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§ 0. Introduction

In this paper and a sequel, we generalize Barr’s results on obstruction theo.y for
commutative algebras [1]. The gist of our work is that if C is a suitably restricted
“category of interest™, then we can formulate questions about the existence and
nature of nonsingular extensions and answer these questions in terms of criteria hav-
ing to do with the second cochomology group.

Our first concern is to give a general definition of extznsions. In [5], Beck des-
cribed extensions in the context of a tripleable adjoint pair. We restrict the setting
so that a rnore general definition can be giver: with Beck’s extensions by modules
corresponding to the singular extensions.

Further conditions are imposed on the categories we consider in order to insure
the existence of centers (in the sense of [2]) and to show that centralizers of ideals
are ideals.

In §1 we describe categories of interest. In §2 we discuss notions of module and
extension and relate them to Beck’s definitions. In §§3 and 4 we give some construc-
tions needed in §§5 and 6 which correspond to §§2 and 3 of [1].

The concept of triple and the associated notation and terminology are treated in
the introduction to [6]. We follow the conventions established there, except that
we write morphisms on the left.

The contents of this paper appear in the author’s doctoral dissertation at the
University of lllinois. The author is indebted to Michael Barr for many helpful con-
versations.

§ 1. Categories of interest .

Let C be a category which satisfies
(1). There is a triple T = (T, n,u) on S (the category of sets) such that 7(@) = { p}

* This research was partially supported by N.R.C. Grant A 7861.
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(a one-point set) and C is equivalent to ST.

Remark 1.1. A category which satisfies (1) is complete and cocomplete, pointed, and

is tripleable over S, the category of pointed sets with basepoint preserving maps.
We use «he following notation: objects of ST are pairs (4,a) with 4 a set and

a: TA - A, while objects of S, are pairs (4, 2} with A a set and a the basepoint in 4.

Proof. Identify C and ST.

In [12] st is shown that categories tiipleable over sets have lim’s and coequalizers.
Linton has shown that if K is any category with coproducts and KT has coequalizers
of reflexive pairs, then KT has lim’s. Thus, categories tripleable over S are complete
and cocomplete.

It is easy to see that C is pointed, with (7{Q ). Hg) as zero object.

That C is tnipleable over S, fcllows from a result of Beck. Any functor U:

ST -+ $T2 which commutes with underlying functors is tripleable (see [3}).

Let T' be the triple on S, such that Cis equivalent to ST'.
Remark 1.2. T'is a pointed triple. That is, T'(({p}, p)) = ( pi, p.

Next, we place two more restrictions on C:

(2). U: C = S. factors through the category of groups.

(3). All operations in C are finitary.
Axiom (2) enables us to view the objects of  as groups with extra structure. We will
denote the group operation by + although it need not be abelian.

Axiom (2) and the previously mentioned theorem of Beck mean that C is triple-
able over G (the category of groups). We write C = GT.

A theorem of Barr [2, Theorem 3.3] shows that in a category satisfying (1)-(3)
each object has a subobject with special properties, called its center. If A is an object
in C,let ZA denote the center of A.

Proposition 1.3. If u: (4.ay) = (4,,a;) is a morphism in C and is onto on under-
lying sets, then

K = ia € Ayl u(a) = 0 in the group underlying A,}
isan object in C,v: K = Ay is the kernel of u, and u is the cokernel of v.
Proof. U: C - G creates lim’s {12, 2.4]. Therefore, K is an object in C and
v: K - (A}, ay ) is the kernel of u.

To see that u = coker v, note that uv = 0 and suppose u’: (4).ay) = (A43,a3) with
u'v=0.1In G, u = coker vsince u is onto, and so there is a unique group homomorph-
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ism w: A; = Ay such that wu = . It is easy to see that wis also the unique T'-morph-
ism with this property.

Definition 1.4. Let R and A be objects in C. An extension of R by A is a sequence
0-45EBR~0
in which p is surjective and i is the kernel of p.

Definition 1.5. Let T be an object in C. A subobject A of Tis called an ideal if it is
the kernel of some morphism. We write 4 < T when this is the case.

To formulate a criterion for a subobject to be an ideal, we assume that the oper-
ations in (" can be generated by a set £ which satisfies several conditions. For a dis-
cussion of operations in the language of triples see [12].

Let £, be the set of i-ary operations in £2.

In addition to (1) - (3) we assume that ( satisfies:

(4). There is a generating set 2 for the operations in C and

Q=80,UN, UQ,.
There is no harm in assuming that £ contains the operations identity, inverse and +,
associated with the group structure.

Let

g’z = £23\ {4},
SZ', =NV -1

and assume that if » € 2}, then +7 defined by
xsly=pux
is also in 3.

Remark 1.6. £, contains only one element, the group identity, since null-ary oper-
ations in C correspond to 7{@) = { p}.

Further conditions on C are that § can be chosen satisfying:
(5). If « €85, then

as(btc)=a»btax*c
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(6). If w € ), then w is a homomorphism with respect to +, and if * € Q), then
w(a * b)=wa)«b.

The morphisms in C can be thought of as precisely the operation preserving maps
of the underlying sets.

Theorem 1.7. Let A be a subobject of B. Then A < B iff the following conditions
hold:

(i). A is a normal subgroup of B.

(ii). Forany a €A, b EBand » €Y, we havea » b € A.

Proof. That A < B implies (i) and (ii) is easy to see.
For the converse, let 3/4 be the quotient group and define

wib; +A)=w(b)) +4 for w € Q.
(by +A)s(by +tA)=by by +A for+€Q).

These are easily seen to be well-defined and preserved by the canonical projection
for groups.

Defmition 1.8. An object A in (' is singudar if it is abelian as a group and if 4 « 4 =
Ofor each « € Q).

The following is an easy consequence of Theorem 1.7 and Barr’s definition of
center [2].

Theorem 1.9. If C is a catcgory satisfving (1)—(6) and A is an object in C, then
ZA=i{z€A|foralla€Aand +€EQj,a+z=z+aanda+»z =0}
Furthermore, ZA is singular and 2ZA < A.
Definition 1.10. If 4 < B, then
Z(B,A)=i{beBlforallaEAand *€Q), a+b=b+aanda « b =0}
is called the certralizer of A in B.

Although 1t is clear that Z(B, A) is a subset of B, it is not necessarily the case that
Z(B,A)<B.
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Example 1.11. Let C be the category of real Jordan algebras. Then ( satisfies (1)—(6).

Let B be the algebra of 2 X 2 upper triangular real matrices. If juxtaposition de-
notes ordinary matrix multiplication, then B, with ordinary matrix addition and #*
defined by

X »Y=4(XY+YX),
is a Jordan algebra. However,
A ={(Q &) xis a real number}
is an ideal in B, while
Z(B.A) = {(§ )| u, vare real numbers;
isnot,since (4 Do (A D=1 Disnotin Z(B. A).
Example 1.12. Let C be a category satisfying (1)—(6) such that Q, =@ and Q5 =
{=, 0} Let B be a free group on generators X;, X, X3 and X, and assume that X,

and X3 commute with the other symbols. Let the operation * on B be defined by
the table

-

« 1 X X, X3 X,

X,:0 0
X, 00
X300 0 X3 X
Xxlo o x, X,

and distributivity. » is well-defined and associative.

Let A be the normal subgroup generated by X;. A is clearly closed under = and
in fact, 4 » B = 0. Thus, 4 < B. However, Z(B, A) € B because X; is in Z(B. 4) but
X3 * Xy & Z(B, A)since

Xy + (X3 e X=X, + Xy # X, + X) = (X3 # Xp) + Xy

We require that A < B implies Z(B, 4) < B. To insure this we formulate two more
axioms. Let C be a category satisfying (1)—(6). If X is an object in C and x, x5, x3 €X,
then

(7). x; +(xy *x3) = (x; * x3) +x, forany in Q5.

(8). For each ordered pair (-, *) € ) X Q), there is a word w such that
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(x)°x7) ® X3 = Wix (x3x3). X, (x3%7), (xpx3)x ), (¥3x2)%1, X5 (xX3),
x3(x3xyp), (xyx3)x7, (x3%])x3),

where each juxtaposition represents an operation in 5.
Remark 1.13.w(0,0,0,0,0,0,0, 0) = 0since w(0,0,0,0,0,0,0,0) €£2,.

Jordan algebras satisfy (7) since + is commutative, but not (8). The object Bin
Example 1.12 satisfies (8) since » is associative; but (7) fails for B.

Definition 1.14. A category C is called a category of interest if it satisfies (1)--(8).
It is easy to see that the following theorem holds.
Theorem 1.15. If B is an object in a category of interest and A < B, then Z(B, A)<B.

In this paper, we will always assume that we are working in categories of interest.
These include many, but not all, of the familiar algebraic categories. For example,
groups, groups with operators, varieties of groups, rings, associative algebras, commu-
tative associative algebras, modules over a ring, alternative algebras and Lie algebras
can all be interpreted as categories of interest. We have already noted that Jordan
algedrzs do not constitute a category of interest because of the failure of axiom (8).

Usir:g the method developed by Barr and Beck in [4], it has been shown that
iriple cohomology coincides with cohomclogy theories of Eilenberg--MacLane (for
groups), Hochschild (for associative algebras), Harrison (for commutative algebras),
and Shukla (for associative algebras). The theorems in this paper and its sequel give
a ssmultaneous treatment of results recorded in [7}], [9], [10] and {14].

§ 2. R-structures and R-modules

Let C be a fixed category of interest and assume all objects and morphisms be-
long to C unless otherwise specified. We say that an extension 0 - 4 LEBR-0
is singular if A is singular and that it is splir if there is a morphism s: R = E such
that ps= idR .

Definition 2.1. A split extension of R by A is called an R-structure. A singular R-
structure is called an R-module.

An R-structure induces actions of R «.n 4 corresponding to the operations in C.
If we assume 4 < E withi: A = E the inclusion, then for rER,a €A and » €Q,,
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we have
(2.2a) r+a-r=s(r)+a- sr),
(2.2b) rea=s(r)+a.

We will call (2.2a) and (2.2b) derived actions of R on A.

In familiar categories like groups and commutative rings, R-modules are defined
in terms of such actions. We need a simple way of checking whether a particular set
of actions is a set of derived actions.

Definition 2.3. Given a set of actions of R on A4 — one for each operation in £, —

let R X A be a universal algebra whose underlying set is R X 4 and whose operations
are

(ra)+(r.d)y=(+r (-rta+r)+a),

(r.a)s(r.d') =(rer red +aer +axad).
Theorem 2.4. A sef of actions of R on A is a set of derived actions iff R X A is an ob-
jectin C.
Proof. It is casy to see that it
0~ALE%R»0
is an R-strgglurc, then v: R X 4 — E given by ¢((r. a)) = s(r)+i(a) is an isomorphism.
Thus, R X A4 is an object in C.
Conversely,if K X A isin C, then

0-4-RXAZR~O0,

with all maps defined in the obvious way, is an R-structure which induces the given
actionsof Ron 4.

From now on we use the terminology: A4 is an R-structure if there is a split exten-
sion of R by 4. When A is singular, we call it an R-module.

Proposition 2.5. If A is an R-structure and [ : S - R is a morphism in C, then fin-
duces a set of derived actions of S on A.

Proof. The actions induced by f are:
s+a-—s=fls)+a-— fs),

sea=fls) *a
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foralla€ 4 and sES. Let S X A be defined using these actions. Then S X 4 ~ Q
in the pullback diagram:

Q—RXA4

l lpxojcc!ion

—————p

f

Definition 2.6. If A is an R-module, a map &: R — A is called a derivation if
Hrr)=(-r +En +r)+ §(r),

and for all =« € Q5.
Eror)=rel(rY+i(r)«r.

The definition of R-module given here corresponds to that given in [8], but in
his thesis, Beck gives definitions of R-module and extension which are meaningful
in general. Since our categories of interest are special cases of the categories he con-
siders, we will rerrark on the relation between our definitions and his.

Let K be any category and R an object in K. (K, R) is the category which has
morphisms £ - R in K as objects and commutative triangles

E~E
v/
R

as morphisms. For Beck, an R-module is an abelian group object in (K, R) (see [S]).

Theorem 2.7. For C, a category of interest, the notion of R-module given by Defini-
tion 2.1 is equivalent to that of Beck [S).

Proof. If
O*A*Y%R*O

is an R-module via Definition 2.1, then Y % R is an abelian group object in (C, R).
This is easy to check.
If ¥ % R is an abelian group object in (C, R), there is a unit morphism
R-.f... Y
id %
R \i) q
R
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since idg is the terminal object of (C. R). and a multiplication morphism

YXRY—>Y

q
R

where ¥ X Y is the kernel pair of ¥ 4 R. It is immediate that

0-K+Y¥3R=0
is an R-structure. We must check that X is singular. |
We can identify ¥ with R X K and let g be the unique morphism making the dia-
gram

YXRY"”‘""Y

| b

Y ————— R
q

commutative. In this case g((r, k)) = ((r, k). (r, 0)). Since ¥ % R is an abelian group
objectin (C, R), mg = idy . Therefore

mg((r. k)) = m((r, k). (r. O)) = (r. k).
By a similar argument,
m{(r, 0). (r. k)) = (r. k).
This can be used to show that (0, k; +k,)=(0,k; + k))and (0. k; * k,) =(0.0).

For Beck, a derivation from R to an R-module Y is a morphism from R % Rto
¥ % Rin (C. R). This also is equivalent to our definition of derivation; for if A is an
R-module via Definition 2.1, it is easy to see that f: R » R X 4 is a morphism in
(C. R)iff flr) = (r. &(r)), where £ : R -+ A is a derivation via Definition 2.6.

The reader may check that in categories of interest, Beck's description of exten-
sions as principal objects coincides with our Definition 2.1. A detailed proof of this
is laborious, but the ideas needed are available in {5].
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§ 3. Technical observations

Let C be a category of interest. The objects of C have underlying groups, poinied
sets and sets. In fact, as a consequence of axiom (2), the underlying group structure
is defined on the underlying pointed set in such a way that the identity of the group
is the base point.

If 4 and B are objects of C and a, 8: U(A) - U(B) are morphisms of their under-
lying pointed sets, we can define a + 8 (in S, ) by

(3.1 (o + ) (a) = a(a) + f(a)

since afa) and (a) belong to the group underlying B. If v, w: UA" -+ UA are morph-
ismsin S,.then foranya’ € 4,

3.2) (a + Byy(a’) = ay(a') + By(a’).

This follows from (3.1).
If a is a morphism on the underlying pointed set of A’ but not necessarily on the
underlying group, then all we can say is

aly + w)(@') = a(ra’ + wa').
However, if & : A - B is a morphism in C and @’ € UA’', then

(Ud)(y + w)a' = (Ud)(va' + wa') =d(ya' + wa') = (Uaya' + (UVdkwa'.
Thus,
3.3) (Ua)(y + w) = (Ud)yy + (Ua)w.

Since + is not necessarily commutative we must keep in mind that —(a +8) =
—§ — a. Finally, if a: UA = UB is as above, we write

kera=ia€Alaa =0},
ima ={b€EB|b=aaforsomea€ UA}.

Now recall that U: C - S, has a left adjoint F: S, - C and that this adjoint pair
gives rise to the triple T' on S, and a cotriple G = (G, €, 8) on C.
To compute cohomology groups, given an object R in C, one takes a resolution
o 1 2

eo' el € ,€,€

(4] -t
B4  0-R< XSS "“:“":;""".”X;! .
) i 4
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as described in [4]. That is, the X; are G-projective and the complex satisfies an
acyclicity property. Any such complex can be used for computing triple cohomology,
but for most of this paper the standard resolution

0 b
eo e .‘v
0«<R«—GR m"’"ﬁ"’ GR ...
5

is entirely satisfactory.
Given a resolution such as (3.4), let

(Ue™) - (Ue" 1)+ ..+ (- 1)"(Ue®) if nis odd,
(3.9) €, =
(UeD) — (Uel) + ... + (- 1) (Ue") if n is even.

These sums are defined in the sense of (3.1). The e, are morphisms in S, rather than
in C. It is easy to check that eqe, =0, ¢;€, =0 and e;e5 = 0.
In addition, we note:

Remark 3.6. If ¢,(x) = 0, then x € im ¢,.

This is a consequence of a general fact about simplicial complexes in which each
X; is a group and all merphisms are group homomorphisms. Such a complex is said
to satisfv the full box condition if given x0, ..., x"*Vin X such that &x/ = ¢/ ~Ix!
for i <j, there exists x in X, ,, such that e’x = x/ for 0< i< n + 1. It follows from
a theorem in [13] and a routine computation that an acyclic group complex always
satisfies this condition.

Let us use this to verify Remark 3.6. Suppose we have a resolution (3.4) of R. If
e, (x) =0, then e¥(x) = el (x). Let x¥ = x! = x2 =x €X,. Then e'x/ = ¢/ ~1x/ for
0<i<j<2,and therefore there is y € X, such that ¥y =ely = e2y = x. Thus
ey =ely - elytely=x.

Finally, we make note of another useful fact whose proof is straightforward.

Remark 3.7. If nis an object in S, and a: F(n) - R is a surjection. then there is a
simplicial resolution

0-REFMEX, ..

in which each X,, is in fact free.

§4. The class EA

Let A be an object in C. If 4 < T it follows from Theorem 1.7 that a set of ac-
tions of T on A is induced by the operations in T. These actions induce correspond-
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ing actions of T/Z(T, A) on A by

4.1 (+Z(T.AN+a U+ 2T AN=1+a -1,
(t+Z(T.A)*a=t%a fort(:’ﬂ&,

Clearly, these are well-defined.

Definition 4.2. Let EA be the collection of equivalence classes of sequences (in ) of
the form:

0-ZA+A~TIAT,A)~THA+Z(T,A)~0,

where A < T and equivalence is by isomorphisms which leave 4 fixed and preserve
the actions of T/Z(T.A)on A.

The second condition is not. as one might suspect, simply a consequence of A re-
maining fixed. This can be seen in the following example.

Example 4.3. Let C be the category of groups. Take G to be the free group on X and
Y. and H the no-mal subgroup of G generated by SXand Y+ X - Y -~ 2X. Let T =
GH.and let A be the subgroup of T generated by X = X + H. Then 4 is a normal
subgroup of T. It is easy 1o see that

TIZT.A)=2(T,A), Y +Z(T,A),2Y +Z(T, A), 3Y + Z(T. A)}.
Moreover, W: T/Z(T, Ay - T/Z(T, A), defined by W(Y + Z(T, A)) = 3Y + Z(T, A).is
an isomorphism which leaves the image of A fixed and does not fix the action of
T/Z(T.A)on A.
Asin [1] we can construct a natural representative for each class in E4 . Let

0+ZA-ASESM -0

represent a particular class in EA. Then £ = T/Z(T, A)and M = T/(A + Z(T, A4)) for
some T such that A <T. Let K 3 T be the kernel pair of T T/A4. Then

K={(t')h, ' cTandt+4 =1 + A},
the two morphisms being the restrictions to K of the coordinate projections. Let

A, = z.2) 2 EXT, A)}.
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Itis easy to check that A, <K. Let

P=Kia,.
The projections K 3 T induce morphisms d°, d!: P 3 F which are given by

dO(1, €Y+ Ay) =1 + Z(T, A),

(4.4) ,
di(1. 1Y+ A ) =1 + Z(T, A).

We can write P in the form
P=i(t+a, N +A,1t€ET,a€C A,
The map ¢: P £ X A defined by
A(r+a.0)+ A )= (1 +Z(T, A),a)
is easily checked to be an isomorphism between P and £ X 4. This shows that the

set of actions (4.1) of T/Z(T, A) on 4 is a set of derived actions and that P is inde-
pendent of the choice of the representative.

d((e,a)) = ¢ + \a,
di(e,a)) = e.

From now on we will not distinguish between #and £ X A.
In the following we enumerate several useful facts.

Proposition 4.5. [/ 0~ 24 —~ A AL M=o represents a class in EA, then
(i) A<EXA.

(iii). Elements of ker d® and ker d! commute under +.
(iv). ker d® e kerd! =0 forall « € Q;.

Proof. (i). It is easy tosee that 0 X A <F X 4.
(ii). If (e, ) € Z(P, A) and if we write e = f + Z(T, A), then we can show that
(t + a) € Z(T, A) and therefore
e=t+2(T,A)=-a+Z(T, A)= - Na).

That is, (e, a) = (—\(@),a) € ker dV. The converse is immediate.
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(iii) and (iv) are easily checked after noting that (e. @) € ker d° implies (e, a) =
(-Ma),a)and (¢’.a') Ekerd! implies (e, a') = (0, &').
(v).d%(e.a)) =d'((e,a)) = 0iff e + Ma)=e = Qiff ¢ = 0, and A(a) = O iff
(e.a)€0 X kerA =0 X ZA4.
Proposition 4.6. The sequence
0-+ZA—-A—+PIZ(PA)Y>P/(A+Z(P,A))—~0
is equivalent to
0-Z2A-A-E-M~0.
Proof. Let ¢: P/Z(P, A) - E be given by
ole.a) + Z(P,A)) = ¢ + \a.
We leave it to the reader to the reader to check that  is a well-defined isomorphism
that leaves the image of A fixed. We indicate how to check that ¢ preserves the action

of PIZ(P,AYon 4. Leta’' € A; then

(e,a)+ Z(P,A)) +d' =(e,0) #(0,a)) = (0,c ¢ d’ +a +a)
=eeqd +Na)*a =(e+Na))*a

=p((e,a)+Z(P,A)) »a’.

To each class in E4 we associate a truncatec .implicial object by letting B be the
kernel triple of ¥, d!: P3 E. That is,

B = (pg. py. P2)I &%y = d%\.d'p| =d'p,, d'py = d%,} .
Defined’: B—+Pfori=0,1,2by di((py, py, p3)) = p;- 1f p; = (e, a;), then

€+ Mg =e; +hay,
4.7) e =ey

C’O = 82 + Mz .
From this one easily checks that

(4.8) kerd! Nkerd? ~74.
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The only degeneracy we use is sO: £ - P defined by
s0(e) = (e. 0).
We have remarked that 4 is an £- structure. More is true.

Proposition 4.9. ZA is an E-module and an M-module. Moreover, ZA is a B-module
and a P-module and all face operators preserve this structure.

Proof. The actions of £ on A leave ZA invariant. Take z€EZA and e =t + Z(T, A) EE.
First we check that forany *» € Q). e+ z€ZA. Leta €4 and #' €Q). Then
(es2)s'a=(tez)%a
= w(t(za), t(az), (za)t, @z)t, z(1a), z(at), (ta)z, (at)z)
=w(0,0,0,0,0.0,0,0)=0

and
(ee2)tag =(tez)to=at(te2)=a+(e*z).
The latter follows from axiom (7).

Similarly we can check that e + 2 —'e € Z4, and thus, Z4 is an £-module.
To see that Z4 is an M-module, define actions of M on Z4 by

nez2 =ewZ,
m+z-m=e+z-e

for some ¢ such that n(e) = m. We check that these operations are well-defined.
Suppose n(e) = n(e’) = m. Then

e-e=Na)=a+Z(T.A)
for some a € A. Moreover,ife=t + Z(T,A)and e’ = t' + Z(T, A), then

(t - )Y+ Z(T.A)=a + Z(T, A).
That is,

t-t' -a=z2€2Z(T A),
and

t=z +a+t.
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Hence.

'

(e+z -e)-(e'+z &) =r+z -1+t -z -1

’ 1 L L}

=t4z-t -a-2 %t -z2-1
=p4z4 (-t -a+t)+(-t'-2"+t'y-z2 -1
=f-t'-a-12,

and similarly, e # 2 — ¢’ ¢ 2=0. o

This is a set of derived actions since M X ZA defined via these actions is the cokernel
A MAXZASE X ZA.

The last assertion of this theorem follows from Proposition 2.5, once we notice that
for all p € P, 7% = md'p, and thus, for all b € B, nd®d"'b = 1d%d' b = nd'db
= 7dVd’b = nd®d2b = nd' d'.

Finaiiy. we prove the following important fact, which corresponds to |1, Propo-
sition 1.3].

Proposition 4.10. There is a derivation 3 : B — ZA given by the formula

3x = (-0 + | )dx = (—s0d! + 1)dx.

Proof. Using the relaticrs recorded in (4.7), one checks that for any x in B,
(-$940 + 1)dx = (~s%d! +1)dx.

Next, we check that ox € 24:
d%3x = (~d0 +d%dx = 0,
dlox =(-d' +d')dx =0,

Therefore dx € 0 X Z4 = ker d® Nker d! for any x € B.
A long computation follows to show that d is a derivation. First consider

by +b,y) =(~52%d0 + 1)d(by +b,)
= - s040d2p, — s00d2b, +d%, + db,
~d'by - d'by + d¥by + d%b,.
Neote that
d%d, - d'b,) = 0,
d'(- d'b; +d2y) = 0,
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so that Proposition 4.5 (ii) applies. Therefore

by + by)= - PdO2b, — d0d2b, + db, + db,
~ 940d2p, — 0d0d2b; + db, + 0d0d2b, - $0d0d2b, + db,
~ 9d0d2b, + 3b, + %d0d2h, + 0b,
~ by +3by + by + 3b,.

]

"

Note the use of Theorem 4.9 to justify the last equality.
To check that b, » db, + db; = by = 3(b; * b,), we use the equations

(@, ~ d'b)) » (d2by - sd2b,) = (0d%d2b, — d%b)) * (dOb, — %dOd?b,)
= O,

which are valid by virtue of Proposition 4.5 (iv). Then,

by » 3by + 3b; * by =d'b) » db, + 3by * d¥b,
+ (d2, - d'b,) * (d%by ~ %d0d’b,)
+ (9042, ~ d?b)) * (d%, - %d0d?b,).
We leave it to the reader to expand the above expression fully. Using the fact thai
sums of *‘products” commute, a consequence of Axiom 5 fer categories of interest,

he can rearrange terms so as to arrive at the expression

~s0d0a2(b, » by) +d(by * by) = (~s9d® + 1)d(b} * by)
= 3(by * by).

§ 5. Obstructions

Let R be an object in C and 0 =+ 4 = T - R ~ 0 an extension with which we asso-
ciate a class in E4 represented by

024 ~A> TIZ(T,A)™ TI(A + Z(T. 4)) > 0.
There is then a surjective morphism g: R - M such that the diagram
04 » T *R— 0

|k

0-+ZA>A->T/Z(T,A)—TI(A+Z(T,A)N~>0
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commutes. p is said o be induced by the extension. Via p, Z.4 acquires the structure
of an R-module.

In obstruction theory, one attacks the problem of finding all extensions which
induce a given surjection p: R - M where

02724 +A~>E-M->0

represents sorne class in EA4.
Let

o 1 &P el et
o [L.c et
0«R« X,*¢ > X, ¢ > X
0 | T—/———
0O !

be a resolutien of R by G-free objects of C. Morphisms py: X = E, p;: X; =+ Pand
g1 Xy ~ B can be constructed as in |1] so that the following diagram is commuta-
tuve:

32X 2X,»R-0

B=SP=ZE—M—0

Using Proposition 2.5, we see that Z4 is an X,,-module with derived actions induced
by p(ey'*! for each n.

In general. if X is an N-module and y: M — N induces an M-module structure on
X, then for any derivation w: N =+ X, wy: M - X is also a derivation. With this in
mind we see that 3p, is a derivation and that for any ¢: X, » X, _|.

Recall that Der(X, ZA4) is an abelian group. Hence,

e*: DCT(X2. ZA) had I)CI(X3, ZA)
and
e*: Der(X,,ZA4) -+ Der(X 4, ZA)

can be defined by

e‘l - e}‘_ 82. + e“ —_ e()’

and
e*=e0" _el® +e2°,

respectively.
The following useful observation can be proved by straightforward computation.
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Remark 5.1. For 7 € Der(X,, ZA), 0 € Der(X;, ZA). and x € X3,

e*(1)(x)=-x+7(e3 —e2 +el - V) (x)+x
and
e*(0) = 0(e0 — el + ¢2).

This remark is useful, for example, in showing that 8p, is a cocycle in Der(X 2. ZX):

e*(0p;)(x) = ~x +3py(e3 - e? +el — O (x)+x
= - xt(~s0d0+ 1)(d0 - d! +d?)p, (€3 - €2 +e! — V) (x) +x
=-x+(-0d0+1)p,(e0 — el +¢2)(e3 - e2 +e! - 0)(x) +x
=Q.

Proposition §.2. The cohomology class of dp; in Der(X;, ZA) does not depend on
the choices of py. py and p,.

Proof. This proof is the same as the proof of [I, Proposition 2.1] except that a
little more care must be taken in carrying out the computations.

Since dp, = (- 040 + 1)oe. the choice of g, is irrelevant. Let oy, 0, be new
choices replacing py and p,. Construct h%: X, = P and 40, #!: X, = B in the
category C, so that for h0: X, - P,

dOh0 = p,
dhY = g,
and for h0, Al: X, » B,
d®h! = K00, dOK0 = p,,

dWh0 = dlk’,
a2h0 = hOel, d2h! = o,.

These constructions are carried out by using universal mapping properties of pull-
backs and kernel triples and are therefore valid in C.
Next, we will show that

a=3d(-ht +h)e Der(X,ZA)
and
e*(a) = - dp, + 9p,.
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First note that 40 and h! preserve actions on Z4. Therefore. 34" and aA! are in
Der(X;.ZA). Furthermore, for x € X,

(- hY + hly(x)

~hlx +3(-hOx)+ hlx + dh!lx

~hlx +10x — 3hOx + hOx + hlx + dnlx

ad®dO(- hlx + hOx) — (0h0x) - 7dPJO(—~ hix + hBx) + dh'x
- 9hx + dh!x.

a(x)

1]

Since — 3hY + 9h! is in Der(X, ZA), we are done.
Then

e*a)= 3(- h'+il)(e0 - el +¢?)
=(-Pd0+ 1)(-py(e® - el +e2) + 0 (eV - el +e2))
=(- Sﬂdﬂ + l)(~dp2 "'(102)
= - Sododpz + ('SOdOdﬂz - Sod(,dﬂz) + (Sodﬁdpz - dpz) + d(]z.
But 7d (%%, - :9d%do,)= 0 and therefore
(s"dCdp- - s%d%s,) € N4 X 0.

Also, s%d%dp, - dp; isin 0 X ZA by Remark 4.5(v). Elements of X4 X 0 and
0 X ZA are easily seen to commute under addition. Thus,

e*(a) = —s0d%p, + (s0d%dp, - dp,) + (s"dOdp, - s%d%do,) + do,
= - 0p, +30,.
Let [p] denote the cohomology class of 3p,.
Definition 5.3. [p] is called the obstruction of p. p is said to be unobstructed if |p] = 0.
Theorem 5.4. A surjection p : R = M arises from an extension iff p is unobstructed.
Proof. The procof that if p arises from an extension then [p] = 0 is exactly the same
as the corresponding proofin [1].

The proof of the converse is also essentially the same, with some modifications in
the computations. If p, p, p; . p are given and there is derivation 7: X; = ZA4 such
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that e*7 = 3p,. thenlet o) X, - Pbe p, — 7. It is easily seen that 5 Py is a morphism
in
(l"mgeeding exactly as in the proof of {1, Theorem 2.2], we see that P> can be
chosen so that 3p, = 0. First note that d95) = pge” and d'B, = pyel. then choose
p, over g;. Then we have
3y =(-s0%d0+ 1)(d" -d' +d?)p,

=(-s0d0 + 1)@, " - B)e! +5,e?)

=(-s"d0+ 1)(py - 7)e

=+5s0d0%¢ - 040 e+ pye - 1e

=dpy - te (by Proposition 4.5)

=0py - e*7=0.

We are now ready to construct an extension that induces p. Let

QJLP

(5.5) tlzl &/‘

4‘,“ » |
[

be a pullback diagram. q is onto since d Lis. Since C is a pointed category,
ker g, ~kerd! ~ 4. We will identify ker gy witha: 4~ Q.
Since (5.5) is a pullback diagram, there exist unique «" and »!: X - Q such that

56) qyu =%, q,u0 = €0,
' qut =py.qyul =el.

Consider the diagram

14
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where ¢ = coeq {40, u') and @ and ¢ are induced maps. The right hand column of
(5.7)is exact by commutativity of colimits. We will show that,

¥ 1 ¥
0+A-T—+R~0

is an extension and that it induces p: R - M.

First we show that 4 is monic. This is true if ima Nker ¢ = 0. Butima = ker q,
and ker q is the ideal generated by im (1! — «9). Let u = u! - u®. For @ 10 be monic.
we need the following proposition.

Proposition 5.8. The image of u is an ideal and im u N ker g, = 0.

This corresponds to [1, Proposition 1.2.3]. The proof is the same, but the compu-
tations are more elaborate.

Froof. To see that im u < Q) we must show that for each x € X, y € Q and for each
operation « € §2), there exist x, and x, such that

(1) ulx,)=uix)=y.

(2). u(xg) sy tulx)-y.
Let x" = f9,(y) and set x, = x » x" and x, =x" + x — x". It suffices to check that

quulx » x') = q{u(x) * y)
and f

qu(x’ +x —x')) = qi(y + u(x) - y)
for i =1, 2. This is immediate for i = 2. Moreover, since dp, =0,

(~s0d0 + 1)p, | 0.

ime = kere
In particular, (— 5949 + 1)p, 0 = 0, and therefore

(5.9) 0d0p,0=p, /0.
Thus,
quuxsx’) =(qu! - qu0)(x »x"

=(py - Sodﬂ'Pl)(x +x’) (by(5.6))
=px +pyx’ - p1x + 0d%x" + pyx » $0d0p x' — $0d0p, x #5040p ¢’
=pyx #(1 -0d%p,x" + (1 -50d0)p x + s0d0p x’
= pyx#(p11%q )~ s0d%p,1%q ) + (1 - 0dO)p x +50d0p, 10 5(y)
= (1-594%px+50d%,1%,(v)  (by (5.9))
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= (1 -5s%d0)p x «s00,q,(1)

= (1 —-s0%d"px ¢ sUdlq, ()

=(1-sYd%)p x xq;() - (1 -5%40)p x «(1 - O Vyg,(v)
= (1500 p\x 2 q((v) (by Proposition 4.5(iv))
=(gutx - q %)+ q,(v)

=quu(x)*q,(v)

=qglulx)*y),
and

quulx’+x X)) = (py - Md )(x" +x - x')
=p 110y + p1x - 0110,y + s0d0 Vg, v
O x 0400, 10,y
(sl v v q ) - qpp
=qv +lpx - %% x) - q v (by Proposition 4.5(ii))
=QL\' +qi“x gy
=q(v tux ).
So im u is an ideal in Q. f ux € ker g, then 0 = g,ux = ex. Thatis, x Ekere =ime.
Therefore
0= (5% + 1)p(x) = qux.
and so ux = 0. That is,
imu Nkerq, =0.
To finish: the proof of Theorem 5.4, we will show that the extension just con-

structed induces p. Since d0q,u® = d0s0d0p, = d¥, = 40 u!, there exists a unique
7: T = E such that 7q = d%q . Moreover,

nrq = nd0q, = nd'q, = npyq, = peq, = pyq.

Since q is epic, 77 = py.
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7 is seen to be onto by chasing the following diagram:

0+A-+T -+R->0

'.41 lr lp( onto)

A-E -M-0

To see that ker 7 = Z(T, A), observe that
(i) q(kerrg)=Kkerr,
(ii) q(Z(Q.A))=Z(T. A),
(iii) Z(Q, A) = ker 1q.
This can be shown as follows:

(i). x € ker 7q implies g(x) € ker 7. Conversely. if x € ker 7, then, since q is onto,
there is some y € Q such that g(») = x. Therefore 7¢(y) = 7(x) = 0. So x = q(»),
where y € ker 7q.

(ii). Take x € Z(Q, A). Forany y € 4,

xe*a(y)=a(y)*x=0

and

a(y) + x=x +a(y).
Hence,

qa(y) = q(x)=a(y) # q(x) =0,

q(x) * qa(y)=q(x)*a(y) =0,

a(y) +q(x) =qa(y) +x)=qx +a(y)) =qx) +a(y)
So g(x) € Z(T, A).

If x€Z(T,A). then forany y € A,

a(p)esx=x»a(y)=0
and

a(y)+x=x+a(y).
Since x € T, there exists z € () such that x = g(z). Hence,
qa(y) = z) =qa(y) *q(2)
=a(y)rx=x+a(y)=q(z*a(y))=0,

and
qap)+z -a(y)-2)=a(»)+x-a(y; -x=0.
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Since g is one-one on a(A4), this means

an).zzz.a(V)=0 .
and

a(y) +z =2z +a(y),

for any y € A. Therefore z € Z(Q, A) and x € g(Z(Q, A)).
(iii).

ker7q = {(x,p€ Xy X PId%p) = 0},
Q = ix, p)E Xy X Plpy{x)=d'(p).
The image of A in Q is
{0, p) d(p) =0},
since the image is the kernel of ¢,. Hence,
2(0.4) = i(x,p EQIdI (P =0 [(x.p)+(0.p) =(0.p*p") =0,

(0.p)*+(x,p)=(0,p" *p)=0, (x.p}+{0,p)=(0.p)+{x.p)|}

(PIEQId (P =0= [psp =p sp=0. p+p'=p +p|

L}

Hx.p)EQIpELP A)

]

(x.p)EQIpEkerd’;y  (by Proposition 4.5(1))

=ker 7q.
Using (i), (ii) and (iii),

ker 1 = glker 7q) = q(Z(Q, A)) = Z(T. A).

§ 6. The action of //!
In [1, §3], the following theorem is proved for commutative algebras:

Theorem 6.1. Let p: R - M be unobstructed. Let T = X, denote the equivalence
classes of extensions
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0-+-A->T—-R->0

which induce p. Then the group HY(R, ZA) acts in T p 4s a principal homogeneous
representation.

The thcorem is also true if objects and morphisms are assumed to belong to a
category of interest C, and the cohomology is computed by means of the triple aris-
ing in axiom (1). The proof is nearly identical to the one given by Barr.

Using a result from Beck's thesis [S], A = H}(R, ZA) consists of equivalence
classes of extensions

0-ZA~U~»R-0
in which Z4 is assumed to have the R-module structure arising from p. The only
changes in the proof are in the section which corresponds to |1, Proposition 3.2].
Consider, for example, part b) of that proposition, in which it is shown that
(2 -Z9+2,=Z, . H0>4~+T—-R ~0represents (£, - ;) +X,, we have,
just as in [1]. that any element of T can be represented by a 3-tuple (1, 15, #3) for
which 7,1y = 7515 and 91| = ¢,15 = ¢4t5. In defining the morphism o : T 7', we
must be cautious about order and signs. First observe that w2(£2) = ¢a(13) implies
(- 12 + tz’ €A. Let

0(“.[2. f'z)=fl ~ f‘) +f'7

Theu o is well-definec, since (7, 15, £3) = (s, 55. $2)iff (-1} + 5y, ~ 1, *5
-1 451) { 2.0,z)forsome ;: €EZA. That iS,85) 1) -2.5)=1, .,mdsz -12 +2z.
Thus.
s 52"’53'11 ‘~“12+I7+Z
= Il - Iz + t2
(since (- 1, + 15) € A). In checking that o is a morphism in C we use the fact that
7yX = 7, v implies that x and y have the same actions on 4:
0(1;.12.l'z)"'U(S;-52.S§)=(11"!2+f'2)*(Sl'“sz"’S’;))
“hth- Lt -5t
==t -]+ +s) + (55 +55)
=l -n]+Ets) + (-5 45))
=(ty ~ 1))+t +57) + (=55 +53)

s (s H{0- B) (8 s+ (- 5p+53)
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=(+5)) = (tatsy) + (13- 13) + (15t 55) + (—s2+s'2)
=(t)*s51) — (13*53) + (13 +53)
= 0(’1 *S‘, I2 + Sz, f'z"’slz).
The proof that o preserves operations * € 2} is easier since sums of products com-
mute. .
In part ¢) it can be shown, asin [1],that (A+Z) - L =A.If0>ZA>USR >0
represents (A + ) — I, then a typical element of U’ is represented by a 3-tuple

(¢, u, 1"} in which o(£) = ¥(10) = p(¢’) and 7(1) = 7(¢'). Since (¢ — ') = 0 and 7( - ')
= 0‘

(t-tYEANZT, A)=2A.

Moreover, (t.u, 1) = (5,0, 8)iff s ~ 1 =5 -t =a, forsomea €A, and u = v.
Define o: U' ~» Uby o(t, u, t') = (¢ - t') + u. g is well-defined, for if (1, u,1') =
(s, v, 5'). then
o(s,0,5)=(s - s)+v

=(@+1)-@+1'N+u
=(@+(r - r')-a)tu
=(t-1)tu (since r - ' €24)
=(ut').
Moreover, ¢ is a morphism in ( since

ot u t') +o(s,v.s') — ot u. 1) + (s,v,5)
=~ +u)t(s-s"tv)~(t+s-s -t +utv)
=(t- ) tut(s-shHtvo-v—u+ti'+s s -1t
=[(@-1)Y+ur(s-sV—u—-{t-t))+[t+( - 5)—1]
=fe(t - )+ (s - ) —w) -t - O] + AN +(" - 5) - l1)]
=(u+ (s~ s') - )+ (Yu) +(s" - 5) - ()
=t(s-s)-uprut(s’ —s)-u)

= O‘
and

o((t, 4, 1')) * o((5.v.5"))

=(t-t tu)*(s-s +v)
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=(t-)e(s-sV+(-1)*svtus(s- s)tusv

=t 1Yepls SYHU - e Yt P(u) #(s - s)ru v
=(0 )2 [os) s+ s )] +r) £ (s - s tunv
=(t-1)Yes+t’ s(s-s)tusv

=res—t ss tusy

=o((t.u, ') * (5. v.5)).
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