Available online at www.sciencedirect.com

ANNALS OF
SCIENCE DIRECT®
@ PURE AND

i s APPLIED LOGIC
ELSEVIER Annals of Pure and Applied Logic 139 (2006) 303-326

www.elsevier.com/locate/apal

Generality’s price: Inescapable deficiencies in
machine-learned programs

John Cas® Keh-Jiann Cheh Sanjay Jaif) Wolfgang Merklé,
James S. Royéf

aDepartment of Computer and Information Sciences, University of Delaware, Newark, DE 19716-2586, USA
binstitute of Information Science, Academia Sinica, Nankang 115, Taipei, Taiwan, ROC
CSchool of Computing, National University of Singapore, 3 Science Drive 2, Singapore 117543,
Republic of Singapore
dUniversitat Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 294, D-69120 Heidelberg, Germany
eDepartment of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA

Received 6 January 2005; received in revised form 23 May 2005; accepted 7 June 2005
Available online 19 July 2005

Communicated by R.l. Soare

Abstract

This paper investigates some delicate tradeoffs betweeagetheralityof an algorithmic learning
device and thequality of the programs it learns successfully. There are results to the effect that,
thanks to small increases in generality of a learning device, the computational complexity of
some successfully learned programs is provably unaltersidigptimal. There are also results in
which the complexity of successfully learned programasymptotically optimal and the learning
device is general, but, still thanks to the generality, some of those optimal, learned programs
are provably unalterablynformation deficient-in some cases, deficient as to safe, algorithmic
extractability/provability of the fact that they are even approximately optimal. For these results, the
safe, algorithmic methods of information extraction will be by proofs in arbitrary, true, computably
axiomatizable extensions of Peano Arithmetic.
© 2005 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addressescase@cis.udel.edu (J. Case), kchen@iis.sinica.edu.tw (K.-J. Chen),
sanjay@comp.nus.edu.sg (S. Jain), merkle@math.uni-heidelberg.de (W. Merkle), royer@ecs.syr.edu
(J.S. Royer).

0168-0072/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2005.06.013

http://www.elsevier.com/locate/apal

304 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

Keywords:Computational learning theory; Applications of computability theory

1. Introduction

We abbreviatelass of characteristic functions of languagessCCFL. Suppos& C C1
is a pair of complexity CCFLs whiclo (perhaps barely) separate. For exampleglet
as from P, Section 21.4], be &ery slow growing linear time computable functios
an inverse of Ackermann’s function; I€; be DTIME(n - (logn) - a(n)); and letCo be
DTIME(n).! These classes have long been known to sepai&@9. Furthermore, it
is straightforward to see thabmelearning device (synonymously, inductive inference
machine or IIM)Mg, fed the values of any elemehtof thisCp, outputs nothing but linear-
time programs and eventually converges to a fixed linear-time program which correctly
computesf. This kind of syntactically converging learning in the limit is called -EX
learning (or EX-identification) [12,4,6,16]. Let Z* be the CCFL for precisely thénite
languages. Clearlyg* is an especially simple, proper subclass of our exar@ipl@wo of
our main theoremsliheorems 2and28in Section ébelow) each imply that, nonetheless,
if M1 is anylearning device which is slightly more general thdn in that it EX-learns
every function in our examplé€s, then, for some especially “easy” functiolh, more
particularly for anf € Z* M1 on f syntactically converges to a correct progranfor
f, butthis p runs in worse than any linear-time bouad all but finitely many inputsThis
inherentrun-time deficiency ofp is theinescapablegrice for employing a more general
learning device to learéy instead of learning onlgp. Theorems 27and28, on which this
example is based, are proved by delayed diagonalization (or slowed simul&B30)] [
with cancellation 8] (or zero injury), complexity-bounded self-referen8€], and careful
subrecursive programming(Q].

Fix k > 1. LetC; = DTIME(nX - (logn) - a(n)) andCo = DTIME(n¥). These
classes separatd3,15], and it is straightforward that some learning device EX-learns
this Cp outputting only conjectures that run kidegree polytime. However, again from
Theorems 2°/and 28, for any slightly more general learning devikt, which EX-learns
this C1, there will be an easy, an f € Z*, so that, onf, M1’s final programp will run
worse than ank-degree polytime bound on all but finitely many inputs.

One way to circumvent the complexity-deficiency-in-learned-programs price of gener-
ality in the above examples is to consider a most general learning criterion calfed BC
learning[6,5]. In this type of learning, in contrast to EX-learning, one foregoes syntactic
convergence in favor of semantic convergence and one foregoes requiring the final pro-
grams to be perfectly correct at computing the input function: convergence is to an infinite
sequence of programs all but finitely many of which are each correct on all but finitely
many inputs. Harringtong] showed that there is a learning device that‘B€arnsevery
computable function. (On the other hand, fairly simple classes of computable functions

1 DTIME(t(n)) denotes the set dainguagesdecidable by a deterministic, multi-tape Turing machine within
O(t(n)) time, wheren is the length of the machine’s input. DTim@n)) denotes the set ddinctionsover strings
computable by this same class of machines withiia(n)) time.

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 305

cannot be EX-learned].) One of our main positive result§ieorem 31in Section 8
below) says that there is a learning devidg that BC'-learns the CCFL for the polytime
decidable languages in such a way that: (i) alMbf's output conjectures run in polytime;
(ii) for eachk > 1, on eachf € DTIME(n¥), all but finitely many ofM,.’s outputs run in
k-degree polytimeand ((iii) M, EX-learns all the linear-time computable functions.

There is, though, another kind of deficiency-in-learned-programs price for generality
of learning, and this affects B@earning, EX-learning, and the learning criteria of
intermediate strength discussed, beginningéttion 2 below. LetPFX = DTimeRnk)
and Q]-"; = DTimeRnX - (logn) - «(n)). Let ¢q be the (partial) function computed by
multi-tape Turing machine (numbeq) SupposeM is any device BC-learning Q]-";.Z
Corollary 9in Section 4below says, then, that there is an edsyan f € Z*, such that, if
M is fed the values of (which it at least BC-learns), then for all but finitely many & ’'s
corresponding output conjecturps Peano ArithmeticZ5] (PA) fails to prove that some
finite variant ofgp, is k-degree polytime computable. Of course, for sy some finite
variant ofpp, e.g.,f, istrivially linear-timecomputable. Hence, theges areinformation-
deficientIf, for example M., the learning device oafheorem 31 discussed in the previous
paragraph), is used fdd, then, on the correspondirfg thisM outputs goerfectly correct
final programp which runs in linear time, but Peano Arithmetic canprove the weaker
result about thigp that some finite variant af is k-degree polytime computable. Hence,
for the learning device dfheorem 31its final output onf is information-deficient, butot
complexity-deficientCorollary 9discussed in this paragraph is one of several corollaries
of Theorem 8our first main sufficient condition result, all given$ection 4

Here is another example. L€y = REG andC1 = CF, whereREG andCF are the
CCFLs of regular and context free languages, respectively. Of course, for this example,
the separation is not particularly tight. However, importantly, for this example, direct,
aggressive diagonalization methods such as those mentioned above are not available. Let
caz* be the CCFL for theco-finite languages, i.e., the languages whose complements
are finite. ClearlycaZ* is an especially simple, proper subclassRfG. First note that
some learning device outputs only deterministic finite automata and EX-I&Gq12),
where deterministic finite automata should be thought of as a degenerate case of Turing
machines that useo tape squares for workspacky. EX*-learning is the variant of EX-
learning in which the final program need be correct only on all but finitely many inputs. By
contrast, still inSection 4elow, as a corollary of our other main sufficient condition result,
Theorem 14we haveCorollary 17as follows. Suppos#l EX*-learnsCF andk,n > 1.3
Then there is an easy, an f € caZ*, such that, ifp is M’s final program onf, for
some distinct ¥, . .., Xp—1, programp uses more thak workspace squares on each of
inputsXo, ..., Xn—1. This is a complexity-deficiency result fgREG, CF). Theorem 14
has other complexity-deficiency corollaries, e.gGgorollary 18 an interesting one for
(P, NP—assuminghey separate. See alemark 20for a related interesting corollary
involving BQP, a quantum version of polynomial-tin#,[instead of NP. In these results
the complexity-deficient learned programs hawaecessary non-determinism or quantum

2 0ne of many special cases of this hypothesis isthaictually EX—IearnQ]—"o‘[.
3 0ne of many special cases of the hypothesis th&X*-learnsCF is thatM actually EX-learn€ F.

306 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

parallelism.Corollaries 10and 11 of Theorem 8provide information-deficiency results
for (REG,CF) and (P, NP), respectively.Remark 12provides information-deficiency
corollaries ofTheorem &or (P, BQP) as well as other examples.

Those corollaries, discussed in the previous paragraph, of our sufficient condition
results, Theorems 8and 14, involve classes(Cg, C1) for which direct, aggressive
diagonalization is (apparently) not available. These sufficient condition results are proved
herein with the aid of some refinedseparability results from BQ]. Section 3below
provides the details. Ir80] the inseparabilities were used to characterize relative program
succinctness between (possibly barely) separated subrecursive programming systems.
Herein they are used to obtain higher-type inseparabilities providing our sufficient
conditions (not characterizations) for deficiencies in machine-learned programs. We also
use Theorem 8to obtain all ourinformation-deficiencyesults, including the one for
(PFK, Q}'('fl) described above. Actuallf;heorem 14an be used to prove a weak special
case of our strong complexity-deficiency reslh¢orem 2§ for (PF¥, QF¥). This is
Corollary 16 In this corollary the quantifieorder between thef € Z* and thek-degree
polynomial-time bounds is weakened and the for-all-but-finitely-many-inpugtsantifier
is weakened to exists-distinct-inputs.

Someof our results whose proofs employ tricks fro80[can also be shown through
related methods fron8[L,32,27], but we do not pursue this further here.

The order of presentation in this introduction differs from that of the remaining sections.
The latter order was dictated, to some extent, by the need to introduce required technology
in a particular order.

2. Conventionsand notation

Strings and numbersN denotes the set of non-negative integers. Each elementisf
identified with its dyadic representation oM@, 1}. Thus,0=¢,1=0, 2 = 1, 3 = 00,
etc. We will freely pun betweex € N as a number and@1-string. Let|x| = the length of
the dyadic representation gfe N. By convention, foX € N", |X| = |Xo| + - - - + [Xn—1].

Encoding tuples.Let (-, -) be a linear time pairing function. Thatis, -): Nx N — Nis
1-1andontoand each bX, y.(X, Y), mo = A(X, ¥).X, andr1 = A(X, ¥).Yyis computable

on a multi-tape deterministic Turing Machine in time linear in the lengths of its inputs.
Examples of such pairing functions can be found?830]. By convention, for each > 2
andxo, ..., Xn € N, we inductively definéxo, . .., Xn) = (Xo, (X1, ..., Xn))-

Functions. A— B (respectively,A — B) denotes the set of all total (respectively,
possibly partial) functions fronA to B. For f: A — B, f(x)] meansf is defined on

x and f (x)1 means thatf (x) is undefined orx; 4 by itself denotesindefinedSuppose
f,g:N—~ N.Foreacm e N, f =" gmeansthatx | f(x) # g(x)}is of sizen or less,
andf =* gmeansthafx | f(x) #£ g(x) }is finite, i.e., thatf andg arefinite variants
Foreachf: N — N, let

of) £ (g:N— N! @a)vxlgx) <a-(f(x)+ 1)1}

By conventionO(f (n)) is short forO(Ax. f (|x])). For eachC € (N — N), let Coq
denote the 0-1 valued elementgofPR denotes the set of partial recursive functions and

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 307

‘R denotes the total recursive functions. Let log00 and, for each positive integet,
logx = [log, X].

Programming systemsA partial recursivey : N2 — N is a programming systerfor

S € PRifand only if S = {Ax.¥(i,x) ' i € N}. We typically write ¢ (x) for

¥ (i, X). Letp be an acceptable programming systerfP® based on deterministic multi-
tape Turing machined p,17]; ¢ beingacceptablaneans that for any other programming
system for ars € PR, sayd, there is an effective translation@fprograms into equivalent
@-programs, i.e., a computalievith ¢, = 6; for all i. By convention, for each and

X, X0, « -5 Xky @i (X0, + .., Xk) = @i (X0, - . ., Xk)); i (X) = the run time of TMi on input

X; and @i""s(x) = the work space used by TNbn inputx, providedy; (x) | ; co, otherwise.

Subrecursive classes of functionkor each recursive: N — N, let DTimeKt) = { ¢; |
Fa) (VX[$(x) <a-({t(x)+1)]}and DTIMEt) = (DTimeKt))g+. For eactk > 0, let

P 2 DTimeR(x.|x|9),

the functions computable i®(n¥) time on a deterministic multi-tape TM, and IBF =
Uk>g7>}'k, the polynomial-time computable functions. Let

LSlow def { f € PFL | f is nondecreasing and unbouno]ed

By standard results8[21], for each recursive, increasing, unboundédthere is an
s € LSlow that grows slower than the inverse 6fin the sense tha(f (x)) < x for
all x. For eactk > 0 ands € LSlow,

QFk & DTimeF(Ax.|x|k-(Iog|x|)~s(|x|)>.

By standard resultsl3,15], (Q;’-"g — PFK)o4 # 0 for eachk > 0 ands € LSlow.

Let Z* (respectively,caZ*) denote the class of 0-1 valued functions that are 0
(respectively, 1) almost everywhere. P, BPP, P, CF, andREG respectively denote
the classes of characteristic functions of NP, BPR, [polynomial-time decidable, context
free, and regular languages o¥é), 1}*. (Recall:N = {0, 1}*.)

S C€ R is anr.e. subrecursive classhen there is a programming system rBy
standard results?, PK, QFX, NP, ... are each r.e. subrecursive classes.

Finite initial segments.For f : N — N andn € N, f|,, denotes the sequend€0), f (1),
..., f(n = 1), the lengthn initial segment off. So, f|; = the empty segment. Let
SEG = the set of all such finite initial segments; with or without decorations, ranges
over SEG. lfo = ap, &, ..., an—1 andm < n, theno |, = ag, a1, - .., am-1.

Inductive inference machinesAn inductive inference maching 2 is an algorithmic
device that computes a SE& N function.M, with or without decorations, ranges over
such machines. Since SEG can be coded t@anM can be viewed as computing an
element ofPR. M on f convergedoi (written: M (f)] = i) when, for all but finitely
manyn, M (f|,,) =i; M(f) is undefined if no suchexists. Theoint of convergencef M

on f is, if it exists, the smallesh with M (f |,,,)| andM (f|,,) = M(f|,,) for eachn > m.

308 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

(NG

Fig. 1. Sseparate® from A.

TheEX andEX* identification criteria. Supposef € R andS € R. M EX-identifies fif
and only if, for some, M (f)| =i andi is a programforf (i.e.,¢; = f). M EX-identifies
Sifand only if S € EX(M) £'{ f € R ! M EX-identifies f }. EX £ (S : someM
EX-identifiesS }. EX-identification originated with Goldl2] who showed that every r.e.
subrecursive class is in EXI EX*-identifies f if and only if, for soma, M (f)] =i and
¢i =* f. EX*(M) and EX are defined analogously to our definitions of ®X and EX.

EX*-identification is due to Blum and Blund] who showed that EX_ EX*.

TheBC, BC", andBC* identification criteria. Supposef € R, S € R, andk € N. M

BCK-identifies fif and only if, for all but finitely manyn, OM(fl,) =K f.M BCK-identifies

Sifandonlyif S € BCKM) €' (f ¢ R | M BC-identifies f }. BCK £ (S 1 some

M BCK-identifiesS }. We usually write BE as simply BC. The BCcriterion is defined in
the obvious fashion. BC-identification was first formalized lay&insS [1]. Independently,
Case and Smithg] defined BC"- and BC-identification. Steel] showed EX < BC,
Harrington and Case showed this inclusion to be profleahd Case and Smitle] showed
BC® C BC! € BC? C --- C BC*. Moreover, as noted ifiection 1 Harrington p] showed
thatR € BC*.

Arithmetic sets. The Xp- and Ilp-predicates oveliK are just the recursive predicates over
NK, P is a%,,1 predicate oveNX when, for somen, there is all,, predicateQ overNktm
such thatP(X) = 3y1) ... Aym)Q(X, V). P is all,,1 predicate ovelX when, for some
m, there is a¥}, predicateQ overNKtM such thatP(X) = (Vy1) ... (Vym) Q(X,). Ais a

Yn (respectively[Iy) set if and only if A = {x | P(x)} for someX, (respectively,/i,)
predicateP. Let (W"); .y be an acceptable indexing of tha-sets P9].

3. Inseparability notions

SupposeA, B, andS are subsets of some fixed 4t We say thatS separates Brom
Aifandonlyif B C SC A. (SeeFig. 1)

Definition 1. SupposeA andB < N. B is Yp-inseparablefrom A if and only if A and

B are nonempty and disjoint, but ng,-set separateB from A. Also, B is effectively
Xn-inseparablefrom A if and only if A and B are nonempty and disjoint and there is a
recursivef such that, for each f (i) € (V\/in NnAU (V\/in N B), i.e., f (i) witnesses that
B C W" C Afails. <

Definition 2. SupposeR € (N — N)K x N¢, Ris recursiveif and only if the characteristic
function of R is a total recursive functional of typ@N — N)X x N¢ - {0,1}. Ris

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 309

arithmeticalif and only if eitherR is recursive or
R= {0 Q... (QuymI (. %91} (1)

where eacl; is either3 or ¥ and whereS € (N — N)K x N¢+M s recursive. K.B. All the
quantifiersin {) are numeric.Ris in Er(,f”) if and only if Ris recursive oR is expressible
as in () with the quantifiers in¥, form. Ris in Hn(f”) if and only if R's complement is in
B URIIRS

IndexingsFor eaclk, ¢, andn, let (Wi(f”)’k’z’”)ieN be an acceptable indexing of the class of

all RS (N — N)¥x N¢in 5™ (see p9, Section 15.2]). For eadhlet W = w™-1.0.n,
Next we introduce the higher-type inseparabilities needed for our results.

Definition 3. Supposed andB < (N — N). B is 5\™-inseparablgrom A if and only
if A andB are nonempty and disjoint, but nﬁfﬁf”)—set separateB from A. Also, B is
effectivelys{™-inseparablérom A if and only if A andB are nonempty and disjoint and

there is a recursivé such that for each ¢y € W'N AU W NB). ©

The next proposition gives us a way of establishinﬁég)-inseparability through the
JYo-inseparability of certain sets of programs.

Proposition 4. Suppose the following:

(i) Cis a subrecursive class with programming systgm
(ii) A andB are disjoint and both4 N C and B N C are nonempty.
(i) {i 1 ¢; € B}is effectively’»-inseparable fron{i | ¢; € A}.

ThenB is effectivelyEz(f”)—inseparable fromA.

Proof. Supposer witnesses the effectivés-inseparability of{i | v; € B} from
{i '+ ¥ € A}. By standard results (se®9, Section 15.2]), there is a recursive
R ¢ (N - N) x N3 such that, for allj, WJ-Z = {f | @mVNR(f,mn,j)}.
By a few more standard results, there is a recursive funajiguch that, for allj,
Wg(j) ={i | @MMNR@;,mn, H}={i 1y € sz}. Lett be a recursive function
such thatg i) = i for alli. It follows thatr’ =t or o g is recursive and witnesses the

effective "™ -inseparability of3 from A. O

The next proposition provides an alternative, often handier, way of showgﬂﬁ-
inseparability. Note, however, that the proof of this proposition depends@position 4
Recall:PF! = the linear-time computable functions a@o+ = the 0-1 valued elements
of C.

Proposition 5. Suppose thaty, C1 € (N — N) are such that:

(i) BothCp and(; are closed under 0-1 valued finite variants.
(i) PFLcConca.
(iii) Foreach fe PFland ghe(Cy, fog,go f,andix.(g(x), h(x)) € Cs.

310 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

(iv) There is a programming system f0y.
(V) (C1—Co)oa # 9.

Then,(C1 — Co)o4 IS effectivelyEz(f")-inseparable fromz*.

There are many ways to establish this proposition using results from the structural
complexity literature, for example3p,31,27,30]. The proof given below uses a tool from
[30], restated as the following lemma. Thé& of condition f is an acceptable programming
system for the partial recursive functions relative to an oracle for the halting problem
[29,30]. Notation: For eachf, g, h: N — N, defineCond: (N — N)3 — (N — N) by

gx), if f(x) >0;
Cond f,g,h)(x) = {h(x), if f(x)=0;; 2
Y, i FOOT
Lemma6 ([30, Theorem 9.17)] Suppose thafp, andCy are subrecursive classeg, C

(CoNC1)o1, D C (1, and there is a programming systeffor C1. Moreover, suppose that
the following conditions hold:

.Thereisag e (C1)oawith{ f: N— {0,1} ! * o1}

.Thereisage Awith{ f: N — {0,1} | f = g }EA

. Foreach fe Dand g h € C;, Cond f, g, h) € (3.

. Foreach feCy, f omg, f omg € Cs.

.For each m and n> 0, there is a computable function s such that, for all
X0, Xms Y - Y, Ys it () = i (X, Y).

f. There is an Le D such that, for all i and xJim¢_, « L({i, X, 1)) = ¢f(x), where

Gr0L =y < (VOIL(i, %, 1) = yI.
Then{i | ¢; € (C1 — Co)o } is effectively’»>-inseparable fronfi | ¥ € A}.

C (C1—Co).

©T Q0T

Proof (of Proposition 5). Let A = 2* andD = PF2. By (ii), (iv), and general results

on programming systems iB3(), Section 4.2], we may assume thiatis a programming
system forC; that satisfies condition e. We note titat C1, A, D, andy together satisfy

the hypotheses of the lemma. Specifically: conditions a and b follow from (i) and (v),
conditions ¢ and d follow from (ii) and (iii), condition e follows from our choice of
¥, and condition f follows from (ii) and Theorem 7.4 03(]. Hence by the lemma,

{i 1 ¥i € (C1— Co)oa} is effectively Yr-inseparable fron{i | ¢; € A}. Therefore,

by Proposition 4ve have thatC1 — Co)o is effectivelyEz(f”)—inseparable frong*. O

Now, using Propositions 4and 5 and few other results from the literature, we can

establish some sampL@z(f")-inseparability results for some of the subrecursive classes
introduced inSection 2

Corollary 7. Suppose k- 0 and se LSlow.

(@) (QFK — PFX)oq is effectivelyEz(f")-inseparable fromz*.
(b) (CF —REG)is effectivelyEz(f")-inseparable from c&*.

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 311

(c) If P#£ NP, then(N'P — P) is eﬁectiverE(f”)-inse arable fromz*.
2 p
(d) If P# BPPR, then(BPP — P) is effectiverE(f")-inseparable fronz*.
2

Proof. Part (a). As previously notedeJ-"g)o.l and (PF%)p4 separate by classic results
[1315]. It is then straightforward that hypotheses (i) through (v)Rsbposition Sare
satisfied. Thus, part (a) follows from the proposition.

Part (b). By the proof of Corollary 11.17 of30)], there is a programming systeth
for CF such that{i | v € (CF — REG)} is effectively Yr-inseparable froni | v €
caz* }. Thus, part (b) follows byroposition 4

Part (c). Suppos€1 = NP andCo = P. Then it is straightforward that (i) through (iv)
of Proposition 5are satisfied. The B NP hypothesis implies (v). Thus, part (c) follows
from the proposition.

Part (d). This follows from an argument similar to the one for part (dJ

4. Sufficient conditionstheorems

In the following, think of. 4 as some set of very modest functions (e4j,above),B
as some set of immodest functions, @Bdis some set of “good” prografhsuch that no
finite variant of a member df has a program iG.

Theorem 8 our first sufficient condition theorem, provides us with our information
deficiency corollariesGorollaries %hroughl1l). Notation: FV(B) = { f: N - N | f is
a finite variant of some element 8f}.

Theorem 8. Suppose that:

(i) Bis £{™-inseparable fromA.
(i) GisaXy-setwithFV(B)N{gi ii € G} =0a.
(i) M is an lIM such thats € BC*(M).

Then there is an & A such that for all but finitely many M (f|,) ¢ G.
Proof. SinceG is a Y1-set, there is a recursive predicd®g such thatG = {x | (Im)
Rg (X, m) }. ConsiderS = { f | (Ym[M(f|,) ¢ G} =
{ f 1 @no)(¥n > no)(YM)[=RcM (f), m)1}.
Thus,S € Ez(f”). Also, by (i) and (iii) it follows thatB € S. Now suppose the negation of

the conclusion: that for alf € A, (Ozlon)[M(f I € G1. Clearly, A NS = @. Therefore,
not (i) sinceS is aEz(f”)—set separatingg from.A. O

The next three corollaries involve provability and PA, Peano Arithmeti We write
 for the provability relation and# for ‘doesnot prove’. The following predicates are
expressible in PA (and herein we do not distinguish between expressions in PA and

4 For example, the members @fmay run efficiently and/or be easy to prove things about.

312 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

expressions in the metalanguage):

Pu(i) =der (30)(¥X)[G (X) < - (IX| + D¥].
Pe() =det 3j1ej = e[P(i) 1.
P*(i) =ger K[PEG) 1.
Sc(i) =der (WO 9V5(x) < k1.
REG (i) =det AA]j loj =" oD S() 1.

N.B. Each ofCorollaries 9-11 remains true if PA is replaced by any true and computably
axiomatized theoryZ5] extending the language of PA. Such theories, including PA itself,
should be thought of as safe, algorithmic extractors of information: the safety is that
they prove only true sentences; and, since they are computably axiomatized, there is an
associated automatic theorem prover, i.e., the set of theorems B&t.e. [

Corollary 9. Suppose that k- 0, s € LSlow, andBC*(M) 2 QF¥. Then there is an
f € Z* such that, for all but finitely many A ¥ P (M(f|,)).

Proof. Let A = 2*, B = (QFX — PF¥), andG = {i | PA+ P/(i) }. Now, applying
Corollary a) andTheorem 8we are done. O

Interpretation.Let M and f be as inCorollary 9> Then it must be the case that, for
all but finitely manyn, the programM (f|,,) computes a finite variant of, an almost
everywhere zero function. Of coursemeprogram computes in linear time Yet, even

so, for sufficiently largen, the program$/ (f |,,) are so information deficient that PA fails
to prove of them that they compute a finite variant of something (fix¢hat hassome
program running irk-degree polynomial time. Analogous remarks apply to the next two
corollaries.

Corollary 10. Suppos8C*(M) 2 CF. Then there is an fe caZ* such that, for all but
finitely many nPA ¥ REG'(M(f|,)).

Proof. Let A = caZ*, B = (CF — REG, andG = {i | PA+ REG(i) }. Now, applying
Corollary 7b) andTheorem 8we are done. O

Corallary 11. Suppos®8C*(M) 2 NP and thatP # NP. Then there is an f Z* such
that, for all but finitely many nPA t* P*(M (f|,)).

Proof. Let A = Z*, B = (WP — P), andG = {i | PAF P*(i)}. Now, applying
Corollary fc) andTheorem 8we are done. O

Remark 12. Corollaries 911 provide only a small sample of the wide range of situations

to which Theorem 8applies. For example, one can replace NPCorollary 11 with
essentially any natural complexity class C containing P; then under the assumptions that
BC*(M) D the class of characteristic functions of members of C angt ®, one has

the same conclusion &orollary 11 So for C one can have BPP (bounded probabilistic

5 As noted inSection 1 an allowed special case is thdtactually EX—IearnQ]—'Lj.

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 313

polynomial-time [L1]), BQP (a quantum version of polynomial-timg]], PSPACE, and

so on. The only work involved in showing these results is in establishing the analogue of
Corollary 7c) for each of these classes, and this is straightforward using the results and
tools of [30].6 ¢

Remark 13. We call thef asserted to exist iiheorem & witness to the deficienclf we
change ‘Z‘z(f”)—inseparable” to “effectiveI)EZ(f”)—inseparable" inTheorem 8then we can
strengthen that theorem’s conclusion there is a computable functian such that, for
eachi, if i is the index of an IIM satisfying hypothesis (iii), then,i, € A and, for all

but finitely manyn, M (¢.i)ln) ¢ G. So, thanks taCorollary 7, each ofCorollaries 911

can have its conclusion correspondingly strengthened. In particular situations we can do
much better than this. For example, using the toolS86f fve can improve the conclusion

of Corollary 9to: There is a linear time computable functian such that, for all,

Dy € O(nk - logn - s(n)) and, ifi is the index of aM with BC*(M) D Q]-"g, then

vw() € 2* and, for all but finitely many, PA ¥ P (M (¢w@ln). <

Theorem 14 our second sufficient condition theorem, provides us with complexity
deficiency corollariesGorollaries 1&hroughl9). Recal:l FV(B) ={ f | (3g € B)[f =*

al}.
Theorem 14. Suppose that:

(i) Bis Ez(f”)-inseparable fromA.
(i) Gisalb-setsuchthaFV(B)N{g 1i € G} =40.
(i) M is anlIM such thatd U B € EX*(M).

Then there is an &£ A suchthatM(f) ¢ G.

Proof. Since G is a Il»-set, there is a recursive predica®s such thatG = {x |
Ym)EN)Rg (X, m,n) }. ConsiderS = { f | M(f)| ¢ G]} =

{f @i, mno,ng>m[M(flp) =i & =R, mny]}.

Thus,S € Ez(f”). Also, by (ii) and (iii) it follows thatB € S. Now suppose the negation of
the conclusion: that for alf € A, M(f)| € G. Then clearly,4 " S = @. Therefore, not
(i) sinceS is aEZ(f”)—set separatingg fromA. O

Scholium 15. The fact thatG e I> in Theorem 14fails to provide as much generality
as one might hope. Here is why. It is a well-worn observation thétig closed under
total finite variants and® is a X»-set such that = {¢; | i € P}, then there is an
r.e. setP’ such thatC = {¢; | i € P’}. Itis a minor variation on this observation
that if hypotheses (ii) and (iii) olTheorem 14hold, then there is d/;-set G’ such that
{pi1ieG} C {g i eG} C (PR—-FV()).HenceG in Theorem 14might as
well be II;—which is what it is in our applications of this theorem <&

6 BQP is not discussed ir30]. However, as BQP amounts to a quantum version of BPP, all the results needed
to show the BQP analogue @brollary 7c) can be obtained by a straightforward modification of the BPP results
in [30]. Of course, then,J0, Corollary 11.10], a relative program succinctness result for, for example, BPP vs. P,
also holds for BQP vs. P (each assuming separation).

314 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

As was mentioned iSection 1 the following corollary ofTheorem 14rovides a weak
special case of our strong complexity-deficiency restilieqorem 23 for (PFK, Q}'ﬁ):
the quantifierorder between thef € Z* and thek-degree polynomial-time bounds is
weakened and the “for all but finitely many inputsquantifier is weakened to “there exist
n distinct inputs”.

Corollary 16. Suppose &k, n > 0, s € LSlow, andEX*(M) D QJ’-"Q. Then there is an
f € Z* such that, forsome M (f)| =, but there are distinct ..., Xn—1 such that for
each j<n, & (xj) > a- (|xj| + Dk

Proof. Let A = 2*, B = (QFX — PFX), andG = {i | (¥X0,....Xn_1]X0 < --- <
Xn-1) 3] < m[Di (X)) < a- (x| +1)K71}. Now, applyingCorollary 7a) andTheorem 14
we are done. O

As mentioned inSection 1 the next three corollaries seem difficult to establish by
aggressive diagonalization techniques. It is open for each as to whether the quantifier on
the inputs to the progranisan be strengthened.

Corollary 17. Suppos€&X*(M) 2 CF and kn > 0. Then there is an fe caZ* such
that, forsome iM(f)] =1, but, there are distinct . .., Xn—1 such that for each k n,
PVS(x) > k.

Proof. Let A = caZ*, B = (CF — REG), andG = {i | (VXo,...,Xn—1|X0 < -+ <
xn—1) 3] < N[PVS(xj) < k1}. Now, applyingCorollary 7b) andTheorem 14we are
done. O

Interpretation.SupposéM EX*-identifiesCF.” Then byCorollary 17 there are members
of caz* for which M infers programs that use arbitrarily large (but finite) amounts of
workspace on arbitrarily large (but finite) sets of inputs. TRus quite far from inferring
space efficient programs for easy member&é61;, and members odREG have programs
that use no workspace at all.

Let NP be based on a natural programming system of nondeterministic, multi-
tape Turing machines for accepting sets. Let Raths= the number of paths in the
computation tree apNP-programi on inputx.

Corollary 18. Supposé® # NP. SupposeM EX*-identifiesNP using polynomial-time
(deterministic and nondeterministig)°-programs? g is a polynomial, and n- 0. Then

there is an fe Z* for which there are distinct . .., Xn—1 such that fori= M (f) and

for x = Xo, ..., Xn_1, ¢"\P-program i on input x runson-deterministically and, in fact,
Paths(x) > q(|x]).

Proof. Let A = Z*, B = (WP —P), andG = {i | (¥Xo,...,Xn-1|X0 < --- <
xn—0(3j < m[Paths(xj) < q(xj))1}. G is easily shown to be idl;. So, applying
Corollary 7c) andTheorem 14we are done. O

7 As noted inSection lan allowed special case is thdtactually EX-learn< F.
8 Note: NP € EX trivially as witnessed by sonmd’ also outputtingpND—programs.

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 315

Interpretation.SupposeM EX*-identifies AP using polynomial-time (deterministic and
nondeterministic)yNP-programs’ Then by Corollary 1§ there are members a&* for
which M infers programs that employ arbitrarily polynomially many unpleasant non-
deterministic paths on arbitrarily large (but finite) sets of inputs.

Our final corollary ofTheorem 14&oncerns the probabilistic complexity class BPP. This
corollary and its setup are representative of how one obtains complexity-deficiency results
for probabilistic L1], counting [L(], and quantumZ] complexity classes.

Let ¢PR be the modification ofNP in which all nondeterministic branch points are
binary and decided upon by the flip of a fair coingRR-program’s run time on an input is
the length of the longest possible computation of the program on that inpwt.eFo%, 1],
ap"R-program is said té-confidently decide Avhen, for allx,

x € A = Prolf the program accepts] > 8;} ()

x ¢ A — Prol the program rejects] > 3.
BPPE' (A1 335 € (3. 1D)[¢"R-programi runs in polynomial time and-confidently
decidesAl}. It turns out P€] that for any fixedso € (3,1), BPP = { A | (i) [¢"R-
programi runs in polynomial time andp-confidently decides\]}. Let Flipg(x) = the
maximum number of coin-flip branch points in any branch®f-programi 's computation
tree on inputx. Note: ifi is a polynomial-timey”R-program thas-confidently decideg\
with Flips (x) € O(log [x]), thenA € P.

For eachA C N, let xa = the characteristic function oA. An IIM M is said tos-
confidentlyEX-identify BPP when, for eacth € BPP,M(xa)| = ia, a polynomial-
time oPR-program thas-confidently decided\. Similarly, M is said tos-confidentlyEX*-
identify BPP when, for eaci®h € BPP,M(xa)) = ia, a polynomial-timepPR-program
such that, for all but finitely many, (3) holds. It turns out that, for eache (%, 1), there
is an IIM M thats-confidently EX-identifies BPEY

Corollary 19. Suppos® # BPP. Suppose thd#l §-confidentlyeX*-identifiesBPPwhere
8 € (%, 1) and that k and n are positive integers. Then there is ar ££* for which
there are distinct ¥, . . ., Xn—1 such that fori= M (f) and for x= X, ..., Xh—_1, we have
Flips; (x) > k - log|x]|.

Proof. Let A = Z*, B = (BPP — P), andG = {i | (¥Xo,...,Xn—1|X0 < -+ <
xn—1)(3j < M[Flips(xj) < k-log|x|1}. G is easily shown to be idl;. So, applying
Corollary 1d) andTheorem 14we are done. O

Interpretation.SupposeM §-confidently EX-identifiesBPP as supposed in the above
corollary!! Then the corollary implies that there are membergdffor which M infers

9 As noted inSection 1an allowed special case is thdtactually EX-learns\VP.
10E g., letM4(o) = the leasti < |o|, if any, such that for eaclk € dom(o): (i) ¢PR-programi runs in
i (x| + 1)i-time, and (i) for<pPR—programi ,for A= {x ! o(x) =1}, and for eaclx € dom(o), (3) holds; let
Mg (o) = 0 if there is no such. Note that ifpPR-programi runs in polynomial time, but not in timie (]x| + 1),
then there is a larger, padded version,afayi’, that will run in timei” - (x| + l)i,.
11 An allowed special case is thist actuallys-confidently EX-learnd3PP.

316 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

witnessing programs that employ arbitrarily logarithmically many unpleasant coin flips on
arbitrarily large (but finite) sets of inputs.

Remark 20. Corollaries 1&hrough19 provide only a small sample of the wide range of
situations to whichTheorem 14applies. For example, as Remark 12 one can replace
NP in Corollary 18with essentially any natural complexity class C containing P; then
under the assumptions that E¥1) D the class of characteristic functions of members
of C and C# P, one has the same conclusionGollary 18 So for C one can have
BQP (a quantum version of polynomial-timg]), PSPACE, and so on. The main work
involved in showing these results is (i) a set up, asdorollaries 18and19, to handle the
computational resource in question and (ii) establishing the analogG@ermilary 7c)

for each of these classes, and the results36f fnake this later straightforward. (For
BQP, the remarks of footnot® again apply.) Then, foexample for C = BQP # P,
the corresponding complexity deficient learned programs exhiliecessary quantum
parallelism—ijust as ifCorollary 19 if P # BPP, the corresponding complexity deficient
learned programs exhihitnnecessary amounts of randomizatior

Remark 21. Applications of Theorem 14(e.g., Corollary 18 above) typically involve
details of specific programming systems and resource measures. Because of this
Theorem 14does not have the same breadth of generalityfflasorem 8 We also note
that if one changesé‘,“z(f”)—inseparable” to “effectiveI)EZ(f”)—inseparable" inrheorem 14
then one can strengthen that theorem’s conclusion so that witnesses are effectively

found. <

5. A few more diagonalization and structural tools

Here we state a few more tools for the proofs of the results in the next three sections.
These tools depend on a few special features of our programming systend its
associated complexity measudeintroduced inSection 2 The details of these features
are mostly straightforward and are omitted here, but can be found in Chapte3@.of [

The first of these tools is simply a uniform version of the classic result of Hennie
and Stearns1d4] on the cost of simulationsNpte: “uniform” here means that the cost
of interpreting the program is taken into account.)

Proposition 22 (The Cost of Simulations3p] Theorem 3.5. Suppose ST: N® — N
are given by:

@i (x), if &i(x) <It];
0, otherwise.

1 it &) =t

i,x,t) = .
X) 0, otherwise.

Tad,x,t) = {

Then S and T are computable in timé|Q + (Ji| + 1) - (Jt] - log|t] + 1)).

Next is a technical proposition about the complexity overhead of applying simple
control structures such as, in part (a), conditionals to sub-programs. Part (b) is about the
overhead of storing data or programs inside programs, and part (c) is about complexity-
bounded self-reference. Machtey, Winkimann, You2§34] and Kozen 9] were among
the first to establish “polynomial-time overhead” results of these sorts. The proposition

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 317
below is based on somewhat more refined work3i@].[Recall thatCondwas defined by
(2) in Section 3

Proposition 23 (Complexity-bounded Control StructuyesSuppose that mm > 1. Inthe
following i, j, and k range oveN, andX andy overN™ andN", respectively.

(8) (CONDITIONALS, [30] LEMMA 3.14.)There is a linear-time computabiig, and an
am € N such that, for allj j, k, andX:
Pitm(, 1. (X) = Condgi, ¢j, vk)(X).
B (X)+ &)X +am- (IX|+1), ifgi(X)>0;
B (X) + «(X) +am- (1X|+1), ifgi(X)=0;

(b) (S™M-N, [30] THEOREM4.4.)There is a linear-time computablgg and an g, n €
N such that, for all i X, andy:

Dif i, j.k) (X)

IA

(pgmyn(ij)(y) = (pim+n()—(>7 ¥).

o oM = O Y) +amn - (K] + 1Yl + D).

(c) (SELF-REFERENCE [30] THEOREM4.6.)There is a linear-time computablg, and
an an.n € N such that, for all i X, andy:

Qﬂpm’n(i,;()(y) = (Pim+n+1(rm,n(i, X), X,).

A

o o = MMl %), X, Y) + amn - (X + 1+ D).

Kleene L8] showed that any nonempty r.e. set is the range of some primitive recursive
function. The next proposition takes the basic idea behind Kleene’s construction, lowers
the complexity, slows the enumeration, and recasts things in terms of the ranges of partial
recursive functions.

Proposition 24 (Delayed Enumeration30] Theorem 7.). For each m> 0 and s €
LSlow, there is a linear-time computable functiomg,, ¢ such that, for all i withy; total
and allw € N™, there is a strictly increasing sequence of numbersyy, o, . . . such that

(a) for each ye {0, ..., yo— 1}, g, <@, w,y) =0, and
(b) for each x and each ¥ {yx...,Yx+1 — 1}, gy @, w,y) = 1+ ¢i(w, x), and
moreover|gi (w, X)| < s(| maxi, w, y)I).

ConventionFor eachm, let mg, = rng, s wheres = An. max(L, log® (n)).

6. Negative, almost everywhereresultsfor EX* and BC?

For simplicity of the technical exposition we begin with two theorems essentially
announced inq] and based on a suggestion of Sipser for the EX casé] ihyas merely
asserted without proof that the constructions could be done in polytime. At that time, the

318 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

machinery to supply really convincing proofs of these results was not yet available (at least
to us). For the present paper we have the needed machinery not only for the results from
[7], but also for the two main results of this sectiothéorems 27and28 below). These
main theorems provide considerably tighter complexity bouenut$ stronger quantifier
order than the results fron7]|

Although EX* C BC?, Theorems 2%hrough28handle separately the cases of'Eaad
BCO. This is because, i1 witnesses that a class is in Exhe sameV need not witness
the class is in B& the latter can require a different machivé.

Theorem 25. Suppose thaBC°(M) > PF. Then for each polynomial q, there is an
f € Z* such that(?v’on)(?v’ox)[@M(ﬂn)(X) > q(xDI.

Theorem 26. Suppose thaEX*(M) 2> PF. Then, for each polynomial g, there is an
f e 2* such that(¥ x)[du(r)(x) > q(X])].

We start with the proof oT heorem 26wvhich is a bit simpler than that dfheorem 25

Proof (of Theorem 26). Fix a polynomialq. Terminology:We say thatp is available
at w if and only if ¢p(w) < q(lw]). Since[Pp(w) < q(Jw|)] is equivalent to

[T(p, w,090®Dy = 17, by Proposition 22we have that availability is testable in time
polynomial in| p| and|w|. Letd be agp-program such that, for adl andx,

T, if, for somew < X, ge(w)1;
vd(e,X) = .
M (¢ely), otherwise.

Now letu be agp-program such that, for adl andy,

(ﬂu(ev y) =

(0} if ()rng4(d,e,y) =0orrng(d, e, y) = 1+p,
but p is not available ay;

1= S(p,y,090¥Dy " (ii) otherwise, where rngd, e, y) = 1+ p.

Terminology:If (ii) holds above for a particular inpw¢ andy, we then say that the is
canceledfor e aty. SinceS, rng;, and the availability predicate are all polynomial-time
computable, it is straightforward thay, is polynomial-time computable. So, without loss
of generality, we assume thd, is polynomially bounded. Thus biroposition 2&),
there is ap-programeg and a polynomiatjp such that, for ally, ge,(y) = ¢u(ep, y) and
Per (Y) < qo(ly]). Hence,pg, € PF. Thus,AX.¢d(€p, X) is total. Also note that ifp is
canceled foeg aty, thenge,(y) =1 = ¢p(y) # ¢p(y).

Sinceype, € PF, by hypothesis there is jpp such thaM (¢g,)| = po andgp, = @e,.
So by the definition ofl, we have that for all but finitely many, ¢q4(eo, X) = po- Hence,
by Proposition 24ve have that, for all but finitely many, rng; (d, ep, y) = 1+ po.

Claim: pp is canceled fogg only finitely many timesProof: Sincegp, =* ¢e,, the claim
follows from the definition of cancellation.

Since for all but finitely manyy, rng;(d, ey, y) = 1 + po and since by the clainpg
is canceled forep only finitely many times, it follows thapg is available only finitely
many times, i.e., for all but finitely many, ®4,(y) > q(|y]). It also follows that there are

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 319

only finitely manyy on which anyp is canceled foey. Hence, by the construction of
9090 S Z* O

Notation:For the next proof and for the proofs©heorems 3@nd31below, we introduce

a low-complexity way to encode lists of numbers. For eaclh € N (= {0, 1}*), let

x oy = the concatenation of andy. For eachx € N, let E(x) = 1*/0¢x. Note that
{E(X) | x € N}is a collection of prefix code2p, Section 1.4]. Le{] = 0, and for
eachxp, ..., Xk € N, let[Xg, ..., Xk] = E(Xg) ¢ --- ¢ E(xk). Elements ofN not of the

form [xo, ..., Xk] are considered as coding the empty list. It is clear from our definition of

[-] that concatenations, projections, and so on, involving coded lists are all linear-time
computable.

Proof (of Theorem 25). Fix a polynomial g. Terminology: We again say thatp is
availableat w when ®¢,(w) < q(|wl|). For eachy, define the set

for somen < |o|, p = M(o|,,) and, for
Candidate®) = { p | eachw € dom(o), if pis available aiw,
thengp(w) = o (w)

Letd be ap-program such that, for al andx,

1, if, for somew < X, pe(w)1;

pd(e,X) = {[pl,..., pkl, otherwise, wherd p; < --- < pk} =
Candidategpe|y).-

Intuitively, whengq (e, X)| = [p1, - - -, Pk], thenpy, ..., pkis alist of conjectures thafl
makes onye that are candidates for diagonalization. Nowddie ap-program such that,
for all eandy,

(ﬂu(a y) =
0, if (i) rng,(d,e,y) =0o0rrng(d,ey) =1+
[p1, ..., pkl, but none of thep;'s is available
aty,

1= S(p,y, 09YDy (i) otherwise, wherep is the leastp; available
aty.

Terminology:If (ii) holds above for a particular inpu¢ andy, we then say that the is
canceledfor e aty. SinceS, rng;, and the availability predicate are all polynomial-time
computable, it is straightforward that, is polynomial-time computable. So without loss
of generality, we assume thd, is polynomially bounded. Thus bigroposition 28&c),
there is ap-programep and a polynomiatjp such that, for ally, ¢e,(y) = @u(e, y) and
De () < to(ly). Hencegpe, € PF. Thus,AX.¢qd(€p, X) is total.

Claim 1: No p is canceled foey infinitely many timesProof: Supposep is canceled for
e on some number. Then it follows by the definitiorygfthat, for all but finitely many,

p is not on the list output byq(eo, X). Thus, by the definition of rng for all but finitely
manyy, p ¢ {pl...., pf('y } where 1+ [py, ..., pf('y] = rng,(d, e, y). Hence, by the
definition ofu, Claim 1 follows.

320 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

Claim2: SUpposeMm (ge)l,) = ¥er- TheNM (e |n) is never canceled fa on anyy. Proof:
If pis canceled foeg ony, thenpp(y)| andee,(y)! = 1 = ¢p(y) # ¢p(y). Hence the
claim follows.
Claim 3: Supposepm (epln) = Peo- Then it is the case that, for all but finitely magy
PN (pey) (Y) > A(IYD. Proof: Suppose by way of contradiction thdt(¢g,|,,) iS available
for eg on infinitely manyy. Then it follows by standard arguments thet(pg,l,) is
eventually canceled fogy on somey, contradicting Claim 2. Hence, the present claim
follows.

SinceM BC-identifiespe,, it follows from Claim 3 that, for all but finitely mang and
all but finitely manyy, @m (ge)1,) (¥) > a(lyD.

It follows from Claims 1 and 2 and the BC-identificatioryef, by M that there are only
finitely manyy on which anyp is canceled foey. Thus, by the definition ofi, pe, € Z*.
Therefore, the theorem follows.CI

By a more delicate choice of complexity classes and a correspondingly more careful
complexity analysis of the proofs of the previous two theorems, we can obtain the following
two improvements which are our main theorems of the present section.

Theorem 27. Suppos& BC%-identifiesQFX, where k> 1 and se £Slow. Then there is
an f € Z* such that(Va)(OVon)(%ox)[qﬁM(f|n)(x) > a- (x| + DK].

Theorem 28. Supposé EX*-identifiesQ]-“S‘, where k> 1and se LSlow. Then there is
an f e 2* such thai¥a)(¥x)[m (1)) > a- (x| + DXI.

Interpretation.Let M, k, s and f be as inTheorem 2722 Then for all most alln, the
programM (f |,) must computef, an almost everywhere zero function, yet the run time
of this program is almost everywhere worse than any degne@ynomial in the size of
the input. This is a profound failure &fl to infer anything like asymptotically optimal
programs for even easy membersR#¥. Similar remarks apply t#heorem 28
Proof (of Theorem 27). Lets e £Slow be such that lim_, o (S;((',?))Z = 0. (Without loss
of generality we assunmgands’ are everywhere nonzero.) The construction is identical to
the one given in the proof afheorem 25with q replaced by.n.s'(n) - (n + 1)K and rng
replaced by rngg .

Let us consider the cost of computing the functign Recall thatp is available aty
if and only if &p(y) < S'(ly]) - (lyl + DX if and only if T(p, y, oS IYD-UyI+D%y — 1. By
standard time-constructibility result$d], giveny (in dyadic representation), constructing
a string of0's of length¢ can be done in tim® (¢). Hence byProposition 22testing, for
a givenp andy, whetherp is available aty can be done irO((|p| + 1) - (|y| + k. @+
logly]) - S'(lyD) time.

Recall from Proposition 24that rng ¢ is linear time computablend for all d, e,
andy, |rng;(d, e, y)| < s'(max(d|, |e|, |y|)). It thus follows that when rngd, e, y) =
1+ [p1,..., Pml, €ach ofm, |pil,...,|pm| is less thans'(max(|d|, |e], |y|)). Hence

12 As noted inSection 1 an allowed special case is thdtactually EX—IearnQ]—'ﬁ.

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 321

we have that searching for the leassuch thatp; is available aty can be done in
O((s'(max(|dl, e, lyD)? - (ly] + DX - (1 + log|y])) time. Since, byProposition 22
computing S(p, y, 05IYD-I¥+D%) has the same complexity as testing whetfperis
available aty, it follows from Proposition 28a) thatg, on input (e, y) is computable
in O((s'max(el, lyD)? - (Jyl + DK - (1 + log|y])) time. (Sinced is a constant, its
contribution can be absorbed into the constant hidden b@th&Vithout loss of generality,
we can assume thd&l, has such an upper bound. ThereforePogposition 2&), there is
an ep such that, for ally, pe, = @u(€n, y) and ®g,(y) has an upper bound which is in
O ((s'(max(leol, [yD)? - (lyl + D¥ - (1 +loglyl) + (ly| + 1)) which by some algebra is
contained inO(|y|*(log|y|) - s(|y])). It thus follows thatM BC® identifiespe,. Now the
rest of the proof follows the argument given filneorem 25 O

The proof of Theorem 28is left to the reader. We note that Ttheorems 27and 28
we could have repIace@]—"g and “Pyf,)(X) > a- (x| + 1K with DTIME (T2(n))
and “Pyf),)(X) > Ti(|x])” where Tz is a nonzero, fully time-constructible function
[19 and limn_, o (T1(N) log T1(N)/ T2(n)) = 0. The cost of this would be somewhat more
involved proofs. Analogous remarks hold fGorollaries 9and16 above and’heorem 29
below.

7. Infinitely often resultsfor BC™

In this section we deal with the criteria BCespecially form > 1. The stronger version
of them = 0 case was handled iFheorem 271t is technically surprising that the > 1
cases provably do not permit as strong a quantifier on the inpagsdoes then = 0 case.

Theorem 29. Supposév BCm—identifiesQ]-";, where k> 1 and se LSlow. Then there
is an f e 2* such thattva) (¥ n)(3X)[By 1) (X) > a- (x| + D],

The proof is a straightforward modification ®heorem 2’8 proof; however, to prove
Theorem 29ve need to diagonalize over+ 1 points at once. It inot possible to replace

the(ozcl)x) in Theorem 29ith an(c\;ox) as shown by:

Theorem 30. There is arM that both:

(a) EX-identifiesPF! and moreover, for each & PF1, there is a constantcsuch that
(300 Py (X) < cf - x| 1, and

(b) BC-identifiesPF using programs having polynomial-bounded run times.

Proof. Defineg: N — N recursively byg(0) = 0 andg(m + 1) = 0, wherek = 22°™",

Clearlyg is strictly increasing. It is straightforward that rariggis linear time decidable
and, in fact, that:

0, if X ¢ rang€g);
1141900,gm=1)], ifm=glx).

is O(|x|) time computable anthvg € O(log, |x]). (Recall that[-] is our linear-time
encoding of lists.) Our goal is to define ¥hsuch that:

invg = Ax

322 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

(1) Foreachf € PFL1 M EX-identifiesf and there is a constaof such thatdm (1)(x) <
ct - |x| forall x € rang€qg).

(2) For eachf e (PF — PFL), for sufficiently largen, em(f,) (X) = F(x) for all x except
perhaps for on& € rangég) (so,M BC! identifies f).

The fact that the elements of rar{ge are spaced so far apart will help with the “looking
back” part of the construction.
Let u be such that, for ally, i1, andx,

0, iffor somem, g(m) = x and, for eachw
{9(0), ..., g(m—-1) }, we have thatp;, (w)
u(io, i1, x) = VIXI, @y(w) < JIXI, and gig(w)
@iy (w);
1, otherwise.

1A m

4

It follows from the noted properties dfivg, Proposition 22and a little algebra that is
O(lio| + li1] + [X]) time computable.

Suppose for the moment tha ag-program with polynomial run time. Then it follows
from the noted properties dfivg that, for all but finitely manym, we have, for each
w e {g@),...,g(m— 1)}, that & (w) < +/]g(m)[. From this and4) we have:

Claim: Supposdo andij are g-programs with polynomial run times and, for all
rangeo), ¢i,(X) = i, (X). Then, for all but finitely manyx € rang&g), u(io, i1, X) = 0.

Now, sinceu is linear time computable, it follows frorRroposition 23hat there is a

recursiveh and a constartdy such that, for allg, i1, andx:

- _ 5
#hio.in) (X) {<pil(x), otherwise. ©)
@i (X) +co- (Jig] + liz] + |xD, if u(ig,iz, x) =0;
Priio.in (%) < io(X) + Co (I.ol |.1| [X]) (o .1) ©6)
®i, (X) + Co - (liol + li1] + [x]), otherwise.

Fix Mo andM1 such that ()M EX-identifies2F and outputs only conjectures that
run in linear time, and (iiM 1 EX-identifiesPF and outputs only conjectures that run in
polynomial time. DefineM by:

M(o) = h(Mo(0), M1(0)). (7

Since bothM andM 1 output only conjectures with polynomial run times, it follows from
(6) and (7) thatM also outputs only conjectures with polynomial run times.

Supposef € PFL. Then bothMg andM1 EX-identify f. Letn be the maximum of
the points of convergence ®fip andM4 on f. Then by ¢), M(f|,) = M(f). Since
OMo(f) = My (), it follows from (5) and (7) thatomfy = f and it follows from the
claim and 6) that there is a constant such that, for alk € rangég), om(f) < Ct - |X].
Therefore, part (a) follows.

Supposef € (PF — PFY). ThenM; EX-identifies f. Let n be greater than or equal
to the point of convergence dfl; on f and setip = Mo(f|,), i1 = M1(f]|,), and

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 323

p = M(f|,). Note thaty;, = f. We claim thatpp =1 f.If ¢p = f, we are done. So
suppose that for some ¢p(x) # f(x). By (4), (5), and () it follows thatx e rang&g)
and thatu(ig, i1, X) = 0. Letxg be the least suck. But then, for eaclkx € rang€g) with
X = g(m) > Xp, we have thakg € {g(0), ..., g(m — 1) } andgj,(Xo) # ¢i, (X0). Thus,
u(iop, i1, X) cannot be 0. Thereforeio, i1, X) = 1 for all x > xg. Hence, by %) and (7),
¥p =1 ¢i, = f asrequired. Therefore, part (b) follows

8. Positive, almost everywhereresultsfor BC*

This section contains our strongest positive results. After the theorem’s proof, we state
informally a generalization.

Theorem 31. There is an IIMM,, that BC*-identifies 2 with all outputs running in
polynomial time and such that:

(a) For each k> 1 and each fe PFX, (Ovon)[DM.(fl,) € OMX.|x[%) 1.
(b) MoreoverM, EX-identifiesPF2.

Interpretation.In contrast tolrheorems 2%hrough29, the above result is quite a surprise.
Not only does thél . of the theorem BC-infer programs that hav@ (n¥) run-time bounds

for each member oPFX for everyk, but for eachf e PFL, M, also syntactically
converges to a program for this that has arO(n) run-time bound. However, as noted
in Section 1 Corollary 9 applies toM, of the above theorem. Hence, for eatt> 1,
there is anf € Z* such thatM, EX-identifies f and the perfectly correat-program

M. (f) has alinear run-time boundby Theorem 3}; however by Corollary § M, (f)

is soinformation deficienthat PA fails to prove even that it computes a finite variant of
something havingomeprogram running ire-degree polynomial time. Thus part of the
price M, pays for the asymptotically optimal run times of its output programs is that
these programs, even on some easy functions, must necessarily be highly information
deficient.

Proof. For eachn, let P, = {(k,a,p) ' kap =< n} triplesiny =
[(k1, a1, p1), - - -, (Km, @m, Pm}], where the list enumeraté®, in lexicographical order,
i.e., (0,0,0),(0,0,1),...,(0,0,n),(0,1,0),...,(n,n,n), and £(n) = the length of
triples(n). Letd be ag-program such that, for afb, j1, n, andx,

@d(jo, j1, N, X) = (8)
1, if (i): for somew < X, gj,(w)1 or @j, (w)*;
0, if (ii): for all w < x, gjo(w)) = @j,(w){;

i, if (iii): not [(i) or (ii)] and i is the least number, if any,
such thatk;, a, pi) € triples(n) and, for eachw < X,
Dp () < @ - (Jw] + DX andep (w) = ¢j; (w);

Z(n) +1, otherwise.

Since rng is linear time computable, it follows from parts (a) and (c)Rsbposition 23
that there is a recursive functi@nand, for eachjo, j1, andn, there is a constar, j; n

324 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

such that, for ally:

Pg(jo.jr.m(Y) = 9

?io(Y), if rngs(d, jo, j1, N, y) =0;
Pp(Y), ifrngs(d, jo, j1, N, y) = 1 anddp, (y) < a1 - (Jy| + D)k;

Ppen (Y)» i rNga(d, jo, j1. N, y) = £(n) and P, (y) <
an) - (Jyl + Dk,

®j (¥, otherwise;

¢g(j0,j1,n)(y) = (10)
Bio(Y) + Cjo.jn - (1Yl + 1), ifrgg(d, jo, j1,n,y) = 0;
Cio.jin - & - (Iyl + DK, if0 < rngg(d, jo. j1.n,y) =i < £(n)and

P (Y) < ai(lyl + DN,
®j,(Y) + Cjojrn - (Iyl + 1), otherwise;

where[(ky, ag, p1), - .., (Kenys @eanys Peany)] = triples(n).
Now let Mo be an IIM that EX-identifies all of2F* and that outputs only conjectures
that run in linear time, and leM; be an IIM that EX-identifies all ofPF and that

outputs only conjectures that run in polynomial time. Moreover, we assume without loss

of generality that, for eacli e (PF — PF), Mg on f has infinitely many mind changes.
For eachr, define

Mi(o) = 9(Mo(0), M1(0), ms), where

0 < m < |o| and either

M, = maxqi m | Mo(o|n-1) # Mo(o|y) or}.

M1(olm-1) # M1(olm)

(Recall that magd) = 0.)
The argument for par{b). Supposef € PFL. Let m be the maximum of the points
of convergence oMo and My on f. Thus, for alln > m, mf, = m. Let jp =
Mo(fln) = Mo(f) andj1 = M1(f|,) = M1(f). By the definition ofM,, we have
that, for alln > m, M.(fl,) = g(jo, j1, M). Sinceypj, = ¢j,, by (8) we have, for all
n andx, ¢d(jo, j1,n, x) = 0. Hence by 9) and (0), ¢g(jo.j.m = ¢j, and, for ally,
Dyio.i.m Y) = Pjo(¥) + Cjg,ji.m - (Iyl + 1). By our hypotheses oMl g, ¢j, = f and @j,
is linearly bounded. Therefore, part (b) follows.

The argument for parta). Supposed e (PF —PFL). Letm be the point of convergence of
Mion f andji = M1(f|y) = M1(f). Letk be the least number such thiate PFand
let a be the least number such that

gp = f and, forallx, p(x) < a- (x| + X (11)

for some p. Let p be the least number such thatl] holds. Finally, leto be an initial
segment off with the property thatn, > maxm, k, a, p). Sincef € (PF — PFY),

J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326 325

by hypothesidvig on f makes infinitely many mind changes, hence, all but finitely many
initial segments off have this property. Lefo = Mo(o). By our definition ofM,,

M. (o) = d(jo, j1, My). Part (a) will thus follow if we show thapg(j.,j,.m,) = f and
that ®g(j,. j,.m,) has anO(n) bound.

By our hypotheses oMo andM 7 and our choices ofn andm,, it follows thatgj,
is total and# f and thatpj, = f. Hence, by §) and our choices df, a, p, andm,, it
follows that, for all but finitely many, we havepq(jo, j1, My, X) = i, where(ki, &, pi)
is the element ofriples(m,) with ki = k, & = a, andp; = p. It thus follows from @),
(10), and (1) that, for all but finitely manyy:

©gio jinme)(Y) = @p (¥Y) = @p(y) = f(y).
Dy(io.ime)Y) < @p(Y) +Cjg ji.m, - (Y1 + 1)
a- (yl+ DX+ cjg jum, - (Yl +).

Thereforeg(jo, j1, M) is as required and part (a) followsd

IA

A generalization offheorem 3lalso holds by a similar proof. In the generalization one
introduces an arbitrary > 1 but requirek > j in part (a); then part (b) becomés,
EX-identifiesPF} with all but finitely many ofM..’s conjectures running in tim&(n}).

Acknowledgments

Thanks to the anonymous referee for several suggestions that helped tighten and
improve the paper. Special thanks go to Prof. Dr. Klaus Ambos-Spies for some very helpful
suggestions and observations. Grant support was received by J. Case from NEFJjrant
0208616, by S. Jain from NUS grant R252-000-127-112, and by J. Royer from NSF grant
CCR-0098198.

References

[1] J.A. Barzdn$, Two theorems on the limiting synthesis of functions, in: Theory of Algorithms and Programs,
Latvian State University, Riga, U.S.S.R 210, 1974, pp. 82-88.

[2] E. Bernstein, U. Vazirani, Quantum complexity theory, SIAM Journal of Computing 26 (1997) 1411-1473.

[3] M. Blum, A machine independent theory of the complexity of recursive functions, Journal of the ACM 14
(1967) 322-336.

[4] L.Blum, M. Blum, Toward a mathematical theory of inductive inference, Information and Control 28 (1975)
125-155.

[5] J. Case, K. Chen, S. Jain, Costs of general purpose learning, Theoretical Computer Science 259 (2001)
455-473.

[6] J. Case, C. Smith, Comparison of identification criteria for machine inductive inference, Theoretical
Computer Science 25 (1983) 193-220.

[7] K. Chen, Tradeoffs in machine inductive inference, Ph.D. Thesis, SUNY at Buffalo, 1981.

[8] P.Chew, M. Machtey, A note on structure and looking back applied to the relative complexity of computable
functions, Journal of Computer and System Sciences 22 (1981) 53-59.

[9] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.

[10] L. Fortnow, Counting complexity, in: A. Selman, L. Hemaspaandra (Eds.), Complexity Theory

Retrospective I, Springer Verlag, 1997, pp. 81-107.

326 J. Case et al. / Annals of Pure and Applied Logic 139 (2006) 303-326

[11] J. Gill, Computational complexity of probabilistic complexity classes, SIAM Journal of Computing 6 (1977)
675-695.

[12] E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447-474.

[13] J. Hartmanis, R. Stearns, On the computational complexity of algorithms, Transactions of the American
Mathematical Society 117 (1965) 285-306.

[14] F. Hennie, R. Stearns, Two-tape simulation of multitape Turing machines, Journal of the ACM 13 (1966)
433-446.

[15] J. Hopcroft, J. Ullman, Introduction to Automata Theory Languages and Computation, Addison-Wesley
Publishing Company, 1979.

[16] S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction to Learning Theory, 2nd
edition, MIT Press, Cambridge, MA, 1999.

[17] N. Jones, Computability and Complexity From a Programming Perspective, MIT Press, 1997.

[18] S. Kleene, General recursive functions of natural numbers, Mathematische Annalen 112 (1936) 727-742.

[19] D. Kozen, Indexings of subrecursive classes, Theoretical Computer Science 11 (1980) 277-301.

[20] R. Ladner, On the structure of polynomial time reducibility, Journal of the ACM 22 (1975) 155-171.

[21] L. Landweber, R. Lipton, E. Robertson, On the structure of sets in NP and other complexity classes,
Theoretical Computer Science 15 (1981) 181-200.

[22] M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, 2nd edition, Springer-
Verlag, 1997.

[23] M. Machtey, K. Winklmann, P. Young, Simple Gédel numberings, SIAM Journal of Computing 7 (1978)
39-60.

[24] M. Machtey, P. Young, An Introduction to the General Theory of Algorithms, North-Holland, New York,
1978.

[25] E. Mendelson, Introduction to Mathematical Logic, 4th edition, Chapman & Hall, London, 1997.

[26] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[27] K. Regan, The topology of provability in complexity theory, Journal of Computer and System Sciences 36
(1988) 384-432.

[28] K. Regan, Minimum-complexity pairing functions, Journal of Computer and System Sciences 45 (1992)
285-295.

[29] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967,
Reprinted, MIT Press, 1987.

[30] J. Royer, J. Case, Subrecursive Programming Systems: Complexity & Succinctness, Birkhduser, 1994.

[31] D. Schmidt, The recursion-theoretic structure of complexity classes, Theoretical Computer Science 38
(1985) 143-156.

[32] U. Schéning, A uniform approach to obtain diagonal sets in complexity classes, Theoretical Computer
Science 18 (1982) 95-103.

	Generality's price: Inescapable deficiencies in machine-learned programs
	Introduction
	Conventions and notation
	Inseparability notions
	Sufficient conditions theorems
	A few more diagonalization and structural tools
	Negative, almost everywhere results for EX* and BC0
	Infinitely often results for BCm
	Positive, almost everywhere results for BC*
	References

