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a b s t r a c t

We propose dynamic algorithms and data structures for chordal graphs supporting the
following operation: determine if an edge can be added or removed from the graph while
preserving the chordality in O(1) time. We show that the complexity of the algorithms for
updating the data structures when an edge is actually inserted or deleted is O(n2) where n
is the number of vertices of the graph.
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1. Introduction

A cycle of length k, k ≥ 3, of a graph, is a sequence of vertices (v0, v1, . . . , vk) such that vivi+1 is an edge of the graph,
i = 0, . . . , k − 1 and all vertices are distinct except v0 and vk which do coincide. A chord in a cycle is an edge of the graph
joining two non-consecutive vertices of the cycle. A graph is chordal (or triangulated) if every cycle of length greater than
three has a chord (see [7] for a tutorial on chordal graphs).
The class of chordal graphs is an important andwell-studied class of graphs [7,24,11]. Chordal graphs arise inmany practical
and relevant fields such as computing the solutions of large sparse symmetric systems of equations [22,3,4,6,14,15,7,17,16,
26,27,19,13], in database systems [12,8,26,2], artificial intelligence [25,9,20,1] and biology [5].

For example chordal graphs are used in the field of statistics and artificial intelligence [20,10,25,9,1]. In this context
one wants to estimate an n-dimensional discrete probability distribution from a finite set of given marginals in order to
use a small amount of machine memory. To this aim, one models joint probability distributions of n discrete random
variables by Markov networks (also called graphical models). Such models use undirected graphs to capture conditional
dependencies among subsets of the n random variables involved. Particular Markov networks, called decomposable Markov
networks (DMNs), use chordal graphs. DMNs enjoy a number of desirable properties, one of which is that the approximate
distribution has a simple ‘product form’ [21]. Therefore, given a joint probability distribution, one is interested in finding an
approximation of it which is a decomposable Markov network. A possible approach, called backward selection, to solve this
problem is the following: starting from the complete graph on n vertices (no assumption of independence among the random
variables of the joint distribution is made) one recursively removes an edge from the graph while chordality is preserved.
The opposite approach, called forward selection, does exactly the inverse procedure, that is, it starts from an empty graph
and adds edges to the graph while preserving the chordality.
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Note that in such applications one wants to find as quickly as possible the sets A and R of edges eligible, respectively, for
addition and deletion to the graph G, without destroying chordality. Then one chooses, at each step, an edge in the set A or
an edge in the set R that satisfies some specified property. For example, in the above application, one chooses at each step
the edge to add or delete, that minimizes the information divergence [18]. Once the edge is added or deleted the sets A and
R should be updated to reflect the changes in the graph.

So one wants to set up a dynamic algorithm that, as edges are added or removed from the graph, updates the data
structure needed to find the sets of edges which are eligible for addition or deletion from the graph while preserving the
chordality.

A fully dynamic algorithm for chordal graphs has been developed [17] supporting the following operations:

1. Delete-Query(uv): return ‘‘yes’’ if uv can be deleted from Gwhile maintaining the chordality and ‘‘no’’ otherwise.
2. Insert-Query(uv): return ‘‘yes’’ if uv can be added to Gwhile maintaining the chordality and ‘‘no’’ otherwise.
3. Delete(uv): update the data structures needed to perform operations (1) and (2) when an edge uv is deleted from G.
4. Insert(uv): update the data structures needed to perform operations (1) and (2) when an edge uv is added to G.

In the first implementation proposed in [17], all the above operations have time complexity of O(n), where n is the
number of vertices of the graph. In a second implementation, the operation Insert-Query has O(log2n) time complexity and
operation Insert has O(n) time complexity while the operation Delete-Query has O(n) time complexity and the operation
Delete has O(n log n) time complexity.

In [9] a dynamic algorithm is proposed to insert edges in a chordal graph while preserving chordality. In this algorithm
the operation Insert-Query hasO(1) time complexity and the operation Insert hasO(n2) time complexity. In [23] a dynamic
algorithm is proposed, that beginning from a complete graph, removes edges while preserving chordality. In this algorithm
operation Delete-Query has O(1) time complexity and the operation Delete has O(n2) time complexity.

Herewepropose a fully dynamic algorithm that runs inO(1) for operationsDelete-Query and Insert-Query and requires
O(n2) time to perform operations Delete and Insert. This compares better with respect to the first implementation of the
algorithm of [17] since this requires O(nm) to find an edge eligible for deletion, wherem is the number of edges of the graph
or O(nm) to find an edge eligible for insertion where m is the number of edges of the graph’s complement. Therefore if one
wants to add or remove k edges, the algorithm requires O(kn3) time. With our algorithm, on the other hand, it requires
O(kn2) to perform a sequence of k inserts or deletes.

We also show that our algorithm can be used to find a minimal triangulation of a graph. A triangulation of a graph G
is a chordal graph G+, obtained from G by adding a set F of edges. The edges in F are called fill edges. A triangulation is
minimal when F is a minimal set, with respect to set inclusion, of edges that added to G make it a chordal graph. Let G+ be
a triangulation of G, F the set of fill edges and m the number of edges of the input graph. Then the minimal triangulation
algorithm we propose, has O(n|F | + |F |2 + m) time complexity, which is comparable to existing minimal triangulation
techniques [6,23].

The work is organized as follows. In Section 2 we give some definitions and preliminary results. In Section 3 we recall
the fully dynamic algorithm proposed in [17]. In Section 4 we discuss the algorithms and data structures for supporting the
Delete-query operation and in Section 5 we discuss the algorithms and data structures for supporting the Insert-query
operation. Finally in Section 6 we give the algorithms Insert and Delete that update the data structures to support Insert-
query and Delete-query respectively.

2. Definitions and preliminaries

Let G = (V (G), E(G)) be a graph where V (G) is the vertex set and E(G) is the edge set of G; furthermore n = |V (G)| and
m = |E(G)|. A set {r, s} of two vertices will be called an edge and will be denoted as rs. Let E(G) = {rs : r ∈ V (G), s ∈ V (G)}.
Denote by E(G) = E(G) − E(G) and by m = |E(G)|. When it is not clear from the context we will explicitly indicate if an
element of E(G) belongs to E(G) or to E(G).

Two vertices are adjacent if they are endpoints of an edge of G. The neighborhood of a vertex u in G is denoted by
NG(u) = {v : uv ∈ E(G)}. Given two vertices u and v the common neighborhood of uv, denoted by CNG(uv), is the set
NG(u)∩NG(v). A clique of G is a set of pairwise adjacent vertices. A clique ismaximal if it is not properly contained in another
clique.

Let S be a subset of V (G); the subgraph of G induced by S, denoted by G(S), is the graph with vertex set S and edge set
{uv ∈ E(G) : (u ∈ S) ∧ (v ∈ S)}. Let S be a non-empty set of vertices; then by G− S we denote the subgraph of G induced
by V (G) − S. If S = {v} is a single vertex we write G − v to denote G − {v}. Let uv ∈ E(G); then by G − uv, we denote the
graph with vertex set V (G) and edge set E(G)− uv. Analogously, if uv ∈ E(G), we denote by G+ uv, the graph with vertex
set V (G) and edge set E(G)+ uv.

The contraction of an edge uv of G gives as a result a graph G′ which is obtained from G by adding a new vertex x, replacing
the edge wu with wx for all w ∈ NG(u)− v, replacing the edge zv with zx for all z ∈ NG(v)− u and deleting the vertices u
and v and the edge uv.

Let G be a connected graph; then a subset of vertices S is a separator of G if G−S has two ormore connected components.
If two vertices u and v are in the same connected component of G and in two different connected components of G− S, then
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S is said to be a uv-separator. A minimal uv-separator S is a uv-separator such that no proper subset of S separates u and v
in two connected components.

Let G be a chordal graph and uv ∈ E(G); then we say that uv is an attachable edge if G+ uv is a chordal graph. Similarly
an edge uv ∈ E(G) is removable if G− uv is a chordal graph.

A triangulation of a graph G is a chordal graph G+ such that V (G) = V (G+) and E(G) ⊆ E(G+). The set F = E(G+)− E(G)
is called the set of fill edges.

A triangulation of a graph G isminimal when no proper subset of F if added to G, makes it a chordal graph.

Lemma 1 ([24]). Let G be a chordal graph. An edge uv ∈ E(G) is removable from G if it is not the unique chord of any 4-cycle
of G.

By Lemma 1 it follows

Lemma 2 ([17,23]). Let G be a chordal graph. Then uv ∈ E(G) is removable if and only if CNG(uv) either is empty or is a clique
of G.

By Lemmas 1 and 2, we have the following

Theorem 1 ([17,9]). Let G be a chordal graph. An edge uv ∈ E(G) is removable if and only if it belongs to exactly one maximal
clique of G.

Furthermore we need the following

Lemma 3. Let G be a chordal graph and uv ∈ E(G). Then u and v are disconnected in G− uv − CNG(uv).

Proof. Suppose, by contradiction, that u and v are connected in G− uv− CNG(uv). Let P = (u, x1, . . . , xk, v) be a chordless
path connecting u and v in G − uv − CNG(uv); it follows that, x1 ∉ CNG(uv). Therefore, k > 1 and P + uv should be a
chordless cycle of length greater than three in G (contradiction). �

Theorem 2 ([17,9]). Let G be a chordal graph. An edge uv ∈ E(G) is attachable if and only if either u and v belong to different
connected components of G or CNG(uv) is an uv-separator of G

3. Related work

We briefly recall in this section the algorithms and data structures proposed by Ibarra [17] for supporting the Insert-
query, Delete-query, Insert and Delete operations. Wewill use these data structures in our algorithm.We refer the reader
to [17] for all the details.

Given a chordal graph G denote by KG the set of maximal cliques of G. A clique tree T of G is a tree structure with vertex
set KG that has the induced subtree property: given any vertex v of G, the subtree induced by the cliques containing v is a
subtree of T . This property is equivalent to the clique intersection property : given any two cliques Kx and Ky then Kx ∩ Ky is
contained in every clique in the path connecting Kx and Ky in T .

It is well-known [7] that a graph is chordal if and only if it has a clique tree. Another important and well-known property
of a clique tree is that given an edge KxKy of T then Kx ∩ Ky is a minimal uv-separator for any u ∈ Kx − Ky and v ∈ Ky − Kx.

Next we describe the algorithms to update a clique tree T of a chordal graph Gwhen an edge is added or deleted from G.
In both algorithms each edge KxKy of T is labeled by the weight w(KxKy) = |Kx ∩ Ky|. We will later discuss the operations to
determine whether an edge is removable or attachable.

The algorithm AddEdge-CliqueTree takes as input an attachable edge uv ∈ E(G) and a clique tree T . The algorithm is
based on the following

Theorem 3 ([17]). Let G be a chordal graph. An edge uv ∈ E(G) is attachable if and only if there exist a clique tree T of G and an
edge KxKy of T such that u ∈ Kx and v ∈ Ky.

In order to find, if it exists, a clique tree that satisfies the condition of Theorem 3, one can use the following

Theorem 4 ([17]). Let G be a chordal graph, T a clique tree of G and uv ∈ E(G). Let Kx and Ky be the closest vertices of T containing
respectively u and v and let P = (Ki0 , Ki1 , . . . , Kih) be the path in T connecting Kx = Ki0 and Ky = Kih . Then uv is attachable if
and only if the minimum of w(KijKij+1) for j = 0, . . . , h− 1, is equal to |Kx ∩ Ky|.

The algorithm AddEdge-CliqueTree (see Fig. 1) therefore, works as follows. It finds the closest vertices Kx and Ky of T ,
containing respectively u and v. Then it constructs a new clique tree T ′, by first removing the minimum weight edge of the
path in T connecting Kx and Ky. Then, T ′ is modified by adding a new clique Kz = (Kx ∩ Ky)∪ {u, v} and two new edges KxKz
and KyKz . It may happen that Kx ⊂ Kz or Ky ⊂ Kz or both. In the first case the edge KxKz is contracted and Kx is replaced by
Kz . Analogously if Ky ⊂ Kz the edge KzKy is contracted and Ky is replaced by Kz .
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Algorithm AddEdge-CliqueTree
Input: a chordal graph G, an attachable edge uv and a

clique tree T of G.
Output: the chordal graph G+ uv and

a clique tree T ′ of G+ uv.
begin
the Kx and Ky be closest vertices of T
containing respectively u and v;

remove from T the minimum weight edge on the
path connecting Kx and Ky in T ;

let Kz ← (Kx ∩ Ky) ∪ {u, v};
add to T the edges KxKz and KyKz ;
if Kx ⊂ Kz then contract KxKz and replace Kx with Kz ;
if Ky ⊂ Kz then contract KyKz and replace Ky with Kz ;

end

Algorithm RemoveEdge-CliqueTree
Input: a chordal graph G, a removable edge uv ∈ E(G) and a

clique tree T of G.
Output: the chordal graph G− uv and a clique tree T ′ of G− uv.
begin
let Kx be the clique of T containing uv;
let Nu ← {Ky : (u ∈ Ky) ∧ (Ky ∈ NT (Kx))};
let Nv ← {Kz : (v ∈ Kz) ∧ (Kz ∈ NT (Kx))};
let Nw ← {Kw : ({v, u} ∩ Kw = ∅) ∧ (Kw ∈ NT (Kx))};
let K u

x ← Kx − {v} and K v
x ← Kx − {u};

Replace Kx with vertices K u
x and K v

x joined by the edge K u
x K

v
x ;

for all Ky ∈ Nu do replace KyKx with KyK u
x ;

for all Kz ∈ Nv do replace KzKx with KzK v
x ;

for all Kw ∈ Nw do
replace KwKx with KwK v

x or KwK u
x , choosing arbitrarily;

if ∃Ky ∈ Nu such that K u
x ⊂ Ky then

contract KyK u
x and replace K u

x with Ky;
if ∃Kz ∈ Nv such that K v

x ⊂ Kz then
contract KzK v

x and replace K v
x with Kz ;

end

Fig. 1. The algorithms for updating the clique tree when an attachable edge is inserted or a removable edge is deleted.

The algorithm RemoveEdge-CliqueTree (see Fig. 1) takes as input a removable edge uv ∈ E(G) and a clique tree T of G.
If Kx is the clique of G containing uv then it replaces Kx with two new cliques K u

x = Kx − {v} and K v
x = Kx − {u}, joined by

the edge K u
x K

v
x . Next the following sets:

Nu = {Ky : (u ∈ Ky) ∧ (Ky ∈ NT (Kx))}

Nv = {Kz : (v ∈ Kz) ∧ (Kz ∈ NT (Kx))}

Nw = {Kw : ({v, u} ∩ Kw = ∅) ∧ (Kw ∈ NT (Kx))}

are constructed. Then for all Ky ∈ Nu the edge KyKx is replaced with the edge KyK u
x and for all Kz ∈ Nv the edge KzKx is

replaced with the edge KzK v
x . Finally for all Kw ∈ Nw the edge KwKx is replaced with the edge KwK u

x or the edge KwK v
x , chosen

arbitrarily. It may happen that there exists a Ky ∈ Nu such that K u
x ⊂ Ky or that there exists a Kz ∈ Nv such that K v

x ⊂ Kz or
both. In the first case the algorithm chooses arbitrarily one Ky ∈ Nu such that K u

x ⊂ Ky, contracts the edge KyK u
x and replaces

K u
x with Ky. Analogously, in the second case the algorithm chooses arbitrarily one Kz ∈ Nv such that K v

x ⊂ Kz , contracts the
edge KzK v

x and replaces K v
x with Kz .

Note that the changes in the clique tree made by algorithms AddEdge-CliqueTree and RemoveEdge-CliqueTree are
limited to a few vertices of the tree. More precisely we can state the following two remarks which will be useful in the
subsequent sections.

Remark 1 ([17]). Let uv ∈ E(G) be an attachable edge and let T be a clique tree of G such that KxKy is an edge of T and
u ∈ Kx and v ∈ Ky. Then all maximal cliques of G different from Kx and Ky are maximal cliques of G+ uv.

Remark 2 ([17]). Let uv ∈ E(G) be a removable edge and Kx themaximal clique ofG containing uv. Then allmaximal cliques
of G different from Kx are maximal cliques of G− uv.
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Since a chordal graph has at most n maximal cliques, by Theorem 1, in order to check if an edge is removable one simply
counts the number of maximal cliques containing it. This can be done in O(n) time.

By Theorem 4, in order to determine if an edge uv ∈ E(G) is attachable we must find the closest vertices Kx and Ky of T
containing respectively u and v and if P = (Ki0 , Ki1 , . . . , Kih) is the path in T connecting Kx = Ki0 and Ky = Kih , we must
check that the minimum of w(KijKij+1) for j = 0, . . . , h − 1, is equal to |Kx ∩ Ky|. Since it takes O(n) time to determine
|Kx ∩ Ky|, this can be done in O(n) time.

The algorithm AddEdge-CliqueTree requires O(n) time. In fact as said above finding the closest vertices Kx and Ky of T
containing respectively u and v and determining |Kx ∩ Ky| can be done in O(n). In order to determine if Kx ⊂ Kz we must
check if Kz − {v} = Kx. This happens if and only if |Kx ∩ Ky| + 1 = |Kx|. Similarly in order to determine if Ky ⊂ Kz we must
check if |Kx ∩ Ky| + 1 = |Ky|. Using the clique tree edges’ weight, this can be done in O(n) time.

The algorithm RemoveEdge-CliqueTree also requiresO(n) time. In fact finding the setsNu,Nv andNw requiresO(n) time.
By the clique intersection property, there exists a Ky ∈ Nu such that K u

x ⊂ Ky if and only if K u
x = Kx ∩ Ky and this happens if

and only if |K u
x | = |Kx ∩ Ky|. Analogously there exists a Kz ∈ Nv such that K v

x ⊂ Kz if and only if |K v
x | = |Kx ∩ Kz |. Therefore

using the clique tree edges’ weight, one can determine if there exists a Ky (resp. a Kz) such that K u
x ⊂ Ky (resp. K v

x ⊂ Kz) in
O(n) time. Then by what said above we can state the following

Theorem 5 ([17]). The time complexity of each of the following operations is O(n).

1. Delete-Query (uv)
2. Insert-Query (uv)
3. Delete (uv)
4. Insert (uv)

4. Algorithms and data structures for supporting DELETE-QUERY

We show in this section data structures for supporting a delete-query in O(1) time. We also show the algorithms for
updating these data structures when the insert or delete operation is executed and analyze their complexity.

We will use two data structures: the clique tree and a variable CC containing for every edge uv ∈ E(G) the number of
maximal cliques of G containing uv. By Theorem 1, an edge uv ∈ E(G) is removable if and only if the number of maximal
cliques of G containing it is equal to one. Therefore, in order to determine if an edge rs is removable, we simply check if
CC(rs) is or is not equal to one, which requires O(1) time. Given a chordal graph G the variable CC may be initialized by
determining for each edge of G the number of maximal cliques of G containing it. Since a graph G has at most n maximal
cliques it requires O(nm) to initialize CC .

When we insert or remove edges from the graph we will use the clique tree to update the value of CC in time bounded
by O(n+m), as described in the following.

The algorithm RemoveEdge1 (see Fig. 2) takes as input a graph G, a removable edge uv ∈ E(G), a clique tree T of G and
the value of CC for the edges of G. It computes the new value of CC for the edges of G− uv in the following manner.

Let Kx be the clique of G containing uv. For each edge with both endpoints in K u
x ∩K v

x , the value of CC is increased by one.
If K u

x is included in a clique Ky, then for each edge with both endpoints in K u
x , the value of CC is decreased by one. Similarly

if K v
x is included in a clique Kz then for each edge with both endpoints in K v

x , the value of CC is decreased by one.
The algorithm AddEdge1 (see Fig. 2) takes as input a graph G, an attachable edge uv ∈ E(G), a clique tree T of G

and the value of CC for the edges of G. It finds the closest vertices Kx and Ky in T containing respectively u and v. Let
Kz = (Kx ∩ Ky) ∪ {u, v}. For each edge with both endpoints in Kz , the value of CC is increased by one. If Kx ⊂ Kz then
for each edge with both endpoints in Kx, the value of CC is decreased by one. Similarly if Ky ⊂ Kz then for each edge with
both endpoints in Ky, the value of CC is decreased by one.

Lemma 4. Let uv ∈ E(G) be an attachable edge. Let T be a clique tree of G such that KxKy is an edge of T and u ∈ Kx and v ∈ Ky.
Then, after adding uv, the value of CC(rs) remains unchanged for all rs such that {r, s} − (Kx ∪ Ky) ≠ ∅.

Proof. Let rs be such that {r, s}− (Kx ∪Ky) ≠ ∅. By the clique intersection property, the set of cliques containing both r and
s induces a subtree Trs of T not containing both Kx and Ky. By Remark 1, after the execution of AddEdge-CliqueTree, all the
maximal cliques different from Kx and Ky remain unchanged. Therefore if T ′ is the clique tree of G+ uv after the execution
of AddEdge-CliqueTree, then the subtree of T ′ induced by the cliques containing both r and s is equal to Trs. It follows that
the value of CC(rs) remains unchanged. �

Analogously we have the following Lemma, the proof of which is very similar to the proof of Lemma 4, and is therefore,
omitted.

Lemma 5. Let uv ∈ E(G) be a removable edge and Kx the maximal clique containing it. Then, after removing uv, the value of
CC(rs) remains unchanged for all rs ∈ E(G) such that {r, s} − Kx ≠ ∅.

Lemma 6. The algorithm RemoveEdge1 is correct.
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Algorithm RemoveEdge1
Input: a chordal graph G, a clique tree T of G, a removable edge

uv ∈ E(G) and the value CC(rs) for all rs of G.
Output: the new values of CC(rs) for all rs of G− uv.
begin
let Kx be the clique of T containing both u and v;
let K u

x ← Kx − {v} and K v
x ← Kx − {u};

for all {r, s} ⊆ K u
x ∩ K v

x do CC(rs)← CC(rs)+ 1;
if ∃Ky such that K u

x ⊂ Ky then
for all {r, s} ⊆ Kx such that v /∈ {r, s} do CC(rs)← CC(rs)− 1;

if ∃Kz such that K v
x ⊂ Kz then

for all {r, s} ⊆ Kx such that u /∈ {r, s} do CC(rs)← CC(rs)− 1;
end

Algorithm AddEdge1
Input: a chordal graph G, a clique tree T of G, an attachable edge

uv ∈ E(G) and the value of CC(rs) for all rs of G.
Output: the new values of CC(rs) for all rs of G+ uv.
begin
Let Kx and Ky be closest vertices of T containing

respectively u and v;
let Kz ← (Kx ∩ Ky) ∪ {u, v};
for all {r, s} ⊆ Kz do CC(rs)← CC(rs)+ 1;
if Kx ⊂ Kz then
for all {r, s} ⊆ Kz such that v /∈ {r, s} do CC(rs)← CC(rs)− 1;

if Ky ⊂ Kz then
for all {r, s} ⊆ Kz such that u /∈ {r, s} do CC(rs)← CC(rs)− 1:

end

Fig. 2. The algorithms for updating the variable CC when an attachable edge is inserted or a removable edge is deleted.

Proof. Let uv be the edge being removed and let Kx be the clique of G containing uv. Wemust show that the values of CC(rs)
after the elimination of uv represent the number of maximal cliques of G − uv containing rs for each rs ∈ E(G) − {uv}. By
Lemma 5, only edges with both endpoints in Kx may have the value of CC modified.

With reference to the algorithm RemoveEdge-CliqueTree, after the elimination of uv, the clique tree is modified in the
followingmanner. First, two new cliques K u

x = Kx−{v} and K v
x = Kx−{u} are added and one clique, Kx, is deleted. Therefore

in G − uv all the edges of Kx incident in u (resp. v) are contained in the same number of cliques of G, while the edges of Kx
not incident in u and not incident in v are contained in K u

x ∩ K v
x and the number of cliques containing them is increased by

one. Then if K u
x is contained in another clique Ky, we replace K u

x with Ky. But then each edge with both endpoints in K u
x has

the number of cliques containing it decreased by one. Similarly if K v
x is contained in a clique Kz then each edge with both

endpoints in K v
x has the number of cliques containing it decreased by one. �

Lemma 7. The algorithm AddEdge1 is correct.

Proof. Let uv be the edge being added and let Kx and Ky be the clique of G containing respectively u and v. By Lemma 4, only
edges of E(G) with both endpoints in Kx ∪ Ky may have the value of CC modified.

With reference to the algorithmAddEdge-CliqueTree, after the addition of uv, the clique tree ismodified in the following
manner. First, a newcliqueKz = (Kx∩Ky)∪{u, v} is added. Clearly inG+uv, each edgewith both endpoints in (Kx∩Ky)∪{u, v}
has the number of cliques containing it increased by one. Then if Kx is contained in Kz , we replace Kx with Kz . But then each
edge with both endpoints in Kx has the number of cliques containing it decreased by one. Similarly if Ky is contained in Kz
then each edge with both endpoints in Ky has the number of cliques containing it decreased by one. �

The complexity of algorithm RemoveEdge1 is O(n + m). In fact we update the value of CC for each edge rs such that
{r, s} ⊆ K u

x ∩ K v
x where uv is the edge being removed. This requires O(m) since there can be at most m edges with both

endpoints in K u
x ∩ K v

x . Finding a maximal clique Ky such that K u
x ⊂ Ky and finding a maximal clique Kz such that K v

x ⊂ Kz
requires O(n) time as seen in Section 3. Similarly decreasing the value of CC for each rswith both endpoints in K u

x (resp. K v
x )

if K u
x ⊂ Ky (resp K v

x ⊂ Kz) requires, at most, O(m) time.
Also the complexity of algorithm AddEdge1 is O(n + m). In fact we update the value of CC for each edge rs, {r, s} ⊆ Kz .

This requires O(m) since there can be at most m edges with both endpoints in Kz . Similarly decreasing the value of CC for
each rs with both endpoints in Kx (resp. Ky) if Kx ⊂ Kz (resp Ky ⊂ Kz) requires, at most, O(m) time. Therefore we have the
following

Lemma 8. The complexity of algorithms RemoveEdge1 and AddEdge1 is O(n+m).
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a b

c

Fig. 3. An example of execution of algorithm RemoveEdge1. (a) The initial graph where each edge is labeled by the value of CC . (b) The graph after removal
of be. (c) The transformation of the clique tree of G: to the left the initial clique tree. In the center the clique tree after replacing K3 with K b

3 and K e
3 . To the

right the clique tree of G− be.

Example. Fig. 3 (a) shows a graph Gwhere each edge is labeled by the corresponding value of CC . Fig. 3 (b) shows the graph
G − be and the new values of CC . In Fig. 3 (c), on the left, the initial clique tree of G is shown. The algorithm creates two
cliques K b

3 = {b, c, d} and K e
3 = {c, d, e} (shown in Fig. 3 (c) in the center). Then since K b

3 ⊂ K1 it contracts the edge K b
3K1

and replaces K b
3 with K1 (shown in Fig. 3 (c) on the right).

4.1. Minimal triangulation algorithm

Note that we may use algorithm RemoveEdge1 to find a minimal triangulation of a given graph in time O(nf + f 2 + m)
where f = |F | and F is the set of fill edges of a triangulation of G. In order to find a minimal triangulation we may execute
the following procedure: find a triangulation G+ of G. Then recursively delete from G+ and F a removable edge of F . If no
edge of F is removable then the triangulation is minimal. The correctness of the above procedure is based on the following

Lemma 9 ([24]). Let G+ be a triangulation of G. Then E(G+) − E(G) has at least one removable edge if and only if G+ is not
minimal.

Given a graph G a triangulation G+ of G can be found in time O(n+m+ f ) [26]. Thenwe initialize andmodify the variable
CC only for the edges of F . The initialization of CC requires O(nf ) time. The execution of algorithm RemoveEdge1 requires
O(n+ f ) time sincewe update the value of CC only for the edges of F . Since atmost f edges can be removed, the total running
time of the algorithm is O(f (n+ f )+m).

5. Algorithms and data structures for supporting INSERT-QUERY

In order to support the operation insert-query inO(1) timeweuse a binary n×nmatrixA containing for each uv ∈ E(G) a
boolean valuewhich is one if uv is attachable and zero otherwise. Therefore using thematrix A it requiresO(1) time to check
if an edge is or is not attachable. Given a chordal graph G one may initialize the matrix A by using operation Insert-query
of Theorem 5 in time O(nm).

When an edge is inserted or deleted wewill use the clique tree in order to update thematrix A in time bounded by O(n2).
Let uv ∈ E(G) and denote by G ∗ uv the graph G+ uv if uv ∈ E(G) and G− uv if uv ∈ E(G). Denote by Euv the subset of

E(G) such that rs ∈ Euv if and only if CNG(rs) ≠ CNG∗uv(rs).

Fact 1. Let uv ∈ E(G) then

Euv = {rs ∈ E(G) : (s ∈ NG(u) ∧ (r = v)) ∨ (s ∈ NG(v) ∧ (r = u)
(r ∈ NG(u) ∧ (s = v)) ∨ (r ∈ NG(v) ∧ (s = u)}

Proof. The proof follows by the definition. �
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Denote by Euv the set E(G)− Euv . By definition we have the following

Fact 2. Let G be a graph and uv ∈ E(G). Then for every rs ∈ Euv we have that CNG(rs) = CNG∗uv(rs).

We also need the following Lemma

Lemma 10. Let G be a connected chordal graph. Let uv be an attachable edge and rs ≠ uv be an attachable edge such that r is
connected or coincides with u in G− CNG(uv) and s is connected or coincides with v in G− CNG(uv). Then CNG(uv) = CNG(rs).

Proof. By Theorem 2, CNG(uv) is aminimal uv-separator. Since r and s are connected in G and not connected in G−CNG(uv),
it follows that CNG(uv) is a rs-separator. Then CNG(rs) ⊆ CNG(uv). If there exists a vertex x ∈ CNG(uv)− CNG(rs), then r and
s are connected in G− CNG(rs). But then we have a contradiction because by Theorem 2, CNG(rs) is a rs-separator. So it must
be that CNG(uv) = CNG(rs). �

5.1. Updating data structures supporting the INSERT-QUERY operation when an edge is added

Lemma 11 ([9]). Let G be a chordal graph and uv ∈ E(G) an attachable edge. Let rs ∈ Euv be an attachable edge of G. Then rs is
not attachable in G+ uv if and only if r is connected to u in G− CNG(uv) and s is connected to v in G− CNG(uv).

Proof. (if ) Let rs ∈ Euv such that r is connected to u and s is connected to v in G − CNG(uv). In order to show that rs is not
attachable in G+ uv, we show that r and s are connected in G+ uv − CNG+uv(rs). Suppose that u and v are connected in G;
it follows, by Lemma 10, that CNG(rs) = CNG(uv). Therefore

G+ uv − CNG+uv(rs) = (by Fact 2)
G+ uv − CNG(rs) = (by Lemma 10)
G+ uv − CNG(uv)

Since r is connected to u and s is connected to v in G − CNG(uv) they are connected in G + uv − CNG+uv(uv). Then, by
Theorem 2, rs is not attachable in G+ uv.

Suppose now that u and v belong to two different connected components of G; then CNG(uv) = ∅. If r is connected to u
and s is connected to v then CNG(rs) = ∅. Since by Fact 2, CNG+uv(rs) = CNG(rs) and since r and s are connected in G+ uv,
by Theorem 2, rs is not attachable in G+ uv.
(only if ) We discuss only the case where r and s belong to the same connected component of G since the proof of the
other case is similar and is omitted. Suppose that rs ∈ Euv is attachable in G and is not attachable in G + uv. Then r and
s are connected in G + uv − CNG+uv(rs). By Fact 2, CNG+uv(rs) = CNG(rs) and this implies that r and s are connected in
G+uv−CNG(rs). Since, by Theorem 2, r and s are disconnected inG−CNG(rs) any path connecting r and s inG+uv−CNG(rs)
must contain uv. Therefore r is connected, say, to u and s is connected to v in G − CNG(rs). By Lemma 10, it follows that
CNG(rs) = CNG(uv) and therefore, r is connected to u and s is connected to v in G− CNG(uv). �

Lemma 12. Let G be a chordal graph and uv ∈ E(G) an attachable edge. Every rs ∈ Euv that is not attachable in G, remains not
attachable in G+ uv.

Proof. Since rs is not attachable in G then G−CNG(rs) contains a path P connecting r and s. By Fact 2, CNG(rs) = CNG+uv(rs).
Then P is in G+ uv − CNG(rs) and rs remains not attachable in G+ uv. �

Lemma 13. Let G be a chordal graph and uv ∈ E(G) an attachable edge. If an edge rs ∈ Euv is attachable in G then it remains
attachable in G+ uv.

Proof. Since rs ∈ Euv it follows that r ∈ {u, v}. We discuss only the case where r = v, being the other case symmetric.
Since rs is attachable in G then, by Theorem 2, CNG(rs) is an rs-separator. Since su ∈ E(G) then r and s are disconnected in
G − CNG(uv), and by Lemma 10, CNG(rs) = CNG(uv). But then r and s are connected in G + uv − CNG(rs) only by u. Since
u ∈ CNG+uv(rs) then r and s are disconnected in G+ uv − CNG+uv(rs). �

By Lemmas 11 and 12, when an attachable edge uv is added to G, in order to update the matrix Awe need to find the set
Cu of vertices connected to u in G− CNG(uv) and the set Cv of vertices connected to v in G− CNG(uv). Then for every r ∈ Cu
and for every s ∈ Cv such that rs ∈ Euv and A(rs) = 1, we set A(rs)← 0. Finally by Lemma 13, we need to update the value
of A(rs) for all the edges rs ∈ Euv such that A(rs) = 0. We do this by using the operation Insert-query of Theorem 5. In Fig. 4
we show the algorithm for updating the boolean matrix A when we add an attachable edge uv to G.

By what was said above and by Lemmas 11–13 we can state the following

Lemma 14. The algorithm AddEdge2 is correct.

Finding the set Cu and Cv requires O(n+m). Then setting A(rs)← 0 for all rs ∈ Euv such that r ∈ Cu and s ∈ Cv requires
O(m). Finally, since |Euv| ≤ 2n using the operation Insert-query of Theorem 5, we can determine in O(n2) timewhich edges
of Euv become attachable and which do not after adding uv.
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Algorithm AddEdge2
Input: a chordal graph G, a clique tree T of G,

an attachable edge uv and the boolean matrix A
Output: the new value of A(rs) for all rs ∈ E(G+ uv).
begin
let Cu and Cv be the connected components of G− CNG(uv)
containing u and v respectively;
for all r ∈ Cu and for all s ∈ Cv do
if rs ∈ Euv and A(rs) = 1 then A(rs)← 0;

for all rs ∈ Euv such that A(rs) = 0 do
begin
using Insert-Query of Theorem 5, check if rs
is attachable in G+ uv and update A(rs) accordingly;
end

end

Fig. 4. The algorithm AddEdge2 for updating the matrix A when an attachable edge is added to G.

Lemma 15. The complexity of algorithm AddEdge2 is O(n2).

5.2. Updating data structures supporting the INSERT-QUERY operation when an edge is deleted

Lemma 16. Let G be a chordal graph and uv ∈ E(G) a removable edge. Let rs ∈ Euv be a not attachable edge of G. Then rs is
attachable in G − uv if and only if r is connected to u in G − uv − CNG(uv) and s is connected to v in G − uv − CNG(uv) and
CNG(rs) = CNG(uv) .

Proof. (if ) Suppose that rs ∈ Euv is a not attachable edge of G, r is connected to u in G − uv − CNG(uv), s is connected
to v in G − uv − CNG(uv) and CNG(rs) = CNG(uv). By Lemma 3, u and v are in two different connected components of
G − uv − CNG(uv). Since rs ∈ Euv , by Fact 2, CNG(rs) = CNG−uv(rs). Furthermore, by the hypothesis CNG−uv(rs) = CNG(uv)
and r is connected to u and s is connected to v in G−uv−CNG(uv). It follows that r and s are separated in G−uv−CNG(uv).
By Theorem 2, rs is attachable in G− uv.
(only if ) Suppose that rs ∈ Euv is not attachable in G but is attachable in G − uv. Then, by Theorem 2, CNG−uv(rs) is an rs-
separator in G − uv or r and s belong to different connected components of G − uv. In the following we discuss only the
case when r and s are in the same connected component of G− uv, since the proof of the other case is similar. Since rs is not
attachable inG, but is attachable inG−uv, then r and s are disconnected inG−uv−CNG−uv(rs) but connected inG−CNG(rs).
Since by Fact 2, CNG(rs) = CNG−uv(rs), it follows that any path connecting r and s in G− CNG(rs) contains uv. In other words
r is connected in G−uv−CNG−uv(rs) to, say u, and s is connected to v in G−uv−CNG−uv(rs). Since uv is an attachable edge
of G− uv and rs an attachable edge of G− uv then, by Lemma 10 we have that CNG−uv(rs) = CNG−uv(uv) = CNG(uv). �

Lemma 17. Let G be a chordal graph and uv ∈ E(G) a removable edge. Every rs ∈ Euv that is attachable in G, remains attachable
in G− uv.

Proof. Since rs is attachable in G then, by Theorem 2, CNG(rs) is an rs-separator. By Fact 2, CNG(rs) = CNG−uv(rs). Therefore
if r and s are disconnected in G− CNG(rs) still they are disconnected in G− uv − CNG−uv(rs). �

Lemma 18. Let G be a chordal graph and uv ∈ E(G) a removable edge. If an edge rs ∈ Euv is not attachable in G then it remains
not attachable in G− uv.

Proof. Since rs ∈ Euv , it follows that r ∈ {u, v}. We discuss only the case where r = v, being the other case symmetric.
Since rs is not attachable in G then r and s are not disconnected in G − CNG(rs). Note that since u ∈ CNG(rs) then any path
connecting r and s in G− CNG(rs) does not contain u. Therefore r and s are connected in G− uv − CNG−uv(rs). �

By Lemmas 16 and 17, when a removable edge uv is deleted from G, in order to update the matrix Awe need to find the
set C ′u of vertices connected to u in G− uv − CNG(uv) and the set C ′v of vertices connected to v in G− uv − CNG(uv). Then
for every r ∈ C ′u and for every s ∈ C ′v such that rs ∈ Euv and CNG(uv) = CNG(rs) we set A(rs)← 1. Finally by Lemma 18, we
update the value of A(rs) for all the edges in Euv such that A(rs) = 1. We do this by using the Insert-query of Theorem 5. By
Lemmas 16–18 we can state the following

Lemma 19. The algorithm RemoveEdge2 is correct (See Fig. 5).

In order to analyze the complexity of algorithm RemoveEdge2we need first the following

Lemma 20. Let uv ∈ E(G) be a removable edge of G and rs ∈ Euv such that r is connected to u and s is connected to v in
G− uv − CNG(uv). Then CNG(uv) = CNG(rs) if and only if CNG(uv) ⊆ NG(r) and CNG(uv) ⊆ NG(s).
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Algorithm RemoveEdge2
Input: a chordal graph G a clique tree T of G,

a removable edge uv and the boolean matrix A
Output: the new value of A(rs) for all rs ∈ E(G− uv).
begin
let Cu and Cv be the connected components of G− uv − CNG(uv)
containing u and v respectively;

let C ′u ← ∅ and let C ′v ← ∅;
for all r ∈ Cu do if CNG(uv) ⊆ NG(r) then add r to C ′u
for all s ∈ Cv do if CNG(uv) ⊆ NG(s) then add s to C ′u
for all r ∈ C ′u and for all s ∈ C ′v do
if rs ∈ Euv and A(rs) = 0 then A(rs)← 1;

for all rs ∈ Euv such that A(rs) = 1 do
begin
using Insert-Query of Theorem 5 check if rs
is attachable in G− uv and update A(rs) accordingly;
end

end

Fig. 5. The algorithm RemoveEdge2 for updating the matrix A when a removable edge is deleted from G.

Algorithm Insert
Input: a chordal graph G, its clique tree T , the boolean matrix A,

the variable CC and an attachable edge uv
Output: the new value of A and the new value of CC
begin

AddEdge1;
AddEdge2;

end

Algorithm Delete
Input: a chordal graph G, its clique tree T , the boolean matrix A,

the variable CC and a removable edge uv
Output: the new value of A and the new value of CC

begin
RemoveEdge1;
RemoveEdge2;

end

Fig. 6. The operations Insert and Delete.

Proof. (only if ) Clearly if CNG(uv) = CNG(rs) then CNG(uv) ⊆ NG(r) and CNG(uv) ⊆ NG(s).
(if ) If CNG(uv) ⊆ NG(r) and CNG(uv) ⊆ NG(s) then CNG(uv) ⊆ CNG(rs). Suppose, by contradiction, that there exists a vertex
x ∈ CNG(rs) such that x /∈ CNG(uv). Then r and s are connected in G− uv − CNG(uv) by x. Since r is connected to u and s is
connected to v in G− uv − CNG(uv), u and v are not disconnected in G− uv − CNG(uv) and this contradicts Lemma 3. �

By Lemma 20 in order to find all the edges rs ∈ E(G) such that CNG(rs) = CNG(uv) we need to find the sets C ′u and C ′v of
vertices connected respectively to u and v in G − uv such that CNG(uv) ⊆ NG(r) and CNG(uv) ⊆ NG(s). It requires O(n) to
find CNG(uv). Then given a vertex r it requires O(n) time to check if CNG(uv) ⊆ NG(r). Therefore it requires O(n2) to find
the sets C ′u and C ′v . Furthermore it requires O(n2) to set A(rs)← 1 for all rs ∈ Euv such that r ∈ C ′u and s ∈ C ′v . Finally, since
|Euv| < 2n using the Insert-query of Theorem 5 that requires O(n) to determine if an edge is attachable, we can determine
in O(n2) time which edges of Euv become attachable and which do not after removing uv. By what was said above we have
the following

Lemma 21. The complexity of algorithm RemoveEdge2 is O(n2).

6. The operations INSERT and DELETE

In Sections 4 and 5 we discussed the algorithms that update the data structures for supporting the Insert-Query
operation and for supporting the Delete-Query operation. In order to obtain the operations Insert and Delete we simply
merge the algorithms AddEdge1 and AddEdge2 and the algorithms RemoveEdge1 and RemoveEdge2 as shown in Fig. 6.
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By Lemmas 8, 15 and 21 we have

Theorem 6. The complexity of operations Insert and Delete is O(n2).

In the work of Ibarra [17] the operations Insert and Delete have O(n) complexity while our algorithms implement both
operations in O(n2) time. However our algorithm performs better in those applications, such as those described in the
Introduction or in Section 4.1, where the most frequent operations are the Insert-Query or Delete-Query. Therefore using
our algorithm it takes O(kn2) to insert or delete k edges which is an improvement with respect to Ibarra’s algorithm which
would requireO(kn3) time. Last, note thatwhenwe add or remove an edge froma chordal graph, potentiallyO(m) removable
edges can become not removable and at the same timeO(m) attachable edges can become not attachable. Therefore the time
bound of O(n2) for the operations Insert and Delete, is probably, the best that we can obtain if we want to have at the same
time a constant time bound for the operations Insert-Query and Delete-Query.
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