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Abstract

The D-eigenvalues {μ1, μ2, . . . , μp} of a graph G are the eigenvalues of its distance matrix D and form
the D-spectrum of G denoted by specD(G). The greatest D-eigenvalue is called the D-spectral radius of G
denoted by μ1. The D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues.
In this paper we obtain some lower bounds for μ1 and characterize those graphs for which these bounds are
best possible. We also obtain an upperbound for ED(G) and determine those maximal D-energy graphs.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vp}. The distance matrix
D = D(G) of G is defined so that its (i, j)-entry, dij , is equal to dG(vi, vj ), the distance (=
length of the shortest path [1]) between the vertices vi and vj of G. The eigenvalues of D(G)

are said to be the D-eigenvalues of G and form the D-spectrum of G, denoted by specD(G).
Since the distance matrix is symmetric, all its eigenvalues μi, i = 1, 2, . . . , p, are real and can be
labelled so that μ1 � μ2 � · · · � μp. If μi1 > μi2 > · · · > μig are the distinct D-eigenvalues,
then the D-spectrum can be written as
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specD(G) =
(

μi1 μi2 . . . μig

m1 m2 . . . mg

)
,

where mj indicates the algebraic multiplicity of the eigenvalue μij . Of course, m1 + m2 + · · · +
mg = p.

The ordinary spectrum of G, which is the spectrum of the adjacency matrix of G is well studied
and many properties of graphs in connection with the spectrum are revealed during the past years.
For details see the book [2] and the references cited therein. The greatest eigenvalue of the distance
matrix of a graph G, μ1 is called the distance spectral radius. The spectral radii of the adjacency
matrix and the laplacian matrix of G are studied in detail in past years. For some recent works
see [13] and also the papers cited therein.

The D-energy, ED(G), of G is defined as

ED(G) =
p∑

i=1

|μi |. (1)

The concept of D-energy, Eq. (1), was recently introduced [8]. This definition was motivated by
the much older [4] and nowadays extensively studied [5–7,10–12,14,15] graph energy, defined in
a manner fully analogous to Eq. (1), but in terms of the ordinary graph eigenvalues (eigenvalues
of the adjacency matrix, see [2]). For some recent works on distance spectrum and D-energy of
graphs, see [8,9].

This paper is organized as follows. In the first section we obtain some bounds for the dis-
tance spectral radius of graphs. In the second section we obtain an upperbound for the distance
energy and characterize those graphs for which the bounds are best possible. The consider-
ations in the subsequent sections are based on the applications of the following definitions and
lemmas:

Definition 1. Let G be a graph with V (G) = {v1, v2, . . . , vp} and a distance matrix D. Then the
distance degree of vi , denoted by Di is given by Di = ∑p

j=1 dij .

Definition 2. Let G be a graph with V (G) = {v1, v2, . . . , vp} and a distance matrix D. Let the
distance degree sequence be {D1, D2, . . . , Dp}. Then the second distance degree of vi , denoted
by Ti is given by Ti = ∑p

j=1 dijDj .

Definition 3. Let G be a graph with distance degree sequence {D1, D2, . . . , Dp}. Then G is
k-distance regular if Di = k for all i.

Definition 4. Let G be a graph with distance degree sequence {D1, D2, . . . , Dp} and
second distance degree sequence {T1, T2, . . . , Tp}. Then G is pseudo k-distance regular if Ti

Di
= k

for all i.

Definition 5 [3]. Let G be a graph with distance matrix D. Then the Wiener index of G denoted
by W(G) is given by W(G) = 1

2

∑p

i=1 Di .

In the following discussions G is always a connected graph with D as a distance matrix.
All graphs considered in this paper are simple and we follow [2] for spectral graph theoretic
terminology.
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We begin with the following lemma.

Lemma 1

T1 + T2 + · · · + Tp = D2
1 + D2

2 + D2
3 + · · · + D2

p.

Proof. We have

Di =
p∑

j=1

dij and Ti =
p∑

j=1

dijDj .

Now

T1 + T2 + · · · + Tp = [1, 1, 1, . . ., 1](D[D1, D2, D3, . . ., Dp]T)

= ([1, 1, 1, . . ., 1]D)[D1, D2, D3, . . ., Dp]T,

by associativity of matrix multiplication

= D2
1 + D2

2 + D2
3 + · · · + D2

p �

2. Bounds on the distance spectral radius

Theorem 1. Let G be a graph with Wiener index W. Then μ1 � 2W
p

and the equality holds if and
only if G is distance regular.

Proof. Let x = 1√
p
(1, 1, 1, . . ., 1) be a unit P-vector. Then by Raleigh principle, applied to the

distance matrix D of G, we get

μ1 �xDxT

xxT

=
1√
p
[D1, D2, D3, . . ., Dp] 1√

p
[1, 1, 1, . . ., 1]T

1

= 1

p

p∑
i=1

Di

= 2W

p

Now suppose G is distance regular. Then each row of D sums to a constant, say k and 2W = pk.
Then by the Theorem of Frobenius [2], k is the simple and greatest eigenvalue of D. Thus
μ1 = k = pk

p
= 2W

p
and hence equality holds.

Conversely if equality holds, then x is the eigenvector corresponding to μ1 and hence xD =
μ1x. This then gives Di = μ1 for all i. Since Di is an integer it follows that G is distance regular.
Hence the theorem. �

Theorem 2. Let G be a graph with distance degree sequence {D1, D2, . . . , Dp}. Then

μ1 �

√
D2

1 + D2
2 + D2

3 + · · · + D2
p

p

The equality holds if and only if G is distance regular.
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Proof. Let D be the distance matrix of G and X = (x1, x2, . . ., xp) be the unit positive Perron
eigenvector of D corresponding to μ1.

Take C = 1√
p
(1, 1, 1, . . ., 1). Then C is a unit positive vector.

So we have μ1 = μ1(D) = √
μ1(D2) = √

XD2XT �
√

CD2CT

Now

CD = 1√
p

(1, 1, 1, . . ., 1)D

= 1√
p

[D1, D2, D3, . . ., Dp]

Hence CD2CT = CDDCT = CD(CD)T =
∑p

i=1 D2
i

p

Thus μ1 �
√

CD2CT =
√∑p

i=1 D2
i

p
and hence the inequality.

Now assume that G is distance regular. Then Di = k for all i and hence by the Theorem of
Frobenius [2], k is the simple and the greatest eigenvalue of D. But then

μ1 = k =
√

pk2

p
=
√∑p

i=1 D2
i

p

and hence equality holds.
Conversely if equality holds, then C is the eigenvector corresponding to μ1. Then as in the

proof of Theorem 1, we get G is distance regular. �

Theorem 3. Let G be a graph with distance degree sequence {D1, D2, . . . , Dp} and second
distance degree sequence {T1, T2, . . . , Tp}. Then

μ1 �

√√√√ T 2
1 + T 2

2 + T 2
3 + · · · + T 2

p

D2
1 + D2

2 + D2
3 + · · · + D2

p

Equality holds if and only if G is pseudo distance regular.

Proof. Let D be the distance matrix of G and X = (x1, x2, . . ., xp) be the unit positive Perron
eigenvector of D corresponding to μ1.

Take

C = 1√∑p

i=1 D2
i

(D1, D2, . . ., Dp)

Then C is a unit positive vector. So we have

μ1(D) =
√

μ1(D2) =
√

XD2XT �
√

CD2CT

Now

CD = 1√∑p

i=1 D2
i

(D1, D2, . . .. . .., Dp)[dij ]p×p

= 1√∑p

i=1 D2
i

(T1, T2, . . .. . .., Tp)
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Thus CD2CT = CD(CD)T = T 2
1 +T 2

2 +T 2
3 +···+T 2

p

D2
1+D2

2+D2
3+···+D2

p

Therefore

μ1 �

√√√√ T 2
1 + T 2

2 + T 2
3 + · · · + T 2

p

D2
1 + D2

2 + D2
3 + · · · + D2

p

.

Now assume that G is pseudo distance regular. So Ti

Di
= k or Ti = kDi for all i. Then CD = kC,

showing that C is an eigenvector corresponding to k and hence μ1 = k. Thus the equality holds.
Conversely if equality holds then as in the proof Theorem 1, we get C is the eigenvector

corresponding to μ1 and that CD = μ1C. This then implies that Ti

Di
= μ1 or in other words G is

pseudo distance regular. �

Theorem 4. The bound for μ1 is improving from Theorems 1 to 3.

Proof. By Lemma 1 we have
∑p

i=1 Ti = ∑p

i=1 D2
i . Also by Cauchy–Schwartz inequality(∑p

i=1 Ti

)2 � p
∑p

i=1 T 2
i and

(∑p

i=1 Di

)2 � p
∑p

i=1 D2
i . Now

μ1 �
√∑p

i=1 T 2
i∑p

i=1 D2
i

�

√√√√(∑p

i=1 Ti

)2
p
∑p

i=1 D2
i

=
√√√√(∑p

i=1 D2
i

)2
p
∑p

i=1 D2
i

=
√∑p

i=1 D2
i

p
�

√(∑p

i=1 Di

)2
p × p

= 2W

p
. �

In the following theorem we give another bound for μ1 which cannot be compared with the
bounds so far obtained.

Theorem 5. LetGbegraphwithWiener indexW anddistancedegree sequence {D1, D2, . . . , Dp}.
Then

μ1 � Maxi

1

p − 1

(
(W − Di) +

√
(W − Di)2 + (p − 1)D2

i

)
.

Proof. Let vi be a vertex of G with distance degree Di . Then this vertex gives rise a partition to
the distance matrix with quotient matrix

B =
[

0 Di
Di

p−1
2(W−Di)

p−1

]

Then B has eigenvalues

η1 = 1

p − 1

(
(W − Di) +

√
(W − Di)2 + (p − 1)D2

i

)
,

η2 = 1

p − 1

(
(W − Di) −

√
(W − Di)2 + (p − 1)D2

i

)
.

By the theorem of interlacing, we have eigenvalues of B interlace those of D. Thus

μ1 � η1 = 1

p − 1

(
(W − Di) +

√
(W − Di)2 + (p − 1)D2

i

)
.

Since this is true for all i, theorem follows. �
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Now we prove the following lemma regarding the number of D- eigenvalues of a graph.

Lemma 2. A connected graph G has two distinct D-eigenvalues if and only if G is a complete
graph.

Proof. Let G be a connected graph with distance matrix D. Suppose that G has exactly two
distinct D-eigenvalues. Let them be μ1 > μ2. Since G is connected, D is irreducible and by the
theorem of Frobenius, μ1 is the greatest and simple eigenvalue of D so that the multiplicity of μ1
is one. Thus all other D-eigenvalues of G are μ2. Now we prove that diameter of G is one. �

Claim. G does not contain an induced shortest path Pm, m � 3.
Assume that G contains an induced shortest path Pm, m � 3. Let B be the principal submatrix

of D indexed by the vertices in Pm. Let θi(A) denote the ith eigenvalue of the matrix A. Then by
the interlacing theorem we have

θi(D) � θi(B) � θp−m+i (D), i = 1, 2, . . ., m,

i.e. μ2 � θ2(B) � θ3(B) � θ4(B) � · · · � θm(B) � θp(D) = μ2.

This then shows that Pm has atmost 2 distinct D-eigenvalues for m � 3, which is impossible.
Therefore G do not contain two vertices at distance two or more and hence it is complete.

Conversely assume that G is a complete graph of order p. Then the distance matrix and adja-
cency matrix of G coincide and from [2] it follows that G has exactly two distinct D- eigenvalues,
p − 1 and −1. Hence the lemma. �

3. An upperbound for the distance energy

In this section we obtain an upperbound for the distance energy of graphs and characterize
those graphs for which this bound is best possible.

Theorem 6. With the notations described above

ED(G) �
√∑p

i=1 T 2
i∑p

i=1 D2
i

+ (p − 1)

√
S −

∑p

i=1 T 2
i∑p

i=1 D2
i

,

where S is the sum of the squares of entries in the distance matrix. Equality holds if and only
if either G is a complete graph or a pseudo k-distance regular graph with three distinct D-

eigenvalues
(
k,

√
S−k2

p−1 , −
√

S−k2

p−1

)
.

Proof. Let {μ1, μ2, . . . , μp} be the D-eigenvalues of G. Then
p∑

i=1

μi = 0,

p∑
i=1

|μi | = ED(G)

Also
∑p

i=1 μ2
i = S = ∑p

i,j=1(dij )
2, being the trace of D2.

Now applying the Cauchy–Schwartz inequality to the two p − 1 vectors (1, 1, . . ., 1) and
(|μ2|, |μ3|, . . ., |μp|) we get,

(ED − μ1)
2 � (p − 1)(S − μ2

1) (2)
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Thus

ED � μ1 +
√

(p − 1)(S − μ2
1)

Define a function f (x) = x +√
(p − 1)(S − x2) for 2W

p
� x �

√
S.

Then by applying the max–min techniques of calculus we can see that f (x) is monotonically

decreasing in x �
√

S
P

. Now by Cauchy–Schwartz inequality we have

D2
i =

⎛
⎝ p∑

j=1

dij

⎞
⎠

2

� p

p∑
j=1

d2
ij .

Then
p∑

i=1

D2
i �

p∑
i=1

p

p∑
j=1

d2
ij = p

p∑
i=1

p∑
j=1

d2
ij = pS.

Also

Ti =
p∑

j=1

dijDj �
p∑

j=1

d2
ij and

p∑
i=1

T 2
i �

p∑
i=1

⎛
⎝ p∑

j=1

(dij )
2

⎞
⎠

2

� S2.

Hence μ1 �
√∑p

i=1 T 2
i∑p

i=1 D2
i

�
√

S2

pS
=
√

S
p

.

Therefore ED(G) � f (μ1) � f

(√∑p
i=1 T 2

i∑p
i=1 D2

i

)
and thus the theorem follows.

Now suppose equality holds. Then

μ1 =
√∑p

i=1 T 2
i∑p

i=1 D2
i

and by Theorem 3 we have G is pseudo k-distance regular. Also equality holds in the Cauchy–
Schwartz inequality (2). Hence

|μ2| = |μ3| = · · · = |μp|

⇒
(

p∑
i=2

|μi |
)2

= (p − 1)(S − μ2
1)

⇒|μi | =
√

S − μ2
1

p − 1
, i = 2, . . ., p.

Since |μi | =
√

S−μ2
1

p−1 , μi can have atmost two distinct values and we arrive at the following.

• G has exactly one distinct D-eigenvalue. Then all D-eigenvalues are zero as the sum of
D-eigenvalues is the trace of D and as G is connected, G = K1.

• G has exactly two distinct D-eigenvalues. Then by Lemma 2, G is complete.
• G has exactly three distinct D-eigenvalues.
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Then μ1 =
√∑p

i=1 T 2
i∑p

i=1 D2
i

and |μi | =
√

S−μ2
1

p−1 , i = 2, . . ., p. Also Ti

Di
= k for all i. Then we

get G as a graph with three distinct D-eigenvalues
(
k,

√
S−k2

p−1 , −
√

S−k2

p−1

)
. Hence the

theorem. �

References

[1] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
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