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Abstract

In this Letter, a modified Chaplygin gas (MCG) model of unifying dark energy and dark matter with the exotic equation of state pMCG =
BρMCG − A

ρα
MCG

is constrained from recently observed data: the 182 Gold SNe Ia, the 3-year WMAP and the SDSS baryon acoustic peak. It is

shown that the best fit value of the three parameters (B,Bs,α) in MCG model are (−0.085,0.822,1.724). Furthermore, we find the best fit w(z)

crosses −1 in the past and the present best fit value w(0) = −1.114 < −1, and the 1σ confidence level of w(0) is −0.946 � w(0) � −1.282.
Finally, we find that the MCG model has the smallest χ2

min value in all eight given models. According to the Akaike Information Criterion (AIC)
of model selection, we conclude that recent observational data support the MCG model as well as other popular models.
© 2008 Elsevier B.V.
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1. Introduction

The type Ia supernova (SNe Ia) explorations [1], the cos-
mic microwave background (CMB) results from WMAP [2]
observations, and surveys of galaxies [3] all suggest that the
universe is speeding up rather than slowing down. The accel-
erated expansion of the present universe is usually attributed to
the fact that dark energy is an exotic component with negative
pressure. Many kinds of dark energy models have already been
constructed such as �CDM [4], quintessence [5], phantom [6],
generalized Chaplygin gas (GCG) [7], quintom [8], holographic
dark energy [9], and so forth.

On the other hand, to remove the dependence of special
properties of extra energy components, a parameterized equa-
tion of state (EOS) is assumed for dark energy. This is also
commonly called the model-independent method. The parame-
terized EOS of dark energy which is popularly used in parame-
ter best fit estimations, describes the possible evolution of dark
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energy. For example, w = w0 = const [10], w(z) = w0 + w1z

[11], w(z) = w0 + w1z
1+z

[12], w(z) = w0 + w1z

(1+z)2 [13], w(z) =
1+z

3
A1+2A2(1+z)

X
− 1 (here X ≡ A1(1 + z) + A2(1 + z)2 + (1 −

Ω0m − A1 − A2)) [14]. The parameters w0, w1, or A1, A2 are
obtained by the best fit estimations from cosmic observational
datasets.

It is well known that the GCG model has been widely used
to interpret the accelerating universe. In the GCG approach,
dark energy and dark matter can be unified by using an ex-
otic equation of state. Also, a modified Chaplygin gas (MCG)
as a extension of the generalized Chaplygin gas model has
already been applied to describe the current accelerating ex-
pansion of the universe [15–18]. The constraint on parame-
ter B in MCG model, i.e., the added parameter relative to GCG
model, is discussed briefly by using the location of the peak
of the CMB radiation spectrum in Ref. [19]. In this Letter,
we study the constraints on the best fit parameters (B,Bs,α)
and EOS in the MCG model from recently observed data:
the latest observations of the 182 Gold type Ia Supernovae
(SNe) [20], the 3-year WMAP CMB shift parameter [21] and
the baryon acoustic oscillation (BAO) peak from Sloan Digi-
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tal Sky Surver (SDSS) [22]. The result of this study indicates
that the best fit value of parameters (B,Bs,α) in MCG model
are (−0.085,0.822,1.724). Furthermore, we find the best fit
w(z) crosses −1 in the past and the present best fit value
w(0) = −1.114 < −1, and the 1σ confidence level of w(0) is
−0.946 � w(0) � −1.282. At last, because the emphasis of the
ongoing and forthcoming research is shifting from estimating
specific parameters of the cosmological model to model se-
lection [23], it is interesting to estimate which model for an
accelerating universe is distinguish by statistical analysis of
observational datasets out of a large number of cosmological
models. Therefore, by applying the recent observational data
to the Akaike Information Criterion (AIC) of model selection,
we compare the MCG model with other seven general cosmo-
logical models to see which model is better. It is found that
the MCG model has almost the same support from the data as
other popular models. In the Letter, we perform an estimation
of model parameters using a standard minimization procedure
based on the maximum likelihood method.

The Letter is organized as follows. In Section 2, the MCG
model is introduced briefly. In Section 3, the best fit value of
parameters (B,Bs,α) in the MCG model are given from the
recent observations of SNe Ia, CMB and BAO, and we present
the evolution of the best fit of w(z) with 1σ confidence level
with respect to redshift z. The preferred cosmological model is
discussed in Section 4 according to the AIC. Section 5 is the
conclusion.

2. Modified Chaplygin gas model

For the modified Chaplygin gas model, the energy density ρ

and pressure p are related by the equation of state [15]

(1)pMCG = BρMCG − A

ρα
MCG

,

where A, B , and α are parameters in the model.
Considering the FRW cosmology, by using the energy con-

servation equation: d(ρa3) = −p d(a3), the energy density of
MCG can be derived as [18]

(2)ρMCG = ρ0MCG
[
Bs + (1 − Bs)(1 + z)3(1+B)(1+α)

] 1
1+α ,

for A �= −1, where a is the scale factor, Bs = A

(1+B)ρ1+α
0

. In

order to unify dark matter and dark energy for the MCG model,
the MCG fluid is decomposed into two components: the dark
energy component and the dark matter component, i.e., ρMCG =
ρde +ρdm, pMCG = pde. Then according to the relation between
the density of dark matter and redshift:

(3)ρdm = ρ0dm(1 + z)3,

the energy density of the dark energy in the MCG model can be
given by

ρde = ρMCG − ρdm

= ρ0MCG
[
Bs + (1 − Bs)(1 + z)3(1+B)(1+α)

] 1
1+α

(4)− ρ0dm(1 + z)3.
Next, we assume the universe is filled with two components,
one is the MCG component, and the other is baryon matter
component, i.e., ρt = ρMCG + ρb . The equation of state of dark
energy can be derived as [18]

wde = (1 − Ω0b)
[
Bs + (1 − Bs)(1 + z)3(1+B)(1+α)

]− α
1+α

× [−Bs + B(1 − Bs)(1 + z)3(1+B)(1+α)
]

× (
(1 − Ω0b)

[
Bs + (1 − Bs)(1 + z)3(1+B)(1+α)

] 1
1+α

(5)− Ω0dm(1 + z)3)−1
,

where Ω0dm and Ω0b are present values of the dimensionless
dark matter density and baryon matter component.

Furthermore, in a flat universe, making use of the Friedmann
equation, the Hubble parameter H can be written as

(6)H 2 = 8πGρt

3
= H 2

0 E2,

where E2 = (1 − Ω0b)[Bs + (1 − Bs)(1 + z)3(1+B)(1+α)] 1
1+α +

Ω0b(1 + z)3. H0 denotes the present value of the Hubble para-
meter. When B = 0, Eq. (6) is reduced to the GCG scenario.

In the following section, on the basis of Eq. (6), we will ap-
ply the recently observed data to find the best fit parameters
(Ω0b,B,Bs,α) in MCG model. For simplicity, we will displace
parameters (Ω0b,B,Bs,α) with θ in the following section.

3. The best fit parameters from present cosmological
observations

Since type Ia Supernovae behave as Excellent Standard Can-
dles, they can be used to directly measure the expansion rate of
the universe up to high redshifts (z � 1) for comparison with
the present rate. Therefore, they provide direct information on
the universe’s acceleration and constrain the dark energy model.
Theoretical dark energy model parameters are determined by
minimizing the quantity

(7)χ2
SNe(H0, θ) =

N∑
i=1

(μobs(zi) − μth(zi))
2

σ 2
obs;i

,

where N = 182 for the Gold SNe Ia data [20], σ 2
obs;i are errors

due to flux uncertainties, intrinsic dispersion of SNe Ia absolute
magnitude and peculiar velocity dispersion respectively. The
theoretical distance modulus μth is defined as

μth(zi) ≡ mth(zi) − M

(8)= 5 log10

(
DL(z)

) + 5 log10

(
H−1

0

Mpc

)
+ 25,

where

(9)DL(z) = H0dL(z) = (1 + z)

z∫
0

H0 dz′

H(z′;H0, θ)
,

μobs is given by supernovae dataset, and dL is the luminosity
distance.

The structure of the anisotropies of the cosmic microwave
background radiation depends on two eras in cosmology, i.e.,
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last scattering and today. They can also be applied to limit the
model parameters of dark energy by using the shift parame-
ter [24],

(10)R = √
Ω0m

zrec∫
0

H0 dz′

H(z′;H0, θ)
,

where zrec = 1089 is the redshift of recombination, Ω0m is
present value of the dimensionless matter density, including
dark matter and the baryon matter component. By using the
three-year WMAP data [25], R can be obtained as [26]

(11)R = 1.71 ± 0.03.

From the CMB constraint, the best fit value of parameters in the
dark energy models can be determined by minimizing

(12)χ2
CMB(H0, θ) = (R(H0, θ) − 1.71)2

0.032
.

Because the universe has a fraction of baryons, the acoustic
oscillations in the relativistic plasma would be imprinted onto
the late-time power spectrum of the nonrelativistic matter [27].
Therefore, the acoustic signatures in the large-scale clustering
of galaxies can also serve as a test to constrain models of dark
energy with detection of a peak in the correlation function of
luminous red galaxies in the SDSS [22]. By using the equation

(13)A = √
Ω0mE(zBAO)−1/3

[
1

zBAO

z∫
0

H0 dz′

H(z′;H0, θ)

]2/3

,

and A = 0.469 ± 0.017 measured from the SDSS data, zBAO =
0.35, we can minimize the χ2

BAO defined as [28]

(14)χ2
BAO(H0, θ) = (A(z′;H0, θ) − 0.469)2

0.0172
.

As one can find that the gravitational clustering in MCG
model presented in Ref. [17], ensures that the observational
datasets from CMB and BAO can be applied to constrain the
MCG model. Hence, we combine these three datasets to mini-
mize the total likelihood χ2

total,

(15)χ2
total(H0, θ) = χ2

SNe + χ2
CMB + χ2

BAO.

On the one hand, since we are interested in the model pa-
rameters θ , the H0 contained in χ2

total(H0, θ) is a nuisance pa-
rameter and will be marginalized by integrating the likelihood
L(θ) = ∫

dH0 P(H0) exp(−χ2(H0, θ)/2), where P(H0) is the
prior distribution function of the present Hubble constant, and
a Gaussian prior H0 = 72 ± 8 km s−1 Mpc−1 [29] is adopted in
the Letter. We know that the prior knowledge of cosmological
parameter Ω0b has been obtained by several other observa-
tions, such as Ω0bh

2 = 0.0214±0.0020 from the observation of
the deuterium to hydrogen ratio towards QSO absorption sys-
tems [30], Ω0bh

2 = 0.021 ± 0.003 from the BOOMERANG
data [31] and Ω0bh

2 = 0.022+0.004
−0.003 from the DASI results [32]

for the observation of CMB. Thus, in order to get the interest-
ing result for the value of Ω0b , we treat Ω0b as a free parameter
with Gaussian prior distribution centered in Ω ture with spread
0b
Fig. 1. The best fits of w(z) with 1σ confidence level (shaded region).

σΩ0b−prior . And following Ref. [33], the “weak” prior for para-
meter Ω0b will be used in our analysis, i.e., let it have a relative
larger variable range Ω0bh

2 = 0.0214 ± 0.0060 [33]. Thus, the
χ2

total(H0, θ) in Eq. (15) will be reconstructed as [34]

(16)χ2
total-prior(θ) = χ2

total(θ) + (Ω0b − Ω true
0b )2

σ 2
Ω0b-prior

,

where χ2
total(θ) denotes the total χ2(θ) obtained without impos-

ing prior knowledge of Ω0b .
By using the maximum likelihood method for Eq. (16), we

obtain the best fit values (Ω0b,B,Bs,α) in the MCG model
(0.041,−0.085,0.822,1.724) with χ2

min = 157.272. Fig. 1
shows the 1σ confidence level of the best fit w(z) calculated
by using the covariance matrix. From Fig. 1, it is easy to see
that the best fit w(z) cross −1 at about z = 0.140 and the
present best fit value w(0) = −1.114 < −1. Obviously, it can
be shown that the fact that w(z) cross over the boundary of
w = −1 in MCG model is consistent with the results given by
Refs. [14,35,36], where w(z) crossing −1 is first found using
SNe data. Furthermore, we obtain the 1σ confidence level of
w(0), −0.946 � w(0) � −1.282. The possibility of w(0) > −1
cannot be excluded in 1σ level. At last, it can be seen that the
cosmological constant model (i.e., w(z) = −1) is not in 1σ con-
fidence contour of the best fit dynamical w(z).

4. The preferred cosmological model

It is interesting to ask which model of an accelerating uni-
verse is preferred by recently observed data over many models.
We also want to know how well the MCG model fits the recently
observed datasets as compared to other models. We make use
of the values of χ2

min and the objective Akaike Information Cri-
terion (AIC) to solve the questions above.

On the basis of the description in Section 3, we obtain the
values of χ2

min by minimizing the χ2
total-prior in the correspond-

ing models, where Ω0m is treated as a free parameter with a
Gaussian prior in the range Ω0m = 0.29 ± 0.07 [2] for the
�CDM model and model-independent cases, and the results
are listed in Table 1. It can be seen that the MCG model has
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Table 1
The values of χ2

min, and best fit model parameters against the model

Case model χ2
min Best fit parameters

�CDM 162.302 Ω0m = 0.286
w = const 159.962 Ω0m = 0.288, w = −0.870

w(z) = w0 + w1z 159.765 Ω0m = 0.292, w0 = −0.893, w1 = 0.009
w(z) = w0 + w1z

1+z
158.635 Ω0m = 0.289, w0 = −1.041, w1 = 0.751

w(z) = w0 + w1z

(1+z)2 157.715 Ω0m = 0.282, w0 = −1.314, w1 = 3.059

w(z) = 1+z
3

A1+2A2(1+z)
X

− 1 159.067 Ω0m = 0.292, A1 = −0.302, A2 = 0.188
GCG 159.444 Ω0b = 0.041, As = 0.678, α = −0.136
MCG 157.276 Ω0b = 0.041, B = −0.085, Bs = 0.822, α = 1.724
the smallest χ2
min value. Table 1 contains the best fit parameters

corresponding to the different models.
In cosmology the AIC was first used by Liddle [37], and then

in subsequent papers [38,39]. It is defined as

(17)AIC = −2 lnL(θ̂ | data)max + 2K,

where Lmax is the highest likelihood in the model with the best
fit parameters θ̂ , K is the number of estimable parameters (θ )
in the model. The term −2 lnL(θ̂ | data) in Eq. (17) is called
χ2 and it measures the quality of model fit, while the term 2K

in Eq. (17) interprets model complexity. For more details about
AIC please see Refs. [23,38–41].

In what follows, we will estimate which model is the bet-
ter one for all the models in Table 2. The value of AIC has
no meaning by itself for a single model and only the rela-
tive value between different models are physically interesting.
Therefore, by comparing several models the one which mini-
mizes the AIC is usually considered the best, and denoted by
AICmin = min{AICi , i = 1, . . . ,N }, where i = 1, . . . ,N is a
set of alternative candidate models. The relative strength of
evidence for each model can be obtained by calculating the
likelihood of the model L(Mi | data) ∝ exp(−Δi/2), where
Δi = AICi − AICmin over the whole range of alternative mod-
els. The Akaike weight wi is calculated by normalizing the
relative likelihood to unity and corresponds to posterior prob-
ability of a model. The evidence for the models can also be
judged by the relative evidence ratio wi

wj
= L(Mi |data)

L(Mj |data) . If model i

is the best one, the relative evidence ratio gives the odds against
the model. The rules for judging the AIC model selections are
as follows: when 0 � Δi � 2 model i has almost the same sup-
port from the data as the best model, for 2 � Δi � 4, model i is
supported considerably less and with Δi > 10 model i is prac-
tically irrelevant.

Thus based on the values of χ2
min of all models in Table 1,

the evidence of the AIC can be calculated. We find that the best
model is the one following w(z) = w0 + w1z

(1+z)2 in terms of its
AIC value. Taking it as a reference, we calculate the differences
between the models by using the AIC differences Δi , Akaike
weights wi and odds against alternative models. Table 2 gives
the calculating results. Note that the model selection provides
quantitative information to judge the “strength of evidence”, not
just a way to select only one model. From Table 2 it is easy to
see that, the MCG model has almost the same support from the
Table 2
The value of AIC, Akaike difference, Akaike weights wi and odds against the
model

Case model AIC Δi wi Odds

�CDM 164.302 0.587 0.149 1.342
w = const 163.962 0.247 0.177 1.130
w(z) = w0 + w1z 165.765 2.050 0.072 2.778
w(z) = w0 + w1z

1+z
164.635 0.920 0.126 1.587

w(z) = w0 + w1z

(1+z)2 163.715 0 0.200 1

w(z) = 1+z
3

A1+2A2(1+z)
X

− 1 165.067 1.352 0.102 1.961
GCG 165.444 1.729 0.084 2.381
MCG 165.276 1.561 0.091 2.198

data as the best model, because the value of Δi for it is in the
range 0–2. Furthermore, it can be shown that the recent obser-
vational data supports all of the models in Table 2 except for
the case of w(z) = w0 + w1z since the value of Δi for this case
is a little bigger than 2. It has a less support from recent obser-
vations. On the other hand, we can see that the MCG model is
favored by observational data more than GCG model according
to the Akaike weights wi in Table 2. Finally, the odds indicates
the difference between MCG model and the best one is 2.198
to 1.

5. Conclusion

In summary, the constraints on the MCG model, proposed
as a candidate of the unified dark matter–dark energy scenario,
has been studied in this Letter. We obtained the best fit value of
the three parameters (B,Bs,α) in the MCG model (−0.085,

0.822,1.724). Meanwhile, it is easy to see that the best fit
w(z) can cross −1 as it evolves with the redshift z, and the
present best fit value w(0) = −1.114 < −1. Furthermore, it
is shown that the 1σ confidence level of w(0) is −0.946 �
w(0) � −1.282, and the possibility of w(0) > −1 cannot be
excluded in 1σ level. We can see that the cosmological con-
stant model (i.e., w(z) = −1) is not in 1σ confidence contour
of the best fit dynamical w(z). Finally, in order to find the status
of MCG scenario in a large number of cosmological models,
we compared the MCG model with other seven popular ones
offering explanation of current acceleration of the universe in
terms of the values of χ2

min and AIC quantity. We find that, as
the quantity χ2

min measures the quality of model fit, the MCG
model is preferred by recent observational data because of its
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small minimum χ2 value. On the other hand, it is shown that
the MCG model has a slightly high value of AIC due to its
many parameters. However, according to the rules of judgment
of the AIC model selection, we conclude that recently observed
data supports the MCG model as well as other popular models,
because the value of Δi for it is in the range 0–2 relative to the
best model. In addition, the result of study shows that the re-
cent observational data equivalently supports all of the models
in Table 2 except for the case of w(z) = w0 + w1z. We expect
the new probers such as SNAP and Planck surveyor can pro-
vide more accurate data and further explore the nature of dark
energy.
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