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1. Introduction

Supersymmetric models which involve GMSB mechanism [1]
are popular frameworks for analyzing phenomenology of BSM sce-
narios mainly due to their flavour universality of soft SUSY break-
ing terms.

In this letter, we consider in more details the issue of sfermion 
masses in extended GMSB scenario. Let us start by reviewing situ-
ation within pure GMSB scheme.

It is well-known that in such setups, 1-loop A-terms and 1-loop 
soft masses of sfermions φ̃i are zero at the messenger scale M . The 
first non-trivial contribution to soft masses arise at 2-loop level 
and can be written as [2,3]:

(m2
i )g,2 = 2N

∑
r

(
g2

r

16π2

)2

Cr
i (Mx)2 f g,2(x), (1)

where gr are gauge couplings for SU(3), SU(2) and U (1) groups, 
respectively. N is twice the sum of the Dynkin indices of the 
messenger fields, Cr

i is the quadratic Casimir related to φ̃i , while 
x = F/M2 is a dimensionless parameter1 which sets the relation 
between F -term of the spurion, F , and the messenger scale M . Fi-
nally, the function f g,2(x),

✩ This article is registered under preprint number: 1505.07443 [hep-ph].

* Corresponding author.
E-mail address: tomasz.jelinski@us.edu.pl (T. Jeliński).
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f g,2(x) = 1 + x

x2

[
ln(1 + x) − 2Li2

x

1 + x
+ 1

2
Li2

2x

1 + x

]
+ (x → −x) (2)

only mildly depends on x such that the overall scale of (1) is set by 
g4

r (Mx)2/(16π2)2. This quantity is crucial for the phenomenology 
of GMSB models. To arrange masses of sfermions at the level of a 
few TeV, such that sparticles are accessible at the LHC2 or at one 
of its successors, and to avoid fine-tuning of parameters, the scale 
Mx has to be of the order of 105 GeV. This allows us to consider 
the following relation between2 M and x

Mx = cξ × 105 GeV, (3)

where cξ is a numerical constant of the order of 1. Its precise value 
depends on the details of the model (e.g. tan β , μ-term).

However, the GMSB models are not flexible enough to fulfil 
all phenomenological restrictions and simultaneously retain (3). 
For example, it is hard to accommodate for 125 GeV Higgs boson 
mass when sfermions are relatively light [7]. It turns out that the 
above mentioned issue can be alleviated within so-called Extended 
GMSB (EGMSB) models in which one allows for superpotential 
coupling between messenger and MSSM fields. Beside addressing 
enhancement of the Higgs boson mass, EGMSB models also provide 
reasonable framework for exploring non-minimal flavour violation 
scenarios within various GUT models [6,8–13]. As a result of the 

2 The mass scale Mx is very often written as F/M , see e.g. [1], and sometimes 
denoted by ξ , see [4–6].
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presence of additional contributions to soft terms, EGMSB mod-
els exhibit rich and interesting phenomenology in which e.g. light 
stops can be naturally realized [4,14,15].

It is known [16,17] that in EGMSB models both 1- and 2-loop 
soft masses are generated by the messenger-MSSM superpoten-
tial couplings. The 1-loop masses are known analytically for any 
0 < x < 1 and one can show that they are negative and ∝
h2x2(xM)2/16π2 for x � 1. On the other hand only the lead-
ing term in x = F/M2 of the 2-loop contribution to soft masses 
is known. It has been extracted with the help of the wave-
function renormalization method [5,17–21], which captures only 
contributions of the order of (Mx)2. One can show that for x �
1 the 2-loop contributions to soft masses are positive and ∝
h4(xM)2/(16π2)2. Naively, taking into account above considera-
tions one expects that 1-loop contributions could start to dominate 
for x � h2/16π2 ∼ 10−2 − 10−3. Though, such rough estimation 
does not take into account higher powers of x in the expansion 
of 2-loop masses, but also does not encounter numerical factors3

which originate from contracting tensors related to the represen-
tations of chiral superfields [17,21].

Let us recall that in many GUT models the messenger scale is 
chosen rather large,4 e.g. M = 1014 GeV, what due to (3) forces x
to be of the order of 10−9. As mentioned above for such choice 
of x the full form of the loop function (2) is not necessary – only 
the leading term is relevant. However, there are also interesting se-
tups, so-called Low-Scale Gauge Mediation models with relatively 
light messengers M ∼ 105–106 GeV which provide interesting phe-
nomenology, see e.g. [24]. In this situation x can be much larger, 
even of order 1. In this regime wave-function method is not ad-
equate. To provide more accurate estimation of soft masses, one 
needs full analytical 2-loop expression.

Our aim is to calculate such full analytical formula for 2-loop 
soft masses of sfermions which is valid for all 0 < x < 1, examine 
its relation to 1-loop soft masses and check for which values of x
full analytical expressions are important. To derive them, we adopt 
a general method presented in [25,26], which is suitable for 2-loop 
SUSY calculations, and conventions therein.

2. EGMSB model with one messenger-matter coupling

We consider a EGMSB-type model in which a pair of messen-
gers, Y , Y couple to MSSM fields φ1, φ2 via superpotential term 
hY φ1φ2 and SUSY is broken by vev of F -term of spurion superfield 
X . In other words, the relevant part of the superpotential is of the 
following form:

Wh = XY Y + hφ1φ2Y . (4)

The model has symmetry φ1 ↔ φ2 and, moreover, one can as-
sign global U (1) charges to φi and Y , Y such that those fields 
cannot mix with each other even after SUSY breaking.5 An ex-
ample of such assignment is the following: qφi > 0, qφ1 �= qφ2 , 
qφ1 + qφ2 = −qY = qY and qX = 0. Due to the above-mentioned 
symmetries: (i) both fields φ1,2 obtain the same soft mass m2, (ii) 
there is no mixing mass term φ1φ

∗
2 + h.c. in the scalar potential, 

and (iii) there is no mass term of the form φiφ j + h.c. Finally, 

3 These numerical factors also enter 1-loop anomalous dimensions of chiral su-
perfields [17,21,22].

4 In the GMSB models gravitino mass is m3/2 ∼ F/M Pl = xM2/M P , where M P ∼
1018 GeV is the Planck scale. If (3) is satisfied then m3/2 ∼ 10−8 GeV/x. Hence in the 
models with x ∼ 1 the gravitino mass is of the order of 10 eV. Such light gravitino 
may be of some importance for the cosmology, see e.g. [23].

5 For the discussion of the role of such charges in the GUT models see e.g. [5,27,
28].
(iv) one can get rid of any complex phase of h = |h|eiφh just by 
a redefinition of messenger fields: Y → Y e−iφh , Y → Y eiφh . Hence, 
without loss of generality, we can assume that h is real. An ex-
ample of superpotential interaction (4) is a coupling between up 
Higgs φ1 = Hu , up quark φ2 = U and messenger Y = Y Q in the 
representation (3, 2)1/6 of SU(3) × SU(2) × U (1).

When spurion field gets vev 〈X〉 = M + θ2 F , all components of 
messenger multiplets obtain masses M , while scalar components 
get extra SUSY breaking masses F Y Y +h.c. After unitary rotation of 
the scalar components of messengers (Y , Y ) to the basis (Y+, Y−)

in which their mass terms are diagonal, the scalar potential is of 
the form:

V = M2+|Y+|2 + M2−|Y−|2

+
[

1√
2

hMφ1φ2(Y+ + Y−) + h.c.

]

+ 1

2
h2(|φ1|2 + |φ2|2)|Y+ − Y−|2, (5)

where M2± = M2(1 ± x) and x = F/M2. Let us remark that x has an 
upper bound, related to the upper bound on the mass of Y− , i.e. on 
M− = M

√
1 − x. Because Y− can have the same quantum charges 

as quark superfields hence LHC bound on squarks masses mLHC ≈
2 TeV [29,30] apply to Y− as well. However, for the simplicity, in 
this letter we assume a little more conservative bound:

M− � 104 GeV, (6)

such that Y− is significantly heavier than all sfermions. Otherwise 
Y− may, in some cases, alter stability of the scalar potential, what 
in turn can be dangerous for EWSB. Using definition of M− , the 
condition (6) can be rewritten in the following form:

x � 1 −
(

104 GeV

M

)2

. (7)

It ensures that below the scale of 10 TeV one gets only MSSM 
fields. For example, when M = 105 GeV, x has to be smaller than 
about 0.99, but for M = 1014 GeV, that limit is practically equal 
to 1 and may indicate a kind of severe fine-tuning of parameters: 
x � 1 − 10−20. Additionally, taking into account (3) the bound (7)
can be rewritten as:

x � 1 − 1

100c2
ξ

. (8)

Let us summarize our discussion. For x � 1, the 2-loop soft 
masses can be obtained with the help of the wave-function renor-
malization method. We also know that the regime x � 1 is in-
teresting for the phenomenology of Low-Scale Gauge Mediation 
models. But for x ∼ 1 the wave-function method is not adequate. 
Hence, to fill that gap, we shall discuss full analytical result for 
2-loop masses generated by (4).

3. 1-Loop soft-terms

For the completeness, we shall present 1-loop A-terms and 
1-loop soft masses in the discussed model. We omit soft masses 
of gauginos because at the 1-loop level they are of the same form 
as in the standard GMSB models [1]. The 1-loop soft mass of φi is

m2
h,1 = h2

16π2

(
−1

6

)
(Mx)2x2 fh,1(x), (9)

where the function fh,1(x) is defined as follows:
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fh,1(x) = 3

x4 [(x − 2) ln(1 − x) − (x + 2) ln(1 + x)]

= 1 + 4

5
x2 + 9

14
x4 + . . . (for x � 1). (10)

On the other hand the A-term is:

A = − h2

16π2
2Mxfh,A(x), (11)

where

fh,A(x) = 1

2x
ln

1 + x

1 − x

= 1 + 1

3
x2 + 1

5
x4 + . . . (for x � 1). (12)

It is clear that both m2
h,1 and A diverge when x → 1. The reason 

for that is the massless scalar Y− which is present in the 1-loop 
diagrams [31] and leads to the divergence of the following contri-
bution (M2h2/16π2) ln(M2−/M2) to the self-energy �(1)(0) at zero 
momentum s = p2 = 0. To ensure that the perturbative expansion 
in h2/16π2 does not break down, the following condition has to 
be satisfied

|1 − x| � exp

(
16π2

h2

)
. (13)

To find 1-loop pole mass m2∗ of φi at x = 1 one could solve the full 
propagator equation m2∗ − �(1)(m2∗) = 0 numerically.

The discussed behaviour of (9) and (11) is not a big problem 
because phenomenology restricts x to the regime (8) which is safe 
from divergence.

4. 2-Loop self-energy

To compute 2-loop contributions to soft masses generated by 
(4), we apply method developed in [25,26]. For φi , we calculate 
1-loop self energy �(1)(s) at s = p2 and 2-loop self energy �(2)(0)

at s = 0 and use them to find the pole mass of φi . One can show 
that 1- and 2-loop pole masses are of the following form:6

m2
h,1 = 1

16π2
�(1)(0), (14)

m2
h,2 = 1

(16π2)2

[
�(1)′(0)�(1)(0) + �(2)(0)

]
. (15)

We can compute contributions to �(2)(0) from Feynman diagrams 
with topologies (W , S, . . .) shown in Fig. 2 in [26]:

�(2)(0) = �W S S S S + �X S S S + �Y S S S S + �Z S S S S

+ �S S S S + �U S S S S + �V S S S S S + �W S F F

+ �V S S S F F + �V F F F F S , (16)

where �W S S S S , �S S S S , . . . correspond to topologies (W , S, . . .) re-
spectively. Structure of these functions is displayed in the Ap-
pendix. We have regulated IR divergences of the components of 
(16) by adding a mass term m2

IR to all massless sfermions.7 The 
final result is finite in the limit m2

IR → 0.

6 The tree-level mass of φi is zero.
7 Higgs bosons are assumed to be massless for the simplicity. An example of 

messenger-matter coupling for which Higgs mass term is not relevant is Y Hu Q D
or Y Hd LE , where Y Hu,d are Higgs-type messengers.
Fig. 1. The complete 2-loop function fh,2(x) defined in (19) and (46) (solid line) and 
its approximation, (20), valid for x � 1 (dashed line). Note that fh,2(x) diverges for 
x → 1.

We computed all the ingredients in (16) and expressed them 
via 1-loop integrals8

A(x) = x(ln x − 1), B̂(x, y) = −
1∫

0

dt ln[tx + (1 − t)y], (17)

the 2-loop integrals

I(x, y, z) = C2
∫

ddk

∫
ddq

1

[k2 + x][q2 + y][(k + q)2 + z] , (18)

and derivatives of I(x, y, z). C = 16π2μ2ε/(2π)d , μ is the regular-
ization scale in DR′ scheme and ε = 4 −2ε . Finally, ln x = ln(x/Q 2), 
where Q 2 = 4πe−γ μ2 is the renormalization scale. Due to super-
symmetry, all 1/ε2 and 1/ε terms cancel from m2

h,2 and so do all 
diagrams involving counter-terms.

Using explicit expressions for I(x, y, z) we find that the 2-loop 
contribution to soft mass of φi generated by (4) at the renormal-
ization scale Q = M is of the following form:

m2
h,2(M) =

(
h2

16π2

)2

3(Mx)2 fh,2(x), (19)

where fh,2(x) is the complete analytical 2-loop function defined in 
the Appendix. The expansion of fh,2(x) for x � 1 is:

fh,2(x) = 1 + 1

18
(π2 + 1)x2 + 1

540
(30π2 − 43)x4 + . . . (20)

One can check that: (i) fh,2(x) is positive for 0 ≤ x < 1, (ii) fh,2(x)
is divergent at x = 1, analogously to (10), and (iii) the numeri-
cal factor of 3 in (19) agrees with the corresponding numerical 
factor obtained using wave-function renormalization method [17]. 
The plot of the function fh,2(x) is shown in Fig. 1, where fh,2(x) is 
compared with its approximation (20). For x � 0.5 the difference 
between (20) and the full result is smaller than 1%.

5. Analytical results: consistency checks and phenomenological 
consequences

To verify our results we have made two basic consistency tests. 
Namely, we have checked that: (i) in the limit x → 0 (SUSY limit) 

8 B̂(x, y) is the standard B(x, y) 1-loop function calculated at s = 0.
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Fig. 2. Comparison of 2-loop (blue, dot-dashed) vs. 1-loop (red, dashed) contribu-
tion to soft mass for x ∼ 1. The superpotential coupling h is fixed to 0.8. The middle 
curve (solid) shows the sum of 1- and 2-loop contributions, m2

h = m2
h,1 + m2

h,2, gen-
erated by the messenger-matter coupling (4).

the obtained 2-loop contribution to soft-masses (19) is zero, and 
(ii) the sum of 1- and 2-loop pole masses m2

h(Q ) = m2
h,1(Q ) +

m2
h,2(Q ) does not depend on the renormalization scale Q , i.e.

Q ∂Q m2
h(Q ) = 0 (21)

up to terms of order O (h5). To this end we have used the following 
1-loop β functions [22] for the running parameters: the messenger 
mass M(Q ), F -term F (Q ) and superpotential coupling h(Q ):

β
(1)
M = h2M, (22)

β
(1)
F = −h2 F , (23)

β
(1)

h = 3h3. (24)

Let us remark that the term �(1)(0)�(1)′(0) in (15) is crucial for 
the cancellation of Q ∂Q m2

2,h .
In addition, analytical formulas for integrals in (16) have been 

cross-checked using numerical libraries in a wide range of (mass)2

parameters: from 10−13 GeV2 to 1020 GeV2. There are a few nu-
merical libraries which can deal with 2-loop self energies: BOKA-

SUN [32], CSectors [33,34], FIESTA [35], SecDec [36] and TSIL

[37]. For our purpose the most appropriate turned out to be the
SecDec-3.0.6 with Suave routine from the CUBA library [38].

We have checked that due to interplay between 1- and 2-loop 
contributions to soft masses the apparent dominance of 1-loop 
contributions is not true for x ∼ 1 and it turns out that for 
x ∼ 0.9 the total contribution is bounded from below, see Fig. 2, 
instead of having a running direction caused by the 1-loop 
contribution.

One can check that the position of the minimum of m2
h,2 in

Fig. 2 only mildly depends on the value of h, e.g. increasing h from 
0.8 to about 1.2 changes its position from 0.975 to 0.96.

To show the role which 1-loop function (10) and complete 
2-loop function (46) play in the phenomenology of the EGMSB 
models we consider a specific example of (4) in which down-
Higgs-type messenger superfield Y Hd couples to lepton super-
fields L, and E:

W = hij Y Hd Li E j. (25)

We assume that hij has similar hierarchy to the matrix of leptonic 
Yukawa couplings (ye)i j . One can check by direct computation that 
such superpotential gives extra contributions to Aτ and to the soft 
terms at 1- and 2-loop level only for sleptons:

Aτ = − h2

16π2
3Mxfh,A(x), (26)

m2
h,̃l3

= h2

16π2

(
−1

6

)
(Mx)2x2 fh,1(x)

+
(

h2

16π2

)2

4(Mx)2 fh,2(x), (27)

m2
h,τ̃R

= h2

16π2

(
−1

6

)
2(Mx)2x2 fh,1(x)

+
(

h2

16π2

)2

8(Mx)2 fh,2(x). (28)

These soft terms have been implemented in9
SARAH-4.5.8 [39–42], 

which we used to generate SPheno-3.3.7 code [43,44]. The ob-
tained data were further processed with the help of SSP-1.2.1 [45]. 
For simplicity, in our analysis we fixed tan β = 10 and chose Mx =
5 × 105 GeV such that the lightest Higgs mass mh0 is 123 GeV, 
while masses of gluino g̃ and 1st and 2nd generation squarks ̃q1,2
are about 4–5 TeV. For h = 0.1, 0.9 and h ∼ 2.2 we scanned mass 
spectrum over M in the range 5 × 105 GeV < M < 5 × 109 GeV
what is equivalent to varying x in the range 10−4 < x < 1. As ex-
pected from (27) and (28) only 3rd generation slepton masses are 
sensitive to the h coupling. Masses of other particles are similar to 
those in pure GMSB scenario:

mH0
i ,A0,H± ≈ 1.7–1.8 TeV, (29)

mg̃ ≈ 4.1 TeV, (30)

mχ̃0
i

≈ 0.8–1.7 TeV, mχ̃±
i

≈ 1.5–1.7 TeV, (31)

mũi ≈ 4.4–5.1 TeV, md̃i
≈ 4.8–5.1 TeV, (32)

mẽL ,μ̃L ≈ 1.7 TeV, mν̃e,μ ≈ 1.7 TeV, (33)

mẽR ,μ̃R ≈ 0.7 TeV. (34)

Dependence of the signed mass of the right-handed stau τ̃R i.e. 
sign(m2

τ̃R
)

√
|m2

τ̃R
| on the messenger mass M for h = 0.1 and 0.9

is shown in Figs. 3 and 4 respectively. When one increases h up 
to about 2.2 then the dependence on M changes such that m2

τ̃R
is positive for any value of M – see Fig. 5. As one can see the 
interplay between 1- and 2-loop contributions to soft masses dis-
cussed in Sec. IV leads to large negative values of m2

τ̃R
when M

is close to M0 = 5 × 105 GeV. But when M − M0 is of the or-
der of 102–103 GeV then 2-loop contributions start to dominate 
and m2

τ̃R
is again positive. Such a behaviour is apparent espe-

cially for h ∼ 2.2 (see Fig. 5). One can see that in this case m2
τ̃R

is quite sensitive to the precise value of h. The basic difference 
between discussed scenario and the standard GMSB mass pattern 
is that 3rd generation slepton masses can be as well of the or-
der of 500 GeV (as in the pure GMSB scheme) as much larger i.e. 
of the order 10–20 TeV. In addition, contrary to the pure GMSB 
case, for the fixed value of Mx slepton masses heavily depend 
on the value of M . Here they can even be tachyonic what could 
lead to instability of the scalar potential. Finally, let us note that 

9 Related SARAH file called EGMSB.m can be downloaded from www.
tjel.us.edu.pl/tools.html. To generate SPheno code please use:
Start["MSSM"] and then MakeSPheno[InputFile→"EGMSB.m"].

http://www.tjel.us.edu.pl/tools.html
http://www.tjel.us.edu.pl/tools.html
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Fig. 3. Signed mass sign(m2)
√|m2| of right-handed stau τ̃R as a function of the 

messenger scale M for h = 0.1 and fixed Mx = 5 × 105 GeV. The subplot displays 
the behaviour of signed mass for M close to M0 = 5 ×105 GeV. The dot-dashed line 
represents mass of ̃τR in pure GMSB scenario (i.e. h = 0).

Fig. 4. Signed mass sign(m2)
√|m2| of right-handed stau τ̃R as a function of the 

messenger scale M for h = 0.9 and fixed Mx = 5 × 105 GeV. The subplot displays 
the behaviour of signed mass for M close to M0 = 5 ×105 GeV. The dot-dashed line 
represents mass of ̃τR in pure GMSB scenario (i.e. h = 0).

for M > 108 GeV, what is the most common choice of messen-
ger scale, (27) and (28) dominate over GMSB contributions making 
masses of 3rd generation of sfermions of the order of 10 TeV. Such 
a hierarchy in the slepton spectrum is a simple consequence of 
choosing (25) similar to the MSSM leptonic Yukawa couplings. As 
one can see complete 2-loop contributions to soft masses con-
sidered here have a large impact on the 3rd generation of slep-
tons.

6. Summary and outlook

In this letter, we have presented full 2-loop calculation in the 
EGMSB model with one coupling between messenger and mat-
ter. We have shown that full 2-loop analytical contributions to 
soft masses are important in the regime x = F/M2 ∼ 1, which is 
realized e.g. in the Low-Scale Gauge Mediation models with mes-
senger mass M ∼ 105–106 GeV. It turned out that for x ∼ 1 the 
model exhibits novel behaviour with respect to the standard GMSB 
case. It has been shown on a specific example that considered 
Fig. 5. Signed mass sign(m2)
√|m2| of right-handed stau ̃τR as a function of the mes-

senger scale M for fixed Mx = 5 × 105 GeV and h = 2.208, 2.209, . . . , 2.219, 2.220
respectively, where the top-most line corresponds to h = 2.220. The dot-dashed line 
represents mass of ̃τR in pure GMSB scenario (i.e. h = 0).

here complete 2-loop effects can significantly affect slepton spec-
trum, what opens up new scenarios beyond the standard GMSB 
scheme.

Let us shortly comment on the remaining contributions from 
higher loops. Taking into account suppression of 1-loop contribu-
tion with respect to 2-loop contribution, the soft mass m2

h can be 
written in the following form:

m2
h

(Mx)2
= h2

16π2
k1x2 f1(x) +

(
h2

16π2

)2

k2 f2(x)

+
(

h2

16π2

)3

k3xn3 f3(x) + . . . , (35)

where k1 = −1/6, k2 = 3, k3 is unknown numerical factor of 
3-loop contribution, while f i(x) are functions normalized such that 
f i(0) = 1. Finally n3 ≥ 0 is unknown power of x which appears in 
the 3-loop contribution. We are not aware of any strong argument 
that n3 = 0 and f3(x) is of the order 1 for x � 0.9, but from the fact 
that in (35) the suppression by x2 occurs only at 1-loop and not at 
2-loop level, one might conjecture that n3 = 0. We also expect that 
the function f3(x) behaves similarly to f2(x) i.e. it is of the order 
of 1–10 for x � 0.9, what in turn could suggests that the ratio of 
3- to 2-loop contribution is of the order of (k3/k2)h2/16π2 � 0.1. 
Certainly, from the theoretical point of view it would be interesting 
to obtain even approximate 3-loop result and verify those assump-
tions.
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Appendix A

Here we collect contributions to self-energy (16) from topolo-
gies (W , S, . . .) defined in Fig. 2 in [26]. We use the following 
notation: z± = M2(1 ± x), while c = m2

IR regulates IR divergences in 
2-loop integrals at s = 0. The sum of (36)–(45) is finite in the limit 
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c → 0. The components of (16) are expressed in terms of functions 
(W S S S S , X S S S , Y S S S S , . . .) defined in the Sec. IV.A and IV.B of [26].

4

h4z
�W S S S S = −2W S S S S(z+, z−, c, c)

+ 2W S S S S(c, c, c, z−) + W S S S S(z−, z−, c, c)

+ 2W S S S S(c, c, c, z+) + W S S S S(z+, z+, c, c), (36)

2

h4
�X S S S = XS S S(z−, z+, c)

+ XS S S(z+, z−, c) + XS S S(c, c, z−)

+ XS S S(z−, z−, c) + XS S S(c, c, z+)

+ XS S S(z+, z+, c) + 2XS S S(c, c, c), (37)

4

h4z
�Y S S S S = −2Y S S S S(c, z−, z+, c)

− 2Y S S S S(c, z+, z−, c) + Y S S S S(z−, c, c, z+)

+ Y S S S S(z+, c, c, z−)

+ 2Y S S S S(c, z−, z−, c) + 2Y S S S S(z−, c, c, c)

+ Y S S S S(z−, c, c, z−) + 2Y S S S S(c, z+, z+, c)

+ 2Y S S S S(z+, c, c, c) + Y S S S S(z+, c, c, z+), (38)

16

h4z
�Z S S S S = −Z S S S S(c, z−, c, z+)

− Z S S S S(c, z−, z+, c) − Z S S S S(c, z+, c, z−)

− Z S S S S(c, z+, z−, c) − Z S S S S(z−, c, c, z+)

− Z S S S S(z−, c, z+, c) − Z S S S S(z+, c, c, z−)

− Z S S S S(z+, c, z−, c) + Z S S S S(c, z−, c, z−)

+ Z S S S S(c, z−, z−, c) + Z S S S S(z−, c, c, z−)

+ Z S S S S(z−, c, z−, c) + Z S S S S(c, z+, c, z+)

+ Z S S S S(c, z+, z+, c) + Z S S S S(z+, c, c, z+)

+ Z S S S S(z+, c, z+, c), (39)

4

h4
�S S S S = S S S S(c, z−, z+)

+ S S S S(c, z+, z−) + S S S S(c, z−, z−)

+ S S S S(c, z+, z+) + 4S S S S(c, c, c), (40)

4

h4z
�U S S S S = −U S S S S(z−, c, c, z+)

− U S S S S(z−, c, z+, c) − U S S S S(z+, c, c, z−)

− U S S S S(z+, c, z−, c) + 4U S S S S(c, z−, c, c)

+ U S S S S(z−, c, c, z−) + U S S S S(z−, c, z−, c)

+ 4U S S S S(c, z+, c, c) + U S S S S(z+, c, c, z+)

+ U S S S S(z+, c, z+, c), (41)

4

h4z2
�V S S S S S = V S S S S S(c, z−, z+, c, c)

+ V S S S S S(c, z+, z−, c, c) + V S S S S S(z−, c, c, c, z+)

+ V S S S S S(z+, c, c, c, z−) + V S S S S S(c, z−, z−, c, c)

+ V S S S S S(z−, c, c, c, z−) + V S S S S S(c, z+, z+, c, c)

+ V S S S S S(z+, c, c, c, z+), (42)
4

h4
�W S F F = 4W S F F (c, c,0, z)

+ W S F F (z−, z+,0,0) + W S F F (z+, z−,0,0)

+ W S F F (z−, z−,0,0) + W S F F (z+, z+,0,0), (43)

4

h4z
�V S S S F F = 2V S S S F F (z−, c, c,0, z)

+ 2V S S S F F (z+, c, c,0, z) − V S S S F F (c, z−, z+,0,0)

− V S S S F F (c, z+, z−,0,0) + V S S S F F (c, z−, z−,0,0)

+ V S S S F F (c, z+, z+,0,0), (44)

2

h4
�V F F F F S = 4V F F F F S(0, z, z,0, c)

+ 2V F F F F S(z,0,0, z, c) + V F F F F S(z,0,0,0, z−)

+ V F F F F S(z,0,0,0, z+). (45)

The complete analytical form of the function fh,2(x) which en-
ters the 2-loop contribution to soft mass (19) is:

fh,2(x) =
1

72x2(1 − x2)2

[
12(x + 1)2

(
x2 − 2x + 2

)
x2Li2(1 − x)

− 12(x − 1)2
(

x2 + 2x + 2
)

x2Li2

(
1

x + 1

)

− 24
(

x2 + 1
)

x3Li2

(
1 − x

1 + x

)
+ 48x5 ln(2x)artanh(x)

− 12x4 ln x ln(x + 1) − 24(x2 − 1)(x − 1)x3ζ(2)

+ 48x3 ln(2)artanh(x) + 24(x2 − 1)x2

− 6(x2 − 1)
(

19x2 − 20
)

ln
(

1 − x2
)

− 12x(x2 − 1)
(

7x2 − 10
)

artanh(x)

+ 12
(

x4 + 2
)

x2 ln x ln
(

1 − x2
)

− 3(x + 1)2
(

4x4 − 5x3 − 10x2 + 31x − 16
)

ln2(x + 1)

+ 12 ln(1 − x)
[

x2
(

x3 − x2 + x + 3
)

ln(x + 1) − x4 ln x
]

− 3(x − 1)
(

2x5 + 3x4 − 11x3 − 17x2 + 15x + 16
)

ln2(1 − x)

]

− 1

6x2(1 − x2)
(2 − x2)

[
x arctanh(x) + ln(1 − x2)

]
. (46)

This function can be found altogether with some additional mate-
rial in www.tjel.us.edu.pl/tools.html.
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