} is a free $k[t] /\left(t^{r}\right)$-module under this action. In particular, ϕ defines a $k G$-module isomor$\operatorname{phism} k \otimes_{k[t] /\left(t^{r}\right)} \bar{U}=\bar{U} / \operatorname{rad}^{\ell}(\bar{U}) \rightarrow Y$, and hence (\bar{U}, ϕ) defines a lift of Y over $k[t] /\left(t^{r}\right)$. This means that there is a unique k-algebra homomorphism

$$
\alpha: \bar{R} \rightarrow k[t] /\left(t^{r}\right)
$$

corresponding to the deformation $[\bar{U}, \phi]$. Since \bar{U} is indecomposable as a $k G$-module, it follows that α is surjective. We now show that α is a k-algebra isomorphism. Suppose this is false. Then there exists a surjective k-algebra homomorphism $\alpha_{1}: \bar{R} \rightarrow k[t] /\left(t^{r+1}\right)$ such that $\tau \circ \alpha_{1}=\alpha$ where $\tau: k[t] /\left(t^{r+1}\right) \rightarrow k[t] /\left(t^{r}\right)$ is the natural projection. Let $\left(\bar{U}_{1}, \phi_{1}\right)$ be a lift of Y over $k[t] /\left(t^{r+1}\right)$ corresponding to α_{1}. Then $k[t] /\left(t^{r}\right) \otimes_{k[t] /\left(t^{r+1}\right), \tau} \bar{U}_{1} \cong \bar{U}$ and $t^{r} \bar{U}_{1} \cong Y$. We have a short exact sequence of $k[t] /\left(t^{r+1}\right) G$-modules

$$
\begin{equation*}
0 \rightarrow t^{r} \bar{U}_{1} \rightarrow \bar{U}_{1} \rightarrow \bar{U} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

We now show that this sequence cannot split as a sequence of $k G$-modules. Suppose it splits. Then $\bar{U}_{1} \cong Y \oplus \bar{U}$ as $k G$-modules. Let $z=\binom{y}{u} \in Y \oplus \bar{U} \cong \bar{U}_{1}$. Then t acts on z as multiplication by a matrix of the form

$$
M_{t}=\left(\begin{array}{cc}
0 & \gamma \\
0 & \mu_{t}
\end{array}\right)
$$

where $\gamma: \bar{U} \rightarrow Y$ is a surjective $k G$-module homomorphism, and μ_{t} is multiplication by t on \bar{U}. Since $t^{r} \bar{U}_{1} \cong Y,\left(M_{t}\right)^{r}$ cannot be the zero matrix. Because $\operatorname{End}_{k G}(Y) \cong k, \gamma$ corresponds, up to a non-zero scalar multiple, to the isomorphism $\phi: \bar{U} / t \bar{U} \rightarrow Y$, which means that the kernel of γ is $t \bar{U}$. This implies that $\left(M_{t}\right)^{r}$ is the zero matrix, which is a contradiction. Hence the short exact sequence (2.1) does not split as a sequence of $k G$-modules. Since $\operatorname{Ext}_{k G}^{1}(\bar{U}, Y)=0$ by assumption and $t^{r} \bar{U}_{1} \cong Y$, this is impossible. Therefore, \bar{U}_{1} does not exist, which means that α is a k-algebra isomorphism. Thus $\bar{R} \cong k[t] /\left(t^{r}\right)$, and the universal $\bmod p$ deformation of Y over \bar{R} is $[\bar{U}, \phi]$.

3. Blocks with generalized quaternion defect groups

For the remainder of this paper, we make the following assumptions.
Hypothesis 3.1. Let k be an algebraically closed field of characteristic 2. Suppose G is a finite group and B is a block of $k G$ with a generalized quaternion defect group D of order $2^{d+1} \geqslant 8$ such that there are precisely three isomorphism classes of simple B-modules. Assume further that the center of G / O_{B} has even order, where O_{B} is the maximal normal subgroup of G of odd order which acts trivially on all $k G$-modules belonging to B. Let $z \in G$ be an involution such that $z O_{B}$ lies in the center of G / O_{B}, and let $N=\left\langle O_{B}, z\right\rangle$. Let \bar{B} be a block of $k[G / N]$ which is contained in the image of B under the natural surjection $\pi: k G \rightarrow k[G / N]$.

Note that Olsson proved in [26] that a block with generalized quaternion defect groups contains at most three simple modules up to isomorphism. Hence we consider the largest case.

Remark 3.2. Suppose k is an algebraically closed field of characteristic 2 and G is a finite group with generalized quaternion Sylow 2-subgroups of order $2^{d+1} \geqslant 8$. If B is the principal block of $k G$, then $O_{B}=O_{2^{\prime}}(G)$, where $O_{2^{\prime}}(G)$ is the maximal normal subgroup of G of odd order. By a result of Brauer and Suzuki [12,10], the center of $G / O_{2^{\prime}}(G)$ has order 2. Hence all assumptions in Hypothesis 3.1 are satisfied provided there are precisely three isomorphism classes of simple B-modules.

The following remark discusses the basic properties of B and \bar{B} as in Hypothesis 3.1.
Remark 3.3. Assume Hypothesis 3.1. Since O_{B} has odd order and the characteristic of k is 2 , the blocks of $k\left[G / O_{B}\right]$ correspond to the blocks of $k G$ whose primitive central idempotents occur in the decomposition of the central idempotent $\frac{1}{\# O_{B}} \sum_{g \in O_{B}} g$. Because O_{B} acts trivially on all $k G$ modules belonging to B, it follows that B can be identified with a block $B_{O_{B}}$ of $k\left[G / O_{B}\right]$ and all $k G$-modules V, V^{\prime} belonging to B can be identified with $k\left[G / O_{B}\right]$-modules belonging to $B_{O_{B}}$. We obtain that $\operatorname{Hom}_{k G}\left(V, V^{\prime}\right)=\operatorname{Hom}_{k\left[G / O_{B}\right]}\left(V, V^{\prime}\right), \underline{\operatorname{Hom}}_{k G}\left(V, V^{\prime}\right)=\underline{\operatorname{Hom}}_{k\left[G / O_{B}\right]}\left(V, V^{\prime}\right)$ and $\operatorname{Ext}_{k G}^{i}\left(V, V^{\prime}\right)=\operatorname{Ext}_{k\left[G / O_{B}\right]}^{i}\left(V, V^{\prime}\right)$ for all $i \geqslant 1$.

Let S and S^{\prime} be simple $k G$-modules belonging to B. Since their restriction to N is trivial, they can also be viewed as $k[G / N]$-modules. The Lyndon-Hochschild-Serre spectral sequence gives an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{k[G / N]}^{1}\left(S, S^{\prime}\right) \rightarrow \operatorname{Ext}_{k\left[G / O_{B}\right]}^{1}\left(S, S^{\prime}\right) \rightarrow \operatorname{Hom}_{k[G / N]}\left(S, S^{\prime}\right)
$$

This implies immediately that $\operatorname{Ext}_{k G}^{1}\left(S, S^{\prime}\right)$ and $\operatorname{Ext}_{k[G / N]}^{1}\left(S, S^{\prime}\right)$ have the same k-dimension for each choice of non-isomorphic S and S^{\prime}. Since \bar{B} is contained in the image of B under the natural surjection $\pi: k G \rightarrow k[G / N]$, it follows by [1, Prop. 13.3] that \bar{B} has the same number of isomorphism classes of simple modules as B. Hence we can identify the simple B-modules with the simple \bar{B}-modules. It follows that the restriction of π to B gives a surjective k-algebra homomorphism $\pi_{B}: B \rightarrow \bar{B}$. In particular, this implies that if V is a $k[G / N]$-module belonging to \bar{B}, then its inflation to $k G$ via π belongs to B.

Define $D_{O_{B}}=D O_{B} / O_{B}$ and $\bar{D}=D N / N$. Then $D_{O_{B}}$ is a defect group of $B_{O_{B}}$. By [1, Thm. 13.6], $z O_{B}$ lies in $D_{O_{B}}$, which implies $\bar{D} \cong D_{O_{B}} /\left\langle z O_{B}\right\rangle$. Since the simple B-modules can be identified with the simple \bar{B}-modules, it follows by [15, Prop. (56.32)] that the order of the defect groups of \bar{B} is $2^{d}=\# \bar{D}$. Because all indecomposable B-modules are (G, D)-projective, it follows that all indecomposable \bar{B}-modules are $(G / N, \bar{D})$-projective. Since there exists an indecomposable \bar{B}-module which has a defect group of \bar{B} as a vertex (see [15, Thm. (59.10)]), it follows that \bar{D} is a defect group of \bar{B}. In particular, this implies that the defect groups of \bar{B} are dihedral groups of order 2^{d}.

Lemma 3.4. Assume Hypothesis 3.1, and let $\pi_{B}: B \rightarrow \bar{B}$ be the surjective k-algebra homomorphism from Remark 3.3. Suppose \bar{P} is a projective indecomposable \bar{B}-module, and denote its inflation to B via π_{B} also by \bar{P}. Let P be a projective indecomposable B-module which is a projective cover of \bar{P}. Then there is a short exact sequence of B-modules

$$
0 \rightarrow \bar{P} \rightarrow P \rightarrow \bar{P} \rightarrow 0
$$

Proof. By Remark 3.3, we can assume without loss of generality that O_{B} is trivial, which means that the involution z lies in the center of G and $N=\langle z\rangle$. Hence the kernel of the natural projection
$\pi: k G \rightarrow k[G / N]$ is $\operatorname{Ker}(\pi)=(1+z) k G$, which implies that the kernel of π_{B} is $\operatorname{Ker}\left(\pi_{B}\right)=$ $(1+z) B$. Because P is a projective B-module, we obtain a short exact sequence of B-modules

$$
0 \rightarrow(1+z) P \rightarrow P \rightarrow \bar{P} \rightarrow 0
$$

Since the map $f:(1+z) P \rightarrow \bar{B} \otimes_{B} P$, defined by $f((1+z) x)=1 \otimes x$ for all $x \in P$, is a B-module isomorphism, Lemma 3.4 follows.

Assume Hypothesis 3.1. From Erdmann's classification of all blocks of tame representation type in [17], and by using Lemma 3.4, it follows that the quivers of the basic algebras of B and \bar{B} can be identified and that, up to Morita equivalence, there are precisely three families (I), (II) and (III) of blocks \bar{B} and B.

Using [17], we now give a description of these families as follows. For each of the three families, we give a quiver Q and ideals I and \bar{I} of $k Q$ such that B is Morita equivalent to $\Lambda=k Q / I$ and \bar{B} is Morita equivalent to $\bar{\Lambda}=k Q / \bar{I}$. We denote the simple Λ-modules by S_{0}, S_{1}, S_{2}, or, using short-hand, by $0,1,2$. The corresponding projective indecomposable Λ modules are denoted by P_{0}, P_{1} and P_{2}. We describe the radical series of P_{0}, P_{1} and P_{2} and also provide the decomposition matrix of B.

3.1. Family (I)

For family (I), $d \geqslant 2$. The quiver Q has the form

$$
Q=1 \bullet \underset{\gamma}{\stackrel{\beta}{\rightleftarrows}} \bullet \stackrel{0}{\underset{\eta}{\longleftrightarrow}} \stackrel{\delta}{\underset{\sim}{\longleftrightarrow}} \bullet 2
$$

and the ideals I and \bar{I} are given as

$$
\begin{aligned}
I= & \left\langle\beta \gamma \beta-\eta \delta \beta(\gamma \eta \delta \beta)^{2^{d-1}-1}, \gamma \beta \gamma-\gamma \eta \delta(\beta \gamma \eta \delta)^{2^{d-1}-1},\right. \\
& \eta \delta \eta-\beta \gamma \eta(\delta \beta \gamma \eta)^{2^{d-1}-1}, \delta \eta \delta-\delta \beta \gamma(\eta \delta \beta \gamma)^{2^{d-1}-1}, \\
& \delta \beta \gamma \beta, \gamma \eta \delta \eta\rangle, \\
\bar{I}= & \left\langle\gamma \beta, \delta \eta,(\eta \delta \beta \gamma)^{2^{d-2}}-(\beta \gamma \eta \delta)^{2^{d-2}}\right\rangle .
\end{aligned}
$$

The radical series of the projective indecomposable Λ-modules P_{0}, P_{1} and P_{2} are described in Fig. 1 where the radical series length of each of these modules is $2^{d+1}+1$. The decomposition matrix of B is given in Fig. 2.

Fig. 1. The projective indecomposable modules for blocks B in family (I).

$\varphi_{0} \varphi_{1} \varphi_{2}$
χ_{1}
χ_{2}
χ_{3}
χ_{4}
χ_{5}
χ_{6}
$\chi_{7, i}$

1 \& 1 \& 0

1 \& 0 \& 1

1 \& 1 \& 1

0 \& 1 \& 0

0 \& 0 \& 1

2 \& 1 \& 1\end{array}\right] \quad 1 \leq i \leq 2^{d-1}-1\).

Fig. 2. The decomposition matrix for blocks B in family (I).

3.2. Family (II)

For family (II), $d \geqslant 2$. The quiver Q has the form

and the ideals I and \bar{I} are given as

$$
\begin{aligned}
I= & \langle\delta \beta-\kappa \lambda \kappa, \gamma \eta-\lambda \kappa \lambda, \lambda \delta-\gamma \beta \gamma, \eta \kappa-\beta \gamma \beta, \\
& \beta \lambda-\eta(\delta \eta)^{2^{d-1}-1}, \kappa \gamma-\delta(\eta \delta)^{2^{d-1}-1}, \\
& \delta \beta \gamma, \gamma \eta \delta, \eta \kappa \lambda\rangle, \\
\bar{I}= & \left\langle\delta \beta, \lambda \delta, \beta \lambda, \kappa \gamma, \eta \kappa, \gamma \eta, \gamma \beta-\lambda \kappa, \kappa \lambda-(\delta \eta)^{2^{d-2}},(\eta \delta)^{2^{d-2}}-\beta \gamma\right\rangle .
\end{aligned}
$$

The radical series of the projective indecomposable Λ-modules P_{0}, P_{1} and P_{2} are described in Fig. 3 where the radical series length of P_{0} is 5 and the radical series length of P_{1} and P_{2} is $2^{d}+1$. The decomposition matrix of B is given in Fig. 4 .

Fig. 3. The projective indecomposable modules for blocks B in family (II).

$\varphi_{0} \varphi_{1} \varphi_{2}$
χ_{1}
χ_{2}
χ_{3}
χ_{4}
χ_{5}
χ_{6}
$\chi_{7, i}$

0 \& 1 \& 0

0 \& 0 \& 1

1 \& 1 \& 1

1 \& 1 \& 0

1 \& 0 \& 1

0 \& 1 \& 1\end{array}\right] \quad 1 \leq i \leq 2^{d-1}-1\).

Fig. 4. The decomposition matrix for blocks B in family (II).

3.3. Family (III)

For family (III), $d \geqslant 3$. The quiver Q has the form

$$
Q=\alpha C_{1} \bullet \underset{\gamma}{\stackrel{\beta}{\longleftrightarrow}} \bullet \stackrel{0}{\underset{\sim}{\longleftrightarrow}} \stackrel{\delta}{\underset{~}{\longleftrightarrow}} \bullet 2
$$

and the ideals I and \bar{I} are given as

$$
\begin{aligned}
I= & \langle\beta \alpha-\eta \delta \beta(\gamma \eta \delta \beta), \alpha \gamma-\gamma \eta \delta(\beta \gamma \eta \delta), \\
& \delta \eta \delta-\delta \beta \gamma(\eta \delta \beta \gamma), \eta \delta \eta-\beta \gamma \eta(\delta \beta \gamma \eta), \\
& \left.\gamma \beta-\alpha^{2^{d-1}-1}, \beta \alpha^{2}, \delta \eta \delta \beta\right\rangle, \\
\bar{I}= & \left\langle\beta \alpha, \alpha \gamma, \gamma \beta, \delta \eta, \eta \delta \beta \gamma-\beta \gamma \eta \delta, \alpha^{2^{d-2}}-\gamma \eta \delta \beta\right\rangle .
\end{aligned}
$$

The radical series of the projective indecomposable Λ-modules P_{0}, P_{1} and P_{2} are described in Fig. 5 where the radical series length of P_{0} and P_{2} is 9 and the radical series length of P_{1} is 9 if $d=3$ and $2^{d-1}+1$ if $d \geqslant 4$. The decomposition matrix of B is given in Fig. 6 .

Remark 3.5. It follows from [17] that we have the following Morita equivalences for the blocks \bar{B} and B :
(i) In family (I), \bar{B} is Morita equivalent to the principal 2-modular block of $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ and B is Morita equivalent to the principal 2-modular block of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ when q is a prime power with $q \equiv 1 \bmod 4$ such that 2^{d+1} is the maximal 2-power dividing $\left(q^{2}-1\right)$.

Fig. 5. The projective indecomposable modules for blocks B in family (III).

$\varphi_{0} \varphi_{1} \varphi_{2}$
χ_{1}
χ_{2}
χ_{3}
χ_{4}
χ_{5}
χ_{6}
$\chi_{7, i}$

1 \& 1 \& 0

1 \& 0 \& 1

1 \& 1 \& 1

2 \& 1 \& 1

0 \& 0 \& 1

0 \& 1 \& 0\end{array}\right] \quad 1 \leq i \leq 2^{d-1}-1\).

Fig. 6. The decomposition matrix for blocks B in family (III).
(ii) In family (II), \bar{B} is Morita equivalent to the principal 2-modular block of $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$ and B is Morita equivalent to the principal 2-modular block of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ when q is a prime power with $q \equiv 3 \bmod 4$ such that 2^{d+1} is the maximal 2-power dividing $\left(q^{2}-1\right)$.
(iii) In family (III), if $d=3$ then \bar{B} is Morita equivalent to the principal 2-modular block of the alternating group A_{7} and B is Morita equivalent to the principal 2-modular block of the non-trivial double cover \tilde{A}_{7} of A_{7}. If $d \geqslant 4$, by [17, §X.4], it remains open whether there are blocks \bar{B} and B that are Morita equivalent to the algebras $\bar{\Lambda}$ and Λ, respectively.

If \bar{B} is the principal block of $k[G / N]$, then we can exclude the blocks in family (III) with $d \geqslant 4$ as follows. Since N contains $O_{2^{\prime}}(G)$ by Remark $3.2, G / N$ has no non-trivial normal subgroup of odd order. By [19], it then follows that G / N is isomorphic to either a subgroup of $\mathrm{P} \Gamma \mathrm{L}_{2}\left(\mathbb{F}_{q}\right)$ containing $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$ for some odd prime power q, or to the alternating group A_{7}. Using a theorem by Clifford [21, Hauptsatz V.17.3], we see that the only possibility for \bar{B} to be Morita equivalent to a block in family (III) occurs when $d=3$ and \bar{B} is Morita equivalent to the principal 2-modular block of the alternating group A_{7}. Therefore, if $d \geqslant 3$ then the blocks \bar{B} in the families (I), (II) and (III) that are Morita equivalent to principal blocks are precisely the blocks considered in [4].

In the following remark we introduce the notation that will enable us to go back and forth between B, \bar{B} and $\Lambda, \bar{\Lambda}$.

Remark 3.6. Assume Hypothesis 3.1. By Remark 3.3, the natural projection $\pi: k G \rightarrow k[G / N]$ induces by restriction to B a surjective k-algebra homomorphism $\pi_{B}: B \rightarrow \bar{B}$. Let e be a sum of orthogonal primitive idempotents in B such that $e B e$ is basic and Morita equivalent to B, and let $\bar{e}=\pi_{B}(e)$. Then $\bar{e} \bar{B} \bar{e}$ is basic and Morita equivalent to \bar{B}, and the restriction of π_{B} to $e B e$ gives a surjective k-algebra homomorphism $\pi_{e}: e B e \rightarrow \bar{e} \bar{B} \bar{e}$.

Suppose $\Lambda=k Q / I$ and $\bar{\Lambda}=k Q / \bar{I}$ are as described in Section 3.1, 3.2 or 3.3 such that B is Morita equivalent to Λ and \bar{B} is Morita equivalent to $\bar{\Lambda}$. Then there are k-algebra isomorphisms $f_{\Lambda}: e B e \rightarrow \Lambda$ and $f_{\bar{\Lambda}}: \bar{e} \bar{B} \bar{e} \rightarrow \bar{\Lambda}$. Moreover, π_{e} induces a surjective k-algebra homomorphism $\pi_{\Lambda}: \Lambda \rightarrow \bar{\Lambda}$ such that the following diagram commutes:

By Remark 3.3, we can identify the simple \bar{B}-modules with the simple B-modules via inflation using π_{B}. This implies that the simple $\bar{e} \bar{B} \bar{e}$-modules can also be identified with the simple $e B e$-modules via inflation using π_{e}, and hence the simple $\bar{\Lambda}$-modules can be identified with the simple Λ-modules via inflation using π_{Λ}. For $i \in\{0,1,2\}$, let $e_{i} \in \Lambda$ (resp. $\bar{e}_{i} \in \bar{\Lambda}$) be the primitive idempotent corresponding to the vertex i in Q. Using Lemma 3.4 and the structure of the projective indecomposable Λ-modules, we see that we can replace $f_{\bar{\Lambda}}$ by $f_{\bar{\Lambda}} \circ \Xi$ for a suitable k-algebra automorphism Ξ of $\bar{\Lambda}$ induced by a quiver automorphism of Q so as to be able to assume that $\bar{\Lambda} \otimes_{\Lambda, \pi_{\Lambda}} \Lambda e_{i} \cong \bar{\Lambda} \pi_{\Lambda}\left(e_{i}\right) \cong \bar{\Lambda} \bar{e}_{i}$ for $i \in\{0,1,2\}$. We make this assumption from now on. Hence we obtain for $i \in\{0,1,2\}$ that the simple Λ-module $S_{i}=\Lambda e_{i} / \operatorname{rad}(\Lambda) e_{i}$ is isomorphic to the inflation via π_{Λ} of the simple $\bar{\Lambda}$-module $\bar{\Lambda} \bar{e}_{i} / \operatorname{rad}(\bar{\Lambda}) \bar{e}_{i}$.

4. Stable endomorphism rings

Assume Hypothesis 3.1. Let V be a finitely generated $k[G / N]$-module and denote its inflation to $k G$ via π also by V. By Higman's criterion (see [20, Thm. 1]), the $k G$-module endomorphisms of V that factor through projective $k G$-modules are precisely those in the image of the trace map $\operatorname{Tr}_{1}^{G}: \operatorname{End}_{k}(V) \rightarrow \operatorname{End}_{k G}(V)$, where $\operatorname{Tr}_{1}^{G}(\psi)(v)=\sum_{g \in G} g \psi\left(g^{-1} v\right)$ for all $\psi \in \operatorname{End}_{k}(V)$ and all $v \in V$. Because N acts trivially on $V, \operatorname{Tr}_{1}^{N}$ is multiplication by $\# N=2 \cdot\left(\# O_{B}\right)$. Hence $\operatorname{Tr}_{1}^{N}$ is zero, which implies that $\operatorname{Tr}_{1}^{G}=\operatorname{Tr}_{N}^{G} \circ \operatorname{Tr}_{1}^{N}$ is also zero. We obtain the following result.

Proposition 4.1. Assume Hypothesis 3.1. Suppose V is an indecomposable $k[G / N]$-module belonging to \bar{B}, and denote its inflation to $k G$ via π also by V. Then V belongs to B, and End $_{k G}(V) \cong \operatorname{End}_{k[G / N]}(V)$. In particular, $\operatorname{End}_{k G}(V) \cong k$ if and only if $\operatorname{End}_{k[G / N]}(V) \cong k$.

We now describe all $k[G / N]$-modules belonging to \bar{B} whose endomorphism rings are isomorphic to k by describing the corresponding $\bar{\Lambda}$-modules and their inflations via π_{Λ} to Λ-modules, using the notation introduced in Remark 3.6. We first need to define some indecomposable Λ modules.

Definition 4.2. Let $\Lambda=k Q / I$ where Q and I are either as in Section 3.1, 3.2 or 3.3.
(i) Let $w=\zeta_{n} \cdots \zeta_{2} \zeta_{1}$ be a path of length $n \geqslant 1$ in $k Q$ whose image modulo I does not lie in $\operatorname{soc}_{2}(\Lambda)$. For $1 \leqslant j \leqslant n$, let v_{j} be the end vertex of ζ_{j}, and let v_{0} be the starting vertex of ζ_{1}. Define a $k Q$-module M_{w} of k-dimension $n+1$ with respect to a given k-basis $\left\{b_{0}, \ldots, b_{n}\right\}$ as follows. Let $0 \leqslant j \leqslant n$. If v is a vertex in Q, define $v b_{j}=b_{j}$ if $v=v_{j}$, and $v b_{j}=0$ otherwise. If ζ is an arrow in Q, define $\zeta b_{j}=b_{j+1}$ if $\zeta=\zeta_{j+1}$ and $j \leqslant n-1$, otherwise define $\zeta b_{j}=0$. By our assumption on w, the ideal I of $k Q$ acts as zero on M_{w}. Hence M_{w} defines a Λ-module, which we also denote by M_{w}. Moreover, M_{w} is a uniserial Λ-module whose descending composition factors are ($S_{v_{0}}, S_{v_{1}}, \ldots, S_{v_{n}}$).
(ii) Let ζ_{1}, ζ_{2} be two arrows in Q which start (resp. end) at the same vertex v_{1}. Let v_{0}, v_{2} be the end vertices (resp. starting vertices) of ζ_{1}, ζ_{2}. Let $w=\zeta_{2} \zeta_{1}^{-1}$ (resp. $w=\zeta_{2}^{-1} \zeta_{1}$). Define a $k Q$-module M_{w} of k-dimension 3 with respect to a given k-basis $\left\{b_{0}, b_{1}, b_{2}\right\}$ as follows. If v is a vertex in Q and $j \in\{0,1,2\}$, define $v b_{j}=b_{j}$ if $v=v_{j}$, and $v b_{j}=0$ otherwise. Define $\zeta_{1} b_{1}=b_{0}$ and $\zeta_{2} b_{1}=b_{2}$ (resp. $\zeta_{1} b_{0}=b_{1}$ and $\zeta_{2} b_{2}=b_{1}$). If ζ is an arrow in Q and $j \in$ $\{0,1,2\}$ such that $(\zeta, j) \notin\left\{\left(\zeta_{1}, 1\right),\left(\zeta_{2}, 1\right)\right\}$ (resp. $\left.(\zeta, j) \notin\left\{\left(\zeta_{1}, 0\right),\left(\zeta_{2}, 2\right)\right\}\right)$, define $\zeta b_{j}=0$. Since the ideal I of $k Q$ acts as zero on M_{w}, this defines a Λ-module, which we also denote by M_{w}. Moreover, M_{w} is a Λ-module with $M_{w} / \operatorname{rad}\left(M_{w}\right) \cong S_{v_{1}}\left(\right.$ resp. $\left.\operatorname{soc}\left(M_{w}\right) \cong S_{v_{1}}\right)$ and $\operatorname{rad}\left(M_{w}\right) \cong S_{v_{0}} \oplus S_{v_{2}}\left(\right.$ resp. $\left.M / \operatorname{soc}\left(M_{w}\right) \cong S_{v_{0}} \oplus S_{v_{2}}\right)$. In particular, $\operatorname{soc}\left(M_{w}\right)=\operatorname{rad}\left(M_{w}\right)$.

Remark 4.3. Assume Hypothesis 3.1. Suppose $\Lambda=k Q / I$ and $\bar{\Lambda}=k Q / \bar{I}$ are as described in Section 3.1, 3.2 or 3.3 such that B is Morita equivalent to Λ and \bar{B} is Morita equivalent to $\bar{\Lambda}$. Let $\pi_{\Lambda}: \Lambda \rightarrow \bar{\Lambda}$ be the surjective k-algebra homomorphism from Remark 3.6. In particular, for $i \in\{0,1,2\}$, the simple Λ-module S_{i} is isomorphic to the inflation via π_{Λ} of the simple $\bar{\Lambda}$-module corresponding to the vertex i in Q, and we denote the latter also by S_{i}.

We now describe the $\bar{\Lambda}$-modules whose endomorphism rings are isomorphic to k and their inflations via π_{Λ} to Λ-modules, up to isomorphism, using the following notation:

A module of the form \vdots denotes a uniserial $\bar{\Lambda}$-module whose factors in the descending radical series are $\left(S_{v_{0}}, \ldots, S_{v_{n}}\right)$ and which is the unique such $\bar{\Lambda}$-module up to isomorphism. A module of the form ${ }_{v_{2}}^{v_{1}}$ (resp. ${ }^{v_{2}}{ }_{v_{1}}^{v_{0}}$) denotes an indecomposable $\bar{\Lambda}$-module whose top (resp. socle) is simple and whose factors in the descending radical series are ($S_{v_{1}}, S_{v_{0}} \oplus S_{v_{2}}$) (resp. ($S_{v_{0}} \oplus S_{v_{2}}, S_{v_{1}}$) and which is the unique such $\bar{\Lambda}$-module up to isomorphism.
(i) If Λ and $\bar{\Lambda}$ are as in Section 3.1, then a complete list of the $\bar{\Lambda}$-modules whose endomorphism ring is isomorphic to k, up to isomorphism, is given by

$$
S_{0}, S_{1}, S_{2}, \begin{aligned}
& 1 \\
& 0
\end{aligned}, \frac{0}{1}, \begin{aligned}
& 0 \\
& 2
\end{aligned}, \begin{gathered}
2 \\
0
\end{gathered}, \begin{gathered}
1 \\
0 \\
2
\end{gathered}, \begin{gathered}
2 \\
0
\end{gathered}
$$

$\begin{array}{cccc} 0 & 0 & 1 & 2 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 \\ 2 \end{array},$

Since $\operatorname{Ext}_{\Lambda}^{1}\left(S_{0}, S_{i}\right) \cong k \cong \operatorname{Ext}_{\Lambda}^{1}\left(S_{i}, S_{0}\right)$ for $i \in\{1,2\}$, the inflations via π_{Λ} of the twodimensional $\bar{\Lambda}$-modules in this list are isomorphic to $M_{\beta}, M_{\gamma}, M_{\delta}, M_{\eta}$ (as defined in Definition 4.2). Because $\operatorname{Ext}_{\Lambda}^{1}\left(M_{\beta}, S_{2}\right) \cong k \cong \operatorname{Ext}_{\Lambda}^{1}\left(M_{\eta}, S_{1}\right)$ and $\operatorname{Ext}_{\Lambda}^{1}\left(M_{\gamma}, S_{2}\right) \cong k \cong$ $\operatorname{Ext}_{\Lambda}^{1}\left(S_{1}, M_{\eta}\right)$, the inflations via π_{Λ} of the three-dimensional $\bar{\Lambda}$-modules in this list are isomorphic to $M_{\delta \beta}, M_{\gamma \eta}, M_{\gamma \delta^{-1}}, M_{\beta^{-1} \eta}$. Since $\operatorname{Ext}_{\Lambda}^{1}\left(S_{0}, M_{\delta \beta}\right) \cong k \cong \operatorname{Ext}_{\Lambda}^{1}\left(S_{0}, M_{\gamma \eta}\right)$ and $\operatorname{Ext}_{\Lambda}^{1}\left(M_{\delta \beta}, S_{0}\right) \cong k \cong \operatorname{Ext}_{\Lambda}^{1}\left(M_{\gamma \eta}, S_{0}\right)$, the inflations via π_{Λ} of the four-dimensional $\bar{\Lambda}$ modules in this list are isomorphic to $M_{\delta \beta \gamma}, M_{\gamma \eta \delta}, M_{\eta \delta \beta}, M_{\beta \gamma \eta}$.
Therefore, a complete list of the Λ-modules which are inflated via π_{Λ} from the above $\bar{\Lambda}$ modules, up to isomorphism, is given by

$$
\begin{gathered}
S_{0}, S_{1}, S_{2}, M_{\beta}, M_{\gamma}, M_{\delta}, M_{\eta}, M_{\delta \beta}, M_{\gamma \eta} \\
M_{\delta \beta \gamma}, M_{\gamma \eta \delta}, M_{\eta \delta \beta}, M_{\beta \gamma \eta}, M_{\gamma \delta^{-1}}, M_{\beta^{-1} \eta}
\end{gathered}
$$

(ii) If Λ and $\bar{\Lambda}$ are as in Section 3.2, then a complete list of the $\bar{\Lambda}$-modules whose endomorphism ring is isomorphic to k, up to isomorphism, is given by

Using similar Ext calculations as in (i), we see that a complete list of the Λ-modules which are inflated via π_{Λ} from these $\bar{\Lambda}$-modules, up to isomorphism, is given by

$$
\begin{gathered}
S_{0}, S_{1}, S_{2}, M_{\beta}, M_{\gamma}, M_{\delta}, M_{\eta}, M_{\kappa}, M_{\lambda}, \\
M_{\beta \kappa^{-1}}, M_{\gamma \delta^{-1}}, M_{\lambda \eta^{-1}}, M_{\gamma^{-1} \lambda}, M_{\beta^{-1} \eta}, M_{\kappa^{-1} \delta} .
\end{gathered}
$$

(iii) If Λ and $\bar{\Lambda}$ are as in Section 3.3, a complete list of the $\bar{\Lambda}$-modules whose endomorphism ring is isomorphic to k, up to isomorphism, is given by

$$
\begin{aligned}
& \begin{array}{llll}
0 & 0 & 1 & 2
\end{array} \\
& \begin{array}{lllllll}
1 & 2 & 0 & 0 & 0 & 1 & 2
\end{array} \\
& 0^{\prime} 0,2 \prime 1,1 \quad 2 \prime 2 \text {. } \\
& 2100
\end{aligned}
$$

Using similar Ext calculations as in (i), we see that a complete list of the Λ-modules which are inflated via π_{Λ} from these $\bar{\Lambda}$-modules, up to isomorphism, is given by

$$
\begin{aligned}
& S_{0}, S_{1}, S_{2}, M_{\beta}, M_{\gamma}, M_{\delta}, M_{\eta}, M_{\delta \beta}, M_{\gamma \eta}, \\
& M_{\delta \beta \gamma}, M_{\gamma \eta \delta}, M_{\eta \delta \beta}, M_{\beta \gamma \eta}, M_{\gamma \delta^{-1}}, M_{\beta^{-1} \eta}
\end{aligned}
$$

5. Ordinary characters for blocks with generalized quaternion defect groups

Assume Hypothesis 3.1. In the notation of [26, §2], this means that we are in Case ($a a$) (see [26, Thm. 3.17]). Let W be the ring of infinite Witt vectors over k, and let F be the fraction field of W. For $2 \leqslant \ell \leqslant d$, let $\zeta_{2^{\ell}}$ be a fixed primitive 2^{ℓ}-th root of unity in an algebraic closure of F. Let

$$
\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{6}, \quad \chi_{7, i}, \quad 1 \leqslant i \leqslant 2^{d-1}-1,
$$

be the ordinary irreducible characters of G belonging to B. Let σ be an element of order 2^{d} in D. By [26], there is a block b_{σ} of $k C_{G}(\sigma)$ with $b_{\sigma}^{G}=B$ which contains a unique 2-modular character $\varphi^{(\sigma)}$ such that the following is true. There is an ordering of $\left(1,2, \ldots, 2^{d-1}-1\right)$ such that for $1 \leqslant i \leqslant 2^{d-1}-1$ and r odd,

$$
\begin{equation*}
\chi_{7, i}\left(\sigma^{r}\right)=\left(\zeta_{2^{d}}^{r i}+\zeta_{2^{d}}^{-r i}\right) \cdot \varphi^{(\sigma)}(1) \tag{5.1}
\end{equation*}
$$

Note that W contains all roots of unity of order not divisible by 2 . Hence by [26] and by [18], the characters $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{6}$ correspond to simple $F G$-modules. On the other hand, the characters $\chi_{7, i}, i=1, \ldots, 2^{d-1}-1$, fall into $d-1$ Galois orbits $\mathcal{O}_{2}, \ldots, \mathcal{O}_{d}$ under the action of $\operatorname{Gal}\left(F\left(\zeta_{2^{d}}+\zeta_{2^{d}}^{-1}\right) / F\right)$. Namely for $2 \leqslant \ell \leqslant d, \mathcal{O}_{\ell}=\left\{\chi_{7,2^{d-\ell}(2 u-1)} \mid 1 \leqslant u \leqslant 2^{\ell-2}\right\}$. The field generated by the character values of each $\xi_{\ell} \in \mathcal{O}_{\ell}$ over F is $F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right)$. Hence by [18], each ξ_{ℓ} corresponds to an absolutely irreducible $F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right) G$-module X_{ℓ}. By [21, Satz V.14.9], this implies that for $2 \leqslant \ell \leqslant d$, the Schur index of each $\xi_{\ell} \in \mathcal{O}_{\ell}$ over F is 1 . Hence we obtain $d-1$ non-isomorphic simple $F G$-modules V_{2}, \ldots, V_{d} with characters $\rho_{2}, \ldots, \rho_{d}$ satisfying

$$
\begin{equation*}
\rho_{\ell}=\sum_{\xi_{\ell} \in \mathcal{O}_{\ell}} \xi_{\ell}=\sum_{u=1}^{2^{\ell-2}} \chi_{7,2^{d-\ell}(2 u-1)} \quad \text { for } 2 \leqslant \ell \leqslant d \tag{5.2}
\end{equation*}
$$

By [21, Hilfssatz V.14.7], $\operatorname{End}_{F G}\left(V_{\ell}\right)$ is a commutative F-algebra isomorphic to the field generated over F by the character values of any $\xi_{\ell} \in \mathcal{O}_{\ell}$. This means

$$
\begin{equation*}
\operatorname{End}_{F G}\left(V_{\ell}\right) \cong F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right) \quad \text { for } 2 \leqslant \ell \leqslant d \tag{5.3}
\end{equation*}
$$

By [26], the characters $\chi_{7, i}$ have the same degree x for $1 \leqslant i \leqslant 2^{d-1}-1$. The characters $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ have height $0, \chi_{5}, \chi_{6}$ have height $d-1$, and $\chi_{7, i}, 1 \leqslant i \leqslant 2^{d-1}-1$, have height 1 . Hence $x=2^{a-(d+1)+1} x^{*}$ where $\# G=2^{a} \cdot g^{*}$ and x^{*} and g^{*} are odd. Since the centralizer $C_{G}(\sigma)$ contains $\langle\sigma\rangle$, we have $\# C_{G}(\sigma)=2^{d} \cdot 2^{b} \cdot m^{*}$ where $b \geqslant 0$ and m^{*} is odd. Suppose $\varphi^{(\sigma)}(1)=$ $2^{c} \cdot n^{*}$ where $c \geqslant 0$ and n^{*} is odd. Note that if ψ is an ordinary irreducible character of $C_{G}(\sigma)$ belonging to the block b_{σ}, then by [27, p. 61], $\psi(1)$ divides $\left(\# C_{G}(\sigma)\right) /(\#\langle\sigma\rangle)=2^{b} \cdot m^{*}$. Because $\psi(1)=s_{\psi} \cdot \varphi^{(\sigma)}(1)$ for some positive integer s_{ψ}, we have $c \leqslant b$.

Let C be the conjugacy class in G of σ, and let $t(C) \in W G$ be the class sum of C. We want to determine the action of $t(C)$ on V_{ℓ} for $2 \leqslant \ell \leqslant d$. For this, we identify $\operatorname{End}_{F G}\left(V_{\ell}\right) \cong$ $F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right)$ with $\operatorname{End}_{F\left(\zeta_{2} \ell+\zeta_{2 \ell}^{-1}\right) G}\left(X_{\ell}\right)$ for one particular absolutely irreducible $F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right) G$ -
constituent X_{ℓ} of V_{ℓ} with character ξ_{ℓ}. By (5.2), we can choose $\xi_{\ell}=\chi_{7,2^{d-\ell}}$. Then, under this identification, for $2 \leqslant \ell \leqslant d$, the action of $t(C)$ on V_{ℓ} is given as multiplication by

$$
\begin{equation*}
\frac{\# C}{\xi_{\ell}(1)} \cdot \xi_{\ell}(\sigma)=2^{c-b} \frac{g^{*} \cdot n^{*}}{m^{*} \cdot x^{*}} \cdot\left(\zeta_{2^{d}}^{2^{d-\ell}}+\zeta_{2^{d}}^{-2^{d-\ell}}\right) \tag{5.4}
\end{equation*}
$$

where, as shown above, $c \leqslant b$. Note that $\frac{g^{*} \cdot n^{*}}{m^{*} \cdot x^{*}}$ is a unit in W, since $g^{*} \cdot n^{*}$ and $m^{*} \cdot x^{*}$ are odd. Since $t(C) \in W G$, we must have $c \geqslant b$, i.e. $c=b$. Therefore, (5.4) implies that there exists a unit ω in W such that for $2 \leqslant \ell \leqslant d$, the action of $t(C)$ on V_{ℓ} is given as multiplication by

$$
\begin{equation*}
\omega \cdot\left(\zeta_{2^{d}}^{2^{d-\ell}}+\zeta_{2^{d}}^{-2^{d-\ell}}\right) \tag{5.5}
\end{equation*}
$$

when we identify $\operatorname{End}_{F G}\left(V_{\ell}\right)$ with $\operatorname{End}_{F\left(\zeta_{2} \ell+\zeta_{2 \ell}^{-1}\right) G}\left(X_{\ell}\right)$ for an absolutely irreducible $F\left(\zeta_{2^{\ell}}+\right.$ $\left.\zeta_{2^{\ell}}^{-1}\right) G$-constituent X_{ℓ} of V_{ℓ} whose character is $\chi_{7,2^{d-\ell}}$.

Definition 5.1. Use the notation introduced above.
(i) Define

$$
p_{d+1}(t)=\prod_{\ell=2}^{d} \min \cdot p o l . F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right),
$$

and let $R^{\prime}=W[[t]] /\left(p_{d+1}(t)\right)$.
(ii) Let $Z=\langle\sigma\rangle$ be a cyclic group of order 2^{d}, and let $\tau: Z \rightarrow Z$ be the group automorphism sending σ to σ^{-1}. Then τ can be extended to a W-algebra automorphism of the group ring $W Z$ which will again be denoted by τ. Let $T\left(\sigma^{2}\right)=1+\sigma^{2}+\sigma^{4}+\cdots+\sigma^{2^{d}-2}$, and define

$$
S^{\prime}=(W Z)^{\langle\tau\rangle} /\left(T\left(\sigma^{2}\right), \sigma T\left(\sigma^{2}\right)\right)
$$

Remark 5.2. The minimal polynomial min.pol. $F_{F}\left(\zeta_{2} \ell+\zeta_{2 \ell}^{-1}\right)$ for $\ell \geqslant 2$ is as follows:

$$
\begin{aligned}
& \min . p o l . F\left(\zeta_{2^{2}}+\zeta_{2^{2}}^{-1}\right)(t)=t \\
& \min . \text { pol. } F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right)(t)=\left(\text { min.pol. } F\left(\zeta_{2^{\ell-1}}+\zeta_{2^{\ell-1}}^{-1}\right)(t)\right)^{2}-2 \quad \text { for } \ell \geqslant 3
\end{aligned}
$$

The W-algebra R^{\prime} from Definition 5.1 is a complete local commutative Noetherian ring with residue field k. Moreover,

$$
\begin{aligned}
& F \otimes_{W} R^{\prime} \cong \prod_{\ell=2}^{d} F\left(\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right) \quad \text { as } F \text {-algebras } \\
& k \otimes_{W} R^{\prime} \cong k[t] /\left(t^{2^{d-1}-1}\right) \quad \text { as } k \text {-algebras. }
\end{aligned}
$$

Additionally, for any sequence $\left(r_{\ell}\right)_{\ell=2}^{d}$ of odd integers, R^{\prime} is isomorphic to the W-subalgebra of

$$
\prod_{\ell=2}^{d} W\left[\zeta_{2 \ell}+\zeta_{2^{\ell}}^{-1}\right]
$$

generated by the element $\left(\zeta_{2^{\ell}}^{r_{\ell}}+\zeta_{2^{\ell}}^{-r_{\ell}}\right)_{\ell=2}^{d}$.
Lemma 5.3. Using the notation of Definition 5.1, there is a continuous W-algebra isomorphism $\rho: R^{\prime} \rightarrow S^{\prime}$ with $\rho(t)=\sigma+\sigma^{-1}$. In particular, R^{\prime} is isomorphic to a subquotient algebra of the group ring over W of a generalized quaternion group of order 2^{d+1}.

Proof. It follows from [4, Lemma 2.3.6] that $\rho: R^{\prime} \rightarrow S^{\prime}$ is a continuous W-algebra isomorphism. Hence the description of S^{\prime} in Definition 5.1 shows that S^{\prime} is isomorphic to a subquotient algebra of the group ring over W of a generalized quaternion group of order 2^{d+1}.

Lemma 5.4. Assume Hypothesis 3.1 and use the notation introduced above. Let U^{\prime} be a $W G$ module which is free over W and whose F-character is

$$
\sum_{\ell=2}^{d} \rho_{\ell}=\sum_{i=1}^{2^{d-1}-1} \chi_{7, i}
$$

Then U^{\prime} is an $R^{\prime} G$-module which is free as an R^{\prime}-module and $\operatorname{End}_{W G}\left(U^{\prime}\right) \cong R^{\prime}$.

Proof. We first prove that R^{\prime} is isomorphic to a W-subalgebra of $\operatorname{End}_{W G}\left(U^{\prime}\right)$. Let σ be the same element of order 2^{d} in D as in (5.1), and let $t(C)$ be the class sum of the conjugacy class C of σ in G. Since $t(C)$ lies in the center of $W G$, multiplication by $t(C)$ defines a $W G$-module endomorphism of U^{\prime}. Since $\operatorname{End}_{W G}\left(U^{\prime}\right)$ can naturally be identified with a subring of $\operatorname{End}_{F G}\left(F \otimes_{W} U^{\prime}\right)$, $t(C)$ acts on U^{\prime} as multiplication by a scalar λ_{C} in $F \otimes_{W} R^{\prime} \cong \prod_{\ell=2}^{d} F\left(\zeta_{2^{\ell}}+\zeta_{2 \ell}^{-1}\right)$. Moreover, λ_{C} can be read off from the action of $t(C)$ on $F \otimes_{W} U^{\prime} \cong \bigoplus_{\ell=2}^{d} V_{\ell}$. By (5.5), λ_{C} equals $\omega \cdot\left(\zeta_{2^{\ell}}^{r_{\ell}}+\zeta_{2^{\ell}}^{-r_{\ell}}\right)_{\ell=2}^{d}$ for some unit $\omega \in W$ and some sequence $\left(r_{\ell}\right)_{\ell=2}^{d}$ of odd integers. Since R^{\prime} is isomorphic to the W-subalgebra of $\prod_{\ell=2}^{d} W\left[\zeta_{2^{\ell}}+\zeta_{2^{\ell}}^{-1}\right]$ generated by $\left(\zeta_{2^{\ell}}^{r_{\ell}}+\zeta_{2^{\ell}}^{-r_{\ell}}\right)_{\ell=2}^{d}$, this implies that R^{\prime} is isomorphic to a W-subalgebra of $\operatorname{End}_{W G}\left(U^{\prime}\right)$. Hence U^{\prime} is an $R^{\prime} G$-module.

We next prove that U^{\prime} is free as an R^{\prime}-module. Since U^{\prime} is finitely generated as a W-module, it is also finitely generated as an R^{\prime}-module. Since R^{\prime} is a local ring with maximal ideal $m_{R^{\prime}}$, it follows by Nakayama's Lemma that any k-basis $\left\{\bar{b}_{1}, \ldots, \bar{b}_{s}\right\}$ of $U^{\prime} / m_{R^{\prime}} U^{\prime}$ can be lifted to a set $\left\{b_{1}, \ldots, b_{s}\right\}$ of generators of U^{\prime} over R^{\prime}. Since $F \otimes_{W} U^{\prime}$ is a free $\left(F \otimes_{W} R^{\prime}\right)$-module of rank s, it follows that b_{1}, \ldots, b_{s} are linearly independent over R^{\prime}. Because $\operatorname{End}_{F G}\left(F \otimes_{W} U^{\prime}\right) \cong F \otimes_{W} R^{\prime}$, this then implies that $\operatorname{End}_{W G}\left(U^{\prime}\right) \cong R^{\prime}$.

6. Universal deformation rings

As in Section 5, let W be the ring of infinite Witt vectors over k and let F be the fraction field of W.

Theorem 6.1. Assume Hypothesis 3.1. Suppose B is Morita equivalent to $\Lambda=k Q / I$ where Q and I are as in Section 3.1 (resp. Section 3.2, resp. Section 3.3). Denote the three simple B-modules by T_{0}, T_{1} and T_{2}, where T_{i} corresponds to S_{i}, for $i \in\{0,1,2\}$, under the Morita equivalence between B and Λ. Suppose M is an indecomposable B-module whose stable endomorphism ring is isomorphic to k and which is inflated from a \bar{B}-module. For $d \geqslant 2$, let $p_{d+1}(t) \in W[t]$ be as in Definition 5.1.
(i) Suppose Λ is as in Section 3.1 and $d \geqslant 2$. If M is a uniserial module of length 4, then $R(G, M) \cong W[[t]] /\left(p_{d+1}(t)\right)$. Otherwise $R(G, M) \cong W$.
(ii) Suppose Λ is as in Section 3.2 and $d \geqslant 2$. If M is a uniserial module of length 2 with composition factors T_{1}, T_{2}, then $R(G, M) \cong W[[t]] /\left(p_{d+1}(t)\right)$. Otherwise $R(G, M) \cong W$.
(iii) Suppose Λ is as in Section 3.3 and $d \geqslant 3$. If M is isomorphic to T_{1}, then $R(G, M) \cong$ $W[[t]] /\left(p_{d+1}(t)\right)$. Otherwise $R(G, M) \cong W$.

In all cases (i)-(iii), $R(G, M)$ is isomorphic to a subquotient ring of $W D$ and a complete intersection.

Proof. By Proposition 4.1, M is inflated from a \bar{B}-module whose endomorphism ring is isomorphic to k. Hence we can use the lists given in Remark 4.3 to describe the possibilities for M. Recall that we have shown in Remark 4.3 that all these M are uniquely determined by the factors in their descending radical series.

We prove part (i) of Theorem 6.1, the proofs of parts (ii) and (iii) being similar. Using the list in Remark 4.3(i) and the description of the projective indecomposable B-modules in Fig. 1, it follows for all $d \geqslant 2$ that $\operatorname{Ext}_{k G}^{1}(M, M)=0$ if M is not a uniserial module of length 4. If M is uniserial of length 4, then $\operatorname{Ext}_{k G}^{1}(M, M)=0$ if $d=2$ and $\operatorname{Ext}_{k G}^{1}(M, M) \cong k$ if $d \geqslant 3$.

We first show that each M corresponding to a Λ-module in the list in Remark 4.3(i) has a lift over W. We see directly from the decomposition matrix in Fig. 2 that if M is simple then M has a lift over W. We divide the remaining M into two subsets \mathcal{M}_{1} and \mathcal{M}_{2} where

$$
\begin{aligned}
& \text { and } \mathcal{M}_{2}=\left\{\begin{array}{llll}
T_{0} & T_{0} & & \\
T_{1} & T_{2} & T_{1} & T_{2} \\
T_{0} & T_{0} & T_{0} \\
T_{2} & T_{1} &
\end{array}\right\} \text {. }
\end{aligned}
$$

For $M \in \mathcal{M}_{1}$, let P_{M}^{W} be a projective indecomposable $W G$-module such that $k \otimes_{W} P_{M}^{W}$ is a projective $k G$-module cover of M. Using the decomposition matrix in Fig. 2 and [15, Prop. (23.7)], it follows for $M \in \mathcal{M}_{1}$ that there is a W-pure $W G$-sublattice X_{M} of P_{M}^{W} such that $U_{M}=P_{M}^{W} / X_{M}$ defines a lift over W of a B-module N which has the same top and the same composition factors as M. Moreover, it follows from the description of the projective indecomposable B-modules in Fig. 1 that the factors in the descending radical series of N and M are the same. Hence it follows from Remark 4.3(i) that N has to be isomorphic to M.

For $M \in \mathcal{M}_{2}$, let Q_{M}^{W} be the projective indecomposable $W G$-module such that $k \otimes_{W} Q_{M}^{W}$ is a projective $k G$-module cover of $\Omega^{-1}(M)$. Using the decomposition matrix in Fig. 2, [15, Prop. (23.7)] and the description of the projective indecomposable B-modules in Fig. 1, it follows for $M \in \mathcal{M}_{2}$ that there is a W-pure $W G$-sublattice Y_{M} of Q_{M}^{W} such that $V_{M}=Q_{M}^{W} / Y_{M}$ defines a lift of $\Omega^{-1}(M)$ over W. Therefore, Y_{M} defines a lift of M over W.

Hence, every B-module M which is inflated from a \bar{B}-module whose endomorphism ring is isomorphic to k has a lift over W. This implies that $R(G, M) \cong W$ for all such M in case $d=2$, and for all such M that are not uniserial of length 4 in case $d \geqslant 3$. In particular, this proves part (i) of Theorem 6.1 in case $d=2$ since $p_{3}(t)=t$.

To finish the proof of part (i) in general, assume now that $d \geqslant 3$ and M is a uniserial module of length 4 . Let $i \neq j$ in $\{1,2\}$ and define

$$
M_{i 0 j 0}=\begin{gathered}
T_{i} \\
T_{0} \\
T_{j} \\
T_{0}
\end{gathered} \quad \text { and } \quad M_{0 i 0 j}=\begin{array}{r}
T_{0} \\
T_{i} \\
T_{0} \\
T_{j}
\end{array}
$$

Then $M \cong M_{i 0 j 0}\left(\right.$ resp. $\left.M \cong M_{0 i 0 j}\right)$ for some choice of $i \neq j$ in $\{1,2\}$, and $\operatorname{Ext}_{k G}^{1}(M, M) \cong k$. Considering the projective B-module cover $P_{T_{i}}$ of T_{i}, it follows that $P_{T_{i}}$ has a uniserial quotient module $\bar{U}_{i 0 j 0}$ of length $4 \cdot\left(2^{d-1}-1\right)$ whose composition factors in the descending radical series are given as

$$
\left(T_{i}, T_{0}, T_{j}, T_{0}, T_{i}, T_{0}, T_{j}, T_{0}, \ldots, T_{i}, T_{0}, T_{j}, T_{0}\right)
$$

such that there are $k G$-module isomorphisms

$$
\begin{aligned}
& \phi_{i 0 j 0}: \bar{U}_{i 0 j 0} / \operatorname{rad}^{4}\left(\bar{U}_{i 0 j 0}\right) \rightarrow M_{i 0 j 0}, \\
& \psi_{i 0 j 0}: \bar{U}_{i 0 j 0} / \operatorname{rad}^{4\left(2^{d-1}-2\right)}\left(\bar{U}_{i 0 j 0}\right) \rightarrow \operatorname{rad}^{4}\left(\bar{U}_{i 0 j 0}\right),
\end{aligned}
$$

and $\operatorname{Ext}_{k G}^{1}\left(\bar{U}_{i 0 j 0}, M_{i 0 j 0}\right)=0$. Namely, the B-module \bar{U}_{1020} (resp. \bar{U}_{2010}) corresponds to the Λ module $M_{\eta \delta \beta(\gamma \eta \delta \beta)^{2 d-1}-2}\left(\right.$ resp. $\left.M_{\beta \gamma \eta(\delta \beta \gamma \eta)^{2 d-1}-2}\right)$, as defined in Definition 4.2, under the Morita equivalence between B and Λ. Similarly, the projective B-module cover $P_{T_{0}}$ of T_{0} has a uniserial quotient module $\bar{U}_{0 i 0 j}$ of length $4 \cdot\left(2^{d-1}-1\right)$ whose composition factors in the descending radical series are given as

$$
\left(T_{0}, T_{i}, T_{0}, T_{j}, T_{0}, T_{i}, T_{0}, T_{j}, \ldots, T_{0}, T_{i}, T_{0}, T_{j}\right)
$$

such that there are $k G$-module isomorphisms

$$
\begin{aligned}
& \phi_{0 i 0 j}: \bar{U}_{0 i 0 j} / \operatorname{rad}^{4}\left(\bar{U}_{0 i 0 j}\right) \rightarrow M_{0 i 0 j} \\
& \psi_{0 i 0 j}: \bar{U}_{0 i 0 j} / \operatorname{rad}^{4\left(2^{d-1}-2\right)}\left(\bar{U}_{0 i 0 j}\right) \rightarrow \operatorname{rad}^{4}\left(\bar{U}_{0 i 0 j}\right)
\end{aligned}
$$

and $\operatorname{Ext}_{k G}^{1}\left(\bar{U}_{0 i 0 j}, M_{0 i 0 j}\right)=0$. Namely, the B-module \bar{U}_{0102} (resp. \bar{U}_{0201}) corresponds to the Λ-module $M_{\delta \beta \gamma(\eta \delta \beta \gamma)^{2 d-1}-2}$ (resp. $M_{\gamma \eta \delta(\beta \gamma \eta \delta)^{2 d-1}-2}$) under the Morita equivalence between B and Λ. Hence it follows by Lemma 2.5 in case M is isomorphic to $M_{i 0 j 0}$ (resp. to $M_{0 i 0 j}$) that
$\bar{R}=R(G, M) / 2 R(G, M) \cong k[t] /\left(t^{2^{d-1}-1}\right)$. Moreover, the universal mod 2 deformation of M over \bar{R} is $\left[\bar{U}_{i 0 j 0}, \phi_{i 0 j 0}\right]$ (resp. [$\left.\bar{U}_{0 i 0 j}, \phi_{0 i 0 j}\right]$) where the action of t on $\bar{U}_{i 0 j 0}$ (resp. $\bar{U}_{0 i 0 j}$) is given by the $k G$-module endomorphism $\mu_{t, i 0 j 0}$ (resp. $\mu_{t, 0 i 0 j}$) of $\bar{U}_{i 0 j 0}$ (resp. $\bar{U}_{0 i 0 j}$) which is induced by $\psi_{i 0 j 0}$ (resp. $\psi_{0 i 0 j}$).

We now use Lemma 2.4 to show that $\bar{U}_{i 0 j 0}$ (resp. $\bar{U}_{0 i 0 j}$) has a lift over W. Consider the following submodule $Z_{i 0 j 0}$ (resp. quotient module $Z_{0 j 0 i}$) of the projective indecomposable B module $P_{T_{i}}$:

$$
\begin{aligned}
& T_{i} \quad T_{i} \\
& T_{0} \quad T_{0} \\
& Z_{i 0 j 0}=\Omega\left(\bar{U}_{i 0 j 0}\right)=T_{i} \begin{array}{c}
T_{j} \\
T_{0}
\end{array} \quad, \quad Z_{0 j 0 i}=\Omega^{-1}\left(\bar{U}_{0 j 0 i}\right)=T_{i} \quad T_{j} \quad . \\
& T_{i}
\end{aligned}
$$

T_{s}
If $Y_{s 0 t}=T_{0}$ for $s, t \in\{1,2\}$ then we have two non-split short exact sequences of B-modules T_{t}

$$
0 \rightarrow Y_{i 0 i} \rightarrow Z_{i 0 j 0} \rightarrow Y_{i 0 j} \rightarrow 0
$$

and

$$
0 \rightarrow Y_{j 0 i} \rightarrow Z_{0 j 0 i} \rightarrow Y_{i 0 i} \rightarrow 0
$$

where $\operatorname{Ext}_{k G}^{1}\left(Y_{i 0 j}, Y_{i 0 i}\right) \cong k$ and $\operatorname{Ext}_{k G}^{1}\left(Y_{i 0 i}, Y_{j 0 i}\right) \cong k$. Moreover, it follows from the decomposition matrix in Fig. 2 and from the description of the projective indecomposable B-modules in Fig. 1 that $Y_{s 0 t}$ has a lift $\left(X_{s 0 t}, \xi_{s 0 t}\right)$ over W for all $s, t \in\{1,2\}$ such that the following holds. If $s \neq t$ then the F-character of $X_{s 0 t}$ is χ_{4}, the F-character of X_{101} is $\chi_{2}+\chi_{5}$, and the F-character of X_{202} is $\chi_{3}+\chi_{6}$. Therefore, we have

$$
\operatorname{Hom}_{F G}\left(F \otimes_{W} X_{i 0 j}, F \otimes_{W} X_{i 0 i}\right)=0=\operatorname{Hom}_{F G}\left(F \otimes_{W} X_{i 0 i}, F \otimes_{W} X_{j 0 i}\right) .
$$

Since

$$
\operatorname{Hom}_{k G}\left(Y_{i 0 j}, Y_{i 0 i}\right) \cong k \cong \operatorname{Hom}_{k G}\left(Y_{i 0 i}, Y_{j 0 i}\right),
$$

it follows from Lemma 2.4 that both $Z_{i 0 j 0}$ and $Z_{0 j 0 i}$ have a lift over W. Moreover, if $(i, j)=$ $(1,2)$ then the F-character of these lifts is $\chi_{2}+\chi_{4}+\chi_{5}$, and if $(i, j)=(2,1)$ then the F-character of these lifts is $\chi_{3}+\chi_{4}+\chi_{6}$. Since $\bar{U}_{i 0 j 0} \cong \Omega^{-1}\left(Z_{i 0 j 0}\right)$ (resp. $\bar{U}_{0 i 0 j} \cong \Omega\left(Z_{0 i 0 j}\right)$), we obtain that $\bar{U}_{i 0 j 0}\left(\right.$ resp. $\left.\bar{U}_{0 i 0 j}\right)$ also has a lift $\left(U_{i 0 j 0}^{\prime}, v_{i 0 j 0}^{\prime}\right)\left(\right.$ resp. $\left.\left(U_{0 i 0 j}^{\prime}, v_{0 i 0 j}^{\prime}\right)\right)$ over W. Because of the F-characters of $Z_{i 0 j 0}$ and $Z_{0 i 0 j}$, it follows that the F-character of $U_{i 0 j 0}^{\prime}\left(\right.$ resp. $\left.U_{0 i 0 j}^{\prime}\right)$ is

$$
\sum_{\ell=2}^{d} \rho_{\ell}=\sum_{u=1}^{2^{d-1}-1} \chi_{7, u}
$$

If M is isomorphic to $M_{i 0 j 0}$ (resp. $M_{0 i 0 j}$), let \bar{U} be $\bar{U}_{i 0 j 0}$ (resp. $\bar{U}_{0 i 0 j}$), let ϕ be $\phi_{i 0 j 0}$ (resp. $\phi_{0 i 0 j}$), let μ_{t} be $\mu_{t, i 0 j 0}$ (resp. $\mu_{t, 0 i 0 j}$), let U^{\prime} be $U_{i 0 j 0}^{\prime}$ (resp. $U_{0 i 0 j}^{\prime}$) and let ν^{\prime} be $v_{i 0 j 0}^{\prime}$ (resp.
$v_{0 i 0 j}^{\prime}$). By Lemma 5.4, U^{\prime} is an $R^{\prime} G$-module which is free as an R^{\prime}-module and $\operatorname{End}_{W G}\left(U^{\prime}\right) \cong R^{\prime}$ where $R^{\prime}=W[[t]] /\left(p_{d+1}(t)\right)$. Let $\Psi_{t}^{\prime}: U^{\prime} \rightarrow U^{\prime}$ be the $W G$-module endomorphism of U^{\prime} which defines the action of $t \in R^{\prime}$ on U^{\prime} and let $\overline{\Psi_{t}^{\prime}}: U^{\prime} / 2 U^{\prime} \rightarrow U^{\prime} / 2 U^{\prime}$ be the induced $k G$-module endomorphism of $U^{\prime} / 2 U^{\prime}$. Since $v^{\prime}: U^{\prime} / 2 U^{\prime} \rightarrow \bar{U}$ is a $k G$-module isomorphism and $\operatorname{End}_{k G}\left(U^{\prime} / 2 U^{\prime}\right) \cong R^{\prime} / 2 R^{\prime} \cong k[t] /\left(t^{2^{d-1}-1}\right)$, it follows that the $k G$-module endomorphism $\psi_{t}^{\prime}=\nu^{\prime} \circ \overline{\Psi_{t}^{\prime}} \circ\left(\nu^{\prime}\right)^{-1}$ of \bar{U} satisfies $\psi_{t}^{\prime}(\bar{U})=\mu_{t}(\bar{U})=t \bar{U}$. Thus we obtain a composition of $k G$-modules $k \otimes_{R^{\prime}} U^{\prime}=U^{\prime} /(2, t) U^{\prime} \xrightarrow{\bar{v}^{\prime}} \bar{U} / t \bar{U} \xrightarrow{\phi} M$, where $(2, t)$ denotes the ideal of R^{\prime} generated by 2 and t and $\overline{\nu^{\prime}}$ is the $k G$-module isomorphism induced by ν^{\prime}. If $\phi^{\prime}=\phi \circ \overline{\nu^{\prime}}$, then $\left(U^{\prime}, \phi^{\prime}\right)$ is a lift of M over $R^{\prime}=W[[t]] /\left(p_{d+1}(t)\right)$. We therefore have a continuous W-algebra homomorphism $\tau: R(G, M) \rightarrow R^{\prime}$ relative to ($U^{\prime}, \phi^{\prime}$). Since $U^{\prime} / 2 U^{\prime} \cong \bar{U}$ is indecomposable as a $k G$-module, τ must be surjective. Hence τ induces a surjective k-algebra homomorphism $\bar{\tau}: R(G, M) / 2 R(G, M) \rightarrow R^{\prime} / 2 R^{\prime}$. Since $R(G, M) / 2 R(G, M) \cong R^{\prime} / 2 R^{\prime}$ are both finite dimensional over k, this implies that $\bar{\tau}$ is an isomorphism. Because R^{\prime} is a free W-module of finite rank, it follows that τ is an isomorphism. By Lemma 5.3, R^{\prime} is isomorphic to a subquotient ring of $W D$. This completes the proof of part (i), and hence of Theorem 6.1.

Since the case $d \geqslant 4$ in family (III) was excluded in [4], we now determine the universal deformation rings $R(G / N, M)$ when $\operatorname{End}_{k[G / N]}(M) \cong k$ and M belongs to a block \bar{B} as in Section 3.3 for $d \geqslant 4$. We prove a slightly more general result.

Lemma 6.2. Let k be an algebraically closed field of characteristic 2, let H be a finite group and let $d \geqslant 4$ be an integer. Suppose B_{H} is a block of $k H$ with a dihedral defect group D_{H} of order 2^{d} such that B_{H} is Morita equivalent to $\bar{\Lambda}=k Q / \bar{I}$ where Q and \bar{I} are as in Section 3.3. Denote the three simple B_{H}-modules by T_{0}, T_{1} and T_{2}, where T_{i} corresponds to the simple $\bar{\Lambda}$-module S_{i}, for $i \in\{0,1,2\}$, under the Morita equivalence. Suppose M is a $k H$-module belonging to B_{H} with $\operatorname{End}_{k H}(M) \cong k$.
(i) If M is not isomorphic to T_{i} for $i \in\{1,2\}$ and M is not uniserial of length 4 , then $R(H, M) \cong W$.
(ii) If M is isomorphic to T_{2} or M is uniserial of length 4 , then $R(H, M) \cong k$.
(iii) If M is isomorphic to T_{1}, then $R(H, M) \cong W[[t]] /\left(t p_{d}(t), 2 p_{d}(t)\right)$, where $p_{d}(t) \in W[t]$ is as in Definition 5.1 (when $d+1$ is replaced by d).

In all cases (i)-(iii), $R(H, M)$ is isomorphic to a subquotient ring of $W D_{H}$. If M is as in part (iii), then $R(H, M)$ is not a complete intersection.

Proof. Since B_{H} is Morita equivalent to $\bar{\Lambda}$ as in Section 3.3 and since the endomorphism ring of M is isomorphic to k, we can use the list in Remark 4.3(iii) to describe all possibilities for M. It follows that $\operatorname{Ext}_{k H}^{1}(M, M)=0$ if M is not isomorphic to T_{1} and $\operatorname{Ext}_{k H}^{1}\left(T_{1}, T_{1}\right) \cong k$. By [17, p. 295], the decomposition matrix of B_{H} has the form

φ_{0} $\varphi_{1}$$\varphi_{2}$
χ_{1}
χ_{2}
χ_{3}
χ_{4}
$\chi_{5, i}$

1 \& 1 \& 0

1 \& 0 \& 1

1 \& 1 \& 1

0 \& 1 \& 0\end{array}\right] \quad\)| |
| :--- |
| |

Moreover, the description in [4, §3.4] of the ordinary characters belonging to blocks with dihedral defect groups and precisely three isomorphism classes of simple modules is in particular valid for B_{H}. It follows from this description that $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ are the characters of simple $F H$-modules and that $\sum_{i=1}^{2^{d-2}-1} \chi_{5, i}$ is the character of a semisimple $F H$-module.

Using the decomposition matrix in (6.1) together with [15, Prop. (23.7)], it follows that the modules M in parts (i) and (iii) of Lemma 6.2 have a lift over W but not the modules M in part (ii). In particular, this implies that $R(H, M) \cong W$ for all M as in part (i).

If M is as in part (ii), then M belongs to the boundary of a 3-tube of the stable AuslanderReiten quiver of B_{H}. Hence we can use the same arguments as in the proof of [4, Cor. 5.2.5] to see that $R(H, M) \cong k$ for all M as in part (ii).

Finally, let M be as in part (iii), i.e. $M \cong T_{1}$. Let $R=R\left(H, T_{1}\right)$ and $\bar{R}=R / 2 R$. Considering the projective B_{H}-module cover $P_{T_{1}}$ of T_{1}, it follows that $P_{T_{1}}$ has a uniserial quotient module \bar{U} of length 2^{d-2} whose composition factors are all isomorphic to T_{1} such that $\operatorname{Ext}_{k H}^{1}\left(\bar{U}, T_{1}\right)=0$ and such that there are $k H$-module isomorphisms $\phi: \bar{U} / \operatorname{rad}(\bar{U}) \rightarrow T_{1}, \phi^{\prime}: \operatorname{rad}(\bar{U}) / \operatorname{rad}^{2}(\bar{U}) \rightarrow$ T_{1} and $\psi: \bar{U} / \operatorname{rad}^{2^{d-2}-1}(\bar{U}) \rightarrow \operatorname{rad}(\bar{U})$. Hence it follows by Lemma 2.5 that $\bar{R} \cong k[t] /\left(t^{2^{d-2}}\right)$ and that the universal mod 2 deformation of T_{1} over \bar{R} is $[\bar{U}, \phi]$, where the action of t on \bar{U} is given by the $k H$-module endomorphism μ_{t} of \bar{U} which is induced by ψ. Let $\overline{U^{\prime}}=\operatorname{rad}(\bar{U})$. Then ($\overline{U^{\prime}}, \phi^{\prime}$) is a lift of T_{1} over $k[t] /\left(t^{2^{d-2}-1}\right)$, where the action of t on $\overline{U^{\prime}}$ is given by the $k H$ module endomorphism μ_{t}^{\prime} of $\overline{U^{\prime}}$ which is the restriction of μ_{t} to $\overline{U^{\prime}}$. Using the decomposition matrix in (6.1) together with [15, Prop. (23.7)], we see that $\overline{U^{\prime}}$ has a lift $\left(U^{\prime}, \xi^{\prime}\right)$ over W such that the F-character of U^{\prime} is equal to $\sum_{i=1}^{2^{d-2}-1} \chi_{5, i}$. Using similar arguments as in the proof of [4, Thm. 5.1] and employing the description of the ordinary characters belonging to B_{H} in $[4, \S 3.4]$, it follows that U^{\prime} defines a lift $\left(U^{\prime}, v^{\prime}\right)$ of T_{1} over $W[[t]] /\left(p_{d}(t)\right)$, where $p_{d}(t)$ is as in Definition 5.1 (when $d+1$ is replaced by d). We therefore have a continuous W-algebra homomorphism $\tau^{\prime}: R=R\left(H, T_{1}\right) \rightarrow W[[t]] /\left(p_{d}(t)\right)$ relative to $\left(U^{\prime}, v^{\prime}\right)$. Since $k \otimes_{W} U^{\prime} \cong \overline{U^{\prime}}$ is indecomposable as a $k H$-module, τ^{\prime} must be surjective. By [4, Lemma 2.3.3], it follows that $R \cong$ $W[[t]] /\left(p_{d}(t)(t-2 c), a 2^{m} p_{d}(t)\right)$ for certain $c \in W, a \in\{0,1\}$ and $0<m \in \mathbb{Z}$. Let $[U, \nu]$ be the universal deformation of T_{1} over R. Since U is free over R and since we can identify $k \otimes_{W} R=$ $R / 2 R=\bar{R}$, it follows that we can also identify $k \otimes_{W} U=U / 2 U=\bar{R} \otimes_{R} U$ as $\bar{R} H$-modules. Hence $[U / 2 U, \nu]$ is equal to the universal $\bmod 2$ deformation $[\bar{U}, \phi]$ of T_{1} over \bar{R}. In particular, there is a $k H$-module isomorphism $\xi: U / 2 U \rightarrow \bar{U}$. If $a=0$, then $R \cong W[[t]] /\left(p_{d}(t)(t-2 c)\right)$ is free over W, which implies that (U, ξ) is a lift of \bar{U} over W. If $a=1$, then $\left(W / 2^{m} W\right) \otimes_{W} R \cong$ $\left(W / 2^{m} W\right)[[t]] /\left(p_{d}(t)(t-2 c)\right)$ is free over $W / 2^{m} W$, which implies that $\left(\left(W / 2^{m} W\right) \otimes_{W} U, \xi\right)$ is a lift of \bar{U} over $W / 2^{m} W$. Since \bar{U} lies in the Ω-orbit of a uniserial B_{H}-module of length 4, it follows that $R(H, \bar{U}) \cong k$ by what we have proved above for the modules in part (ii). Hence $a=1$ and $m=1$, which implies $R=R\left(H, T_{1}\right) \cong W[[t]] /\left(t p_{d}(t), 2 p_{d}(t)\right)$.

References

[1] J.L. Alperin, Local Representation Theory. Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, Cambridge Stud. Adv. Math., vol. 11, Cambridge University Press, Cambridge, 1986.
[2] F.M. Bleher, Universal deformation rings and Klein four defect groups, Trans. Amer. Math. Soc. 354 (2002) 38933906.
[3] F.M. Bleher, Universal deformation rings for dihedral 2-groups, J. Lond. Math. Soc. 79 (2009) 225-237.
[4] F.M. Bleher, Universal deformation rings and dihedral defect groups, Trans. Amer. Math. Soc. 361 (2009) 36613705.
[5] F.M. Bleher, T. Chinburg, Universal deformation rings and cyclic blocks, Math. Ann. 318 (2000) 805-836.
[6] F.M. Bleher, T. Chinburg, Universal deformation rings need not be complete intersections, C. R. Math. Acad. Sci. Paris 342 (2006) 229-232.
[7] F.M. Bleher, T. Chinburg, Universal deformation rings need not be complete intersections, Math. Ann. 337 (2007) 739-767.
[8] F.M. Bleher, T. Chinburg, J. Froelich, Capping groups and some cases of the Fontaine-Mazur conjecture, Proc. Amer. Math. Soc. 137 (5) (2009) 1551-1560.
[9] F.M. Bleher, G. Llosent, Universal deformation rings for the symmetric group S_{4}, Algebr. Represent. Theory, doi:10.1007/s10468-008-9120-7, in press.
[10] R. Brauer, Some applications of the theory of blocks of characters of finite groups. II, J. Algebra 1 (1964) 307-334.
[11] R. Brauer, On 2-blocks with dihedral defect groups, in: Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972, in: Symposia Mathematica, vol. XIII, Academic Press, London, 1974, pp. 367-393.
[12] R. Brauer, M. Suzuki, On finite groups of even order whose 2-Sylow group, is a quaternion group, Proc. Natl. Acad. Sci. USA 45 (1959) 1757-1759.
[13] J.F. Carlson, J. Thévenaz, The classification of endo-trivial modules, Invent. Math. 158 (2004) 389-411.
[14] J.F. Carlson, J. Thévenaz, The classification of torsion endo-trivial modules, Ann. of Math. (2) 162 (2005) 823-883.
[15] C.W. Curtis, I. Reiner, Methods of Representation Theory. Vols. I and II. With Applications to Finite Groups and Orders, John Wiley \& Sons, Inc., New York, 1981 and 1987.
[16] B. de Smit, H.W. Lenstra, Explicit construction of universal deformation rings, in: Modular Forms and Fermat's Last Theorem, Boston, 1995, Springer-Verlag, Berlin-Heidelberg-New York, 1997, pp. 313-326.
[17] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math., vol. 1428, Springer-Verlag, Berlin-Heidelberg-New York, 1990.
[18] P. Fong, A note on splitting fields of representations of finite groups, Illinois J. Math. 7 (1963) 515-520.
[19] D. Gorenstein, J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. I, II, III, J. Algebra 2 (1965) 85-151, 218-270, 354-393.
[20] D.G. Higman, Modules with a group of operators, Duke Math. J. 21 (1954) 369-376.
[21] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., Band 134, Springer-Verlag, Berlin-New York, 1967.
[22] B. Keller, Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190 (2004) 177-196.
[23] M. Linckelmann, A derived equivalence for blocks with dihedral defect groups, J. Algebra 164 (1994) 244-255.
[24] M. Linckelmann, The source algebras of blocks with a Klein four defect group, J. Algebra 167 (1994) 821-854.
[25] B. Mazur, Deforming Galois representations, in: Galois Groups over \mathbb{Q}, Berkeley, 1987, Springer-Verlag, Berlin-Heidelberg-New York, 1989, pp. 385-437.
[26] J.B. Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975) 212-241.
[27] J.P. Serre, Linear Representations of Finite Groups, translated from the second French edition by Leonard L. Scott, Grad. Texts in Math., vol. 42, Springer-Verlag, New York-Heidelberg, 1977.

[^0]: E-mail address: fbleher@math.uiowa.edu.
 1 The author was supported in part by NSA Grant H98230-06-1-0021 and NSF Grant DMS06-51332.

