
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 130, 55-77 (1988) 

Paracompactness in Fuzzy Topological Spaces* 

MAO-KANG Luo 

Department of Mathematics, Sichuan University, China 

Commumcated by L. Zadeh 

Received May 17, 1985 

In this paper, we introduce two kinds of fuzzy paracompactnesses which are 
defined on general fuzzy subsets. Each of them is a good extension of crisp 
paracompactness. They are all hereditary with respect to closed subsets and take 
N-compactness and some other compactnesses in fuzzy topological spaces as special 
cases of them. Furthermore, in a class of spaces (so-called “weakly induced spaces”) 
which connects crisp spaces with fuzzy spaces, both a fuzzy regular Lindeloff 
property and a fuzzy pseudo-metric property imply these two kinds of paracom- 
pactnesses. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Paracompactness describes the relation between a locally finite property 
and an entire property of spaces, occupies an important position in general 
topology, and is a problem in fuzzy topology which attracts the attention 
of all of us. But up until now, fuzzy paracompactness has not had a better 
or more ideal definition. There were some works about this problem [ 1,2], 
but the definitions of them used the rather special “B set” or depended 
upon the concepts of covers; all have many limitations. In fact, neither 
takes one of the N-compactnesses [3] or some other compactness in fuzzy 
topological space as a special case and is not a good extension [4] of crisp 
paracompactness. One of the purposes of setting up fuzzy paracom- 
pactnesses in this paper is to overcome these limitations. Moreover, there 
exist close relations among the metric property, the Lindeloff property, and 
paracompactness, and trying to set up or discover these relations within 
the scope of fuzzy topology is also a purpose of this paper. 

The complex nature of the neighborhood structure in fuzzy topological 
space makes the relation between the local property and the entire 
property of fuzzy topological space more diflicult to handle. On the other 
hand, the essential difference between fuzzy and crisp topological spaces 
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lies in the differences and connections among each horizontal level of space. 
It is also an important point for deep study of fuzzy topology. In view of 
these situations, after analyzing the above-mentioned purposes, from the 
difference between two kinds of neighborhood structures, this paper has set 
up two kinds of fuzzy paracompactnesses to describe the properties of 
every horizontal level of space. They have the advantages stated in the 
abstract of this paper. We have studied the basic properties of these two 
kinds of paracompactnesses in greater depth, e.g., the problem of 
equivalent description etc. and used full counterexamples to explain the 
relations among the conditions of the theorems and the differences between 
these conditions and crisp situations carefully. By using this paper as a 
foundation, we can study the problems of fuzzy paracompactness more 
fully. 

We let q denote the quasi-coincident relation [5], Q(A) denote the 
Q-neighborhood system of fuzzy set A [S], x denote the characteristic 
function, and ICI denote the cardinality of a crisp set C. The concepts of 
base and subbase for a fuzzy topological space and other concepts which 
have not been defined in this paper are taken from [S]. We let fts denote 
fuzzy topological space for convenience. For every real number a and every 
fuzzy set A on A’, we let aA denote a function such that (aA) = aA for 
every x E X; we let A > a denote the relation A(x) > a for every x E X. If it 
will not cause any confusion, we will call the fuzzy set the set and the fuzzy 
point, the point directly, and we will not often differentiate a crisp set from 
its characteristic function. 

The author is indebted to Professor Liu Ying-Ming for his careful 
instruction. 

2. DEFINITIONS AND BASIC PROPERTIES 

2.1. DEFINITION. Let &, W be two families of sets in fts (X, y). d is 
called a refinement of 93 if for any A E&, there exist a B~99 such that 
A c B. 

2.2. DEFINITION. Let ~2 be a family of sets and B be a set in fts (X, y). 
We say that d is locally finite (resp. *-locally finite) in B if for each point e 
in B, there exists a UE Q(e) such that U is quasi-coincident (resp. inter- 
sects) with at most a finite number of sets of JSZ’; we often omit the word 
“in B” when B = X. 

2.3. DEFINITION. Let A be a set in fts (X, 5) and let aE (0, l], 
p E [0, 1); we define 
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A Cal=X{xEX:A(x)>a], 

A(p)=X' ,xEX:A(x)>p)? 

A <z> =aACz,, 

l,=crx*. 

2.4. DEFINITION. A family of sets &’ is called a Q-cover [6] of a set B if 
for each x~supp(B), there exist an A E& such that A and B are quasi- 
coincident at x. Let a E (0, 11. d is called an a-Q-cover of B if d is a 
Q-cover of B<,>. 

2.5. DEFINITION. Let a E (0, 11, A be a set in fts (X, Y). We say that A 
is cx-paracompact (resp. a*-paracompact) if for each cc-open Q-cover of A 
there exists an open refinement of it which is both locally finite (resp. 
*-locally finite) in A and an U-Q-cover of A. A is called S-paracompact 
(resp. S*-paracompact) if for every c( E (0, 11, A is a-paracompact (resp. 
cr*-paracompact). 

We say that (X, F) is cr-paracompact (resp. cl*-paracompact, 
S-paracompact, S*-paracompact ) if set X is or-paracompact (resp. 
cr*-paracompact, S-paracompact, S*-paracompact). 

2.6. Remark. It is obvious that 

*-locally finite * locally finite, 

so we get the relations 

or*-paracompact * cr-paracompact, 

S*-paracompact * S-paracompact; 

but it is easy to find that the inverses of these relations are not true. 

2.7. THEOREM. Ultra-fuzzy compact [4] spaces, N-compact spaces, and 
strong fuzzy compact [4] spaces are S*-paracompact. 

Proof: It is obvious that strong fuzzy compact spaces are S*-paracom- 
pact. On the other hand, from [3] we know that for each fts there exists 
the relation 

ultra-fuzzy compact +- N-compact s strong fuzzy compact, 

so the theorem is true. 1 

2.8. THEOREM. Q-compact [6] fts is l*-paracompact. 
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2.9. EXAMPLE. There exists a fuzzy compact [7] fts which is not 
1-paracompact. Let X= [O, + 00) for each x E X, let 

eCy, 
u,(Y)= o 

L 

o<y<x, 

y <XT 

U,(y) = e-y, YEX 

~={U,,X}U{U,:xEX}, 

then it is easy to know that (X, Y) is a fuzzy compact fts. Let 
4! = ( U,: x E X}, Q is an open Q-cover of X. Let V be both an open 
refinement of +Z! and an open Q-cover of X, then from the structure of r 
we know Y c %!. Furthermore we have sup{ x: U, E V} = + co, so 
IV-1 2 CD. Hence V is not locally finite at the fuzzy point (O),, and (X, Y) 
is not 1-paracompact. 

2.10. DEFINITION [S]. An fts (X, Y) is called a T,-fts if for each pair of 
fuzzy points x1, y,, x#y, there exist UEQ(XJ and VeQ(yp) such that 
Un v= 0. 

2.11. THEOREM. Zf T2-fts (X, 5) is fuzzy compact, then (X, F) is 
S-paracompact. 

Proof: From [3] we know that every fuzzy compact T,-fts is strong 
fuzzy compact, hence we know from 2.7 that the theorem is true. 1 

2.12. THEOREM. Ifa family of sets {A,),, T of fts (X, Y) is locally finite 
in a set A, then 

u A,nA= u (A,nA). 
IET lET 

Proof: It need only to show that UtETA,nAcU,..(A,nA). Let 
B=Ur.T A, and e E Bn A; then from [S] we know that e is an adherence 
point of B. Since (AI},ET is locally finite in A, so there exists a VE Q(e) 
which is quasi-coincident with only a finite number of members A,,,..., A,” 
of {At)t.T- If e C U;= I A,, then there exists a Vim Q(e) which is not quasi- 
coincident with A, (i= l,..., n). Let V, = (fly=, V,)n V, we have VOW Q(e) 
and V,, is not quasi-coincident with any A,, so VO is not quasi-coincident 
with B. This is in contradiction with the fact that e is an adherence point of 
B, hence eEUr=, (A,,nA)cU,,.(A,nA). m 
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2.13. COROLLARY. I/’ a family of sets {A,},, T of fts (X, Y) is locally 
finite in a set A and II, t T A, c A, then 

2.14. THEOREM. If a family of sets {A,} fE T of fts (X, .Y) is locally finite 
in a set A, then the family of sets {A,} fE T is also locally finite in A. 

2.15. DEFINITION. An fts (X, Y) is called to be regular if for each 
point e in (X, Y) and each UE Q(e), there exists a VE Q(e) such that 
vc u. 

2.16. Remark. [8] has proved that 2.15 is an equivalence form of the 
definition of regularity in [9]. 

2.17. THEOREM. Let A, B be sets in a regular fts (X, Y) and each open 
Q-cover of A have a refinement which is both locally finite in B and a 
Q-cover of A. Then for each open Q-cover { U,} ,E T, when U ,E T U, c B, there 
exists a closed Q-cover {F,} t t T of A which is locally finite in B such that for 
each tE T we have F,c U,. 

Proof. From the regularity, A has an open Q-cover w such that 
(I?‘: WE “V} is a refinement of {U,},ET. Take a Q-cover (A,},ES of A 
such that {A,},ES is both a refinement of %‘” and locally finite in B. From 
the way we get %‘” we know that there exists a mapping j S + T such that 
2, = Uf(r,. Let F, = U (A,:f(r) = t}; then from 2.13 we know that F, is 
closed set, and it is easy to know from 2.14 that the closed Q-cover (F,},, T 
of A is locally finite in B. Furthermore, for each t E T we have F, c U,. i 

If we let the A.‘s in the proof of 2.16 be open, then next theorem is 
obvious. 

2.18. THEOREM. Let A be an u-paracompact set in a regular fts (X, Y), 
then for each u-open Q-cover {U,} IE T of A, when UIE T U, c A, there exists 
an u-open Q-cover { V,} ,E T of A which is locally finite in A and for each 
tETwe have P,cU,. 

2.19. DEFINITION. Let a~ [0, 1). We say that fts (X, Y) is a-crisp if for 
each U E Y we have UCa, E Y. 

The proof of next theorem is direct. 

2.20. THEOREM. If a family of sets {A,),, T in a O-crisp fts (X, Y) is 
*-locally finite in a set A, then so is the family of sets {A,},, T. 
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The example below explains that why O-crispness is a conditioll which 
cannot be eliminated from 2.20. 

2.21. EXAMPLE. Let X [0, 1). For each c1 E X and each n E N, we let 
I!J~=cLx~~,~) and ,4,=(1-l/n),, then ~={U,:~(EX}U{X} is a fuzzy 
topology on X and {A, : n E N} is a *-locally finite family of sets in (X, F). 
But the family of sets (A, : n E N) is not *-locally finite in X, because we 
have 2, = (U, ~ ,,n)’ > 0. 

Being similar to 2.17 and 2.18, we have two theorems below: 

2.22. THEOREM. Let A, B be two sets in O-crisp regular fts (X, F). Sup- 
pose that each open Q-cover of A has a refinement which is both +-locally 
finite in B and a Q-cover of A, then for each open Q-cover { U, } I E T of A, 
when U,, ,U, c B, there exists a closed Q-cover {F,} ,E r of A which is 
*-locally finite in B and for each t E T we have F, c U,. 

2.23. THEOREM. Let A be an a*-paracompact set in a O-crisp regular fts 
(X, Y). Then for each a-open Q-cover { U,} ,E r of A, when U,, T U, c A, 
there exists an a-open Q-cover ( Y, >, E T of A which is *-locally finite in A 
such that for each t E T we have 8, c U,. 

2.24. THEOREM. If A an a-paracompact (resp. a*-paracompact) set in fts 
(X, Y), then for each closed set B in (X, Y), each a-open Q-cover of set 
B n A has an open refinement which is both an a-Q-cover of B n A and 
locally finite (resp. *-locally finite) in A. 

Proof We only prove the case of cr-paracompactness. Let 9 be an 
a-open Q-cover of C = Bn A; then G! u {B’} is an open Q-cover of A<,) 
and it has an open refinement V which is both locally finite in A and a 
Q-cover of A(,,. Let ^y;,= (VEV: HUE@, Vc U}, then V0 is an open 
refinement of 9 which is locally finite in A. We say with certainty that V0 is 
a Q-cover of C,,, . Suppose that it does not hold, then there exists a 
x E supp(C(,,) such that (U 9$)(x) < 1 -a. But V is a Q-cover of A,,,, so 
from Cca> c 4,) we know that there exists a T/E V such that 
V(x) > 1 - ~1. Since V is a refinement of 4? u f B’} we know Vc B’; from 
C(x) zu we know B(x)>a. Hence 

l-cr<V(x)<B’(x)<l-a; 

this is a contradiction. 1 

2.25. COROLLARY. Every closed set of an u-paracompact (resp. 
a*-paracompact) fts is or-paracompact (resp. a*-paracompact). 
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2.26. DEFINITION [lo]. Let CI E (0, 11. A set A in fts (X, Y) is called a 
Q,-compact set if each a-open Q-cover of A has a finite subfamily which is 
an a-Q-cover of A. A is called a strong Q-compact set if A is Q,-compact 
for each a E (0, 11. 

2.27. THEOREM. Both N-compact sets and strong Q-compact sets are 
S*-paracompact. 

ProoJ It is obvious that strong Q-compact sets are S*-paracompact. 
On the other hand, from [lo] we know that N-compact sets are strong 
Q-compact, so the theorem is true. 1 

3. PARACOMPACTNESS IN WEAKLY INDUCED FUZZY TOPOLOGICAL SPACES 

3.1. DEFINITION. For each fts (X, Y’), the family of crisp sets 

[s]={AcX:XaEF} 

is called the original topology of Y and the crisp topological spaces 
(X, [S] ) are called original topological spaces of (X, 5). 

3.2. Remark. The fact that [Y] is a crisp topology on X is certain. 

3.3. DEFINITION [ 111. We say that fts (X, r) is a weak inducement of 
crisp topological space (X, YO) if [S] = FO, and every UE 9 is lower 
semi-continuous when we regard it as a mapping between (X, &) and 
[0, 11. We say (X, Y) is weakly induced if there exists a crisp topological 
space (X, YO) such that (X, Y) is a weak inducement of (X, &). 

3.4. Remark. Clearly, every induced fts is weakly induced, but the 
inverse is not true. Hence the concept of weak inducement is a real exten- 
sion of the concept of inducement. Since the concept of induced fts is an 
extension of the concept of crisp topological space, hence so is the concept 
of weak inducement. 

From the properties of lower semi-continuous functions which are well 
known by us, we have 

3.5. THEOREM. (X, Y) is a weakly induced fts if and only if (X, 5) is 
a-crisp for every a E [0, 1). 

3.6. THEOREM. For every weakly induced fts (X, Y) the following con- 
ditions are equivalent : 

(i) (X, F) is S*-paracompact. 

(ii) There exist a a E (0, 1) such that (X, Y) is a*-paracompact. 
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(iii) (X, Y) is S-paracompuct. 

(iv) There exist a c1 E (0, 1) such that (X, F) is a-paracompuct. 

(v) (X, [S]) is puracompuct. 

Proof: (i) = (iii) * (iv) Obvious. 
(iv)*(v) Let 92 c [S] be an open cover of X; then {x0: UE%} is an 

open Q-cover of 1, and it has a locally finite open refinement V which is a 
Q-cover of 1 a also. Let W = ( V,, _ zj : VE V}; then W is both a refinement 
of % and a cover of X. From the properties of weak inducement we know 
W c [S], so we need only to prove that W is locally finite. For each 
XEX, take 0, E Qr(xl -,) such that 0, is quasi-coincident with only a 
finite number of members VI,..., V,, of V. Let O= (O,),,,; then 
XEOE[Y]. For each VE”Y, if On I’,,-.,#Iz(, we have a crisp point 
ycOn VclPajr hence O,(y)>a, V(y)> l-a, O,(y)+ V(y)> 1, and 0 
and V are quasi-coincident, so VE {VI,..., V,,}. Hence the neighborhood 0 
of x intersects with only a finite number of members ( V1)(l PoLj, . . . . (I’,)(, -aj 
of W. 

(v)*(i) For each aE(0, 11, let %!cY be a Q-cover of 1,. Then from 
the properties of weak inducement we know that the family of crisp sets 
{U,, -aj: UE 42} is an open cover of (X, [S]) and it has a locally finite 
open refinement V c [S] which is a cover of X. For each VE Y take a 
U”E% such that Vc(U,,)(,~~) and let W= {x,.nU,: VEY}. Then 
W c Y is both a refinement of 42 and a Q-cover of 1,. For each x E X and 
each 1~ (0, 11, take a OEN~~,(X) such that 0 intersects with only finite 
number of members of V. Then x0 E Q5(x,) intersects with only a finite 
number of members of W. So we know from the arbitrariness of a that 
(X, Y) is S*-paracompact. 

(ii) o (i) Clearly (ii) * (iv); furthermore we have proved (iv) 3 (i), so 
we can know (ii)o (i) from (i) * (ii). 1 

3.7. COROLLARY. Both S-purucompuctness and S*-paracompactness are 
good extensions [4] of crisp parucompuctness. 

3.8. EXAMPLE. The open interval (0, 1) in 3.6 cannot be substituted by 
the half open interval (0, 11. Let X= [0, 1) and 

then we can use 9 as a subbase to generate a weakly induced fuzzy 
topology Y on X. 

Let 42 c 9 be a Q-cover of 1 1 = X. Generally, we can suppose that every 
member of 62 is not empty and cannot consist of a Q-cover of X by itself. 
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Then we can see from the structure of 9 that for each U E (4% there exists a 
.Y u E X such that 

Since 42 is a Q-cover of X, so sup { x u: U E “%I } = 1. Take a countable family 
VJilieN c% such that sup{X,,:i~N}= 1 and let Vj=lIjznUi; then 
II’= WLN is both an open refinement of 42 and a Q-cover of X. For 
each XE X and each 1~ (0, 11, take k E N such that l/k < A; then 
1 1 _ I,k E Q(x,) and is not quasi-coincident with Vi when i 2 k. Hence V is 
locally finite in X and (X, Y) is 1-paracompact. 

But it is easy to show that 

CSI = ($4 x> u { co, x): x E XI, 

so YY = { [0, x): x E X} is an open cover of (X, [S] ). Clearly, -llr has not 
any locally finite open refinement which is a cover of X, so (X, [S]) is not 
paracompact. 

3.9. Remark. We can know from 3.6 and 3.8 that there exists a 
1-paracompact fts which is not a-paracompact for every CI E (0, 1). 

3.10. LEMMA. For every weakly induced fts (X, Y), if there exist an 
tl E (0, 1) such that every cc-open Q-cover of X has a locally finite closed 
refinement which is a u-Q-cover of X, then (X, Y) is cl-paracompact. 

Proof: Let 92 be an open Q-cover of 1%. Take a locally finite refinement 
Jd= {AJ,ET of 42 such that d is a Q-cover of 1,. We let /? denote 
minta, 1 - or}, then fl E (0, 1). Take U,x E Q(xP) such that U, is quasi-coin- 
cident with only a finite number of members of d and let 
~TX=(UX)(I--01)nU,;then~,={ZT,:xEX}isanopenQ-coverof1.andit 
has a locally finite closed refinement 9 which is Q-over of 1, also. For 
each t E T let 

then W, E Y and, for each FE 9, we have 

W,qF- (A,),, --5L) qF. 

Take U, E @ for each t E T such that A, c U, and let 

(*) 

V,=(W,),,-B,nU,. 

Then -Y= {I’,},,, is an open refinement of 42. For each x E X, take a t E T 

409:130:1-s 
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such that A,(x)> 1 -a. Since W,x (A,),, zj, we have W,(x)= 1 > 1 -p, 
SO 

V,(x) = U,(x) 2 A,(x) > 1 -a; 

hence V is a Q-cover of 1, also. 
At last we prove that V is locally finite. For each XE X and each 

1~ (0, 11, let y = min(1, fl}, take UE Q(x,) such that U is quasi-coincident 
with only a finite number of members F, ,..., F, of F. For each i E ( l,..., n 1, 
take a X’E X such that F, c 0,; then from the way we get 42, we know the 
set T, = {t E T: A,q u;= 1 s,,j is finite. It can be said with certainty that for 
each t E T and each i E { l,..., n} we have 

In fact, if (A,)(, -uj qF,, then there exists a YE X such that A,(y) > 1 -a, 
8Jy) 3 Fi(y) > 0, o,(y) + A,(y) > 1 - /l+ 1 - a 2 a + 1 - a = 1, and 
Atq UT=, k tE T,. So take V= UCIPYJ n U, then VE Q(x~). If VqV,, 
then there exists a y E X such that V(y) > 1 - y > 1 - /?, V,(y) > 0. Take 
FE 9 such that F(y) > 1 - a < /I, then VqF, FE (F, ,..., F, ). On the other 
hand, since V,(y) > 0, so W,(y) > 1 - & W,qF. From relation (*) we have 
(A,)C,-,, qF and from relation (**) we know that te r,. So V is quasi- 
coincident only with the members of the finite subfamily { V,: t E T,) of V 
and V is locally finite. 1 

3.11. DEFINITION. Let d be a family of sets and B be a set in fts 
(X, 5). We say that d is u-locally finite (respectively: a*-locally finite) in 
B if d can be represented as a countable union of subfamilies and each of 
these subfamily is locally finite (respectively: *-locally finite) in B; we often 
omit the word “in B” when B = X. 1 

3.12. LEMMA. Let aE (0, 11. Zf (X, Y) is a (1 - a)-crisp fts, then each 
a-locally finite a-open Q-cover of X has a locally finite refinement which is a 
a-Q-cover of X also. 

Proof. Let V= UicN 6 be an open Q-cover of 1 a ; here every 
K= {GET, is locally finite in X and T, n T, = @ when i # j. For each 
ieN and each tE T we let 

A,= V,n LJ iJ (V,,),,.~., ( 3 
k<ir’eTk > 

then d is a refinement of V. 
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For each x E X, let i,, = min{ i E N: U K‘E Q(x,)} and take t,, E T, such 
that V,,, E Q(X,). Then from the fact that for each k < i0 and each t E Tk we 
have V,(x) d 1 -a and we have A,,(x) = k’,,,(x) > 1 - a and d is a Q-cover 
of 1,. On the other hand, for each I. E (0, l] and i= l,..., i,,, take Ui~ Q(x,) 
such that ZJi is quasi-coincident with only a finite number of members of 
q. Let 

U= U,n ... n Uion(V,,),,-.,; 

then U E Q(x),) and, for each iE N, i> i,, and each t E Ti, we have 

U and A, are not quasi-coincident. Since for each iE {l,..., i,}, U is quasi- 
coincident with only a finite number of members of {A, > , E =, , so U is quasi- 
coincident with only a finite number of members of d and d is locally 
finite. 1 

3.13. EXAMPLE. (1 - a)-crispness is the condition which cannot be 
eliminated from 3.12. Take X= [0, + 00 ), let Y0 denote usual crisp 
topology on X. For each /I E [0, 1 ] let 

then we can use 9 as a subbase to generate a fuzzy topology on X. Since 
F0 has a countable base, we can see easily that Y has a countable subbase 
9, c 9’ and hence Y has a countable base. Hence every open Q-cover of 1 a 
has a o-locally finite open refinement for every a E (0, 11. Furhermore, we 
can know that (A’, Y) is a T,-fts from Y. c Y-. But the open Q-cover 
w*,3> ” {x(1,“- 1/2n(n + 1),1/n + 1/2n(n + 1) ): n E N} of 11,2 does not have any 
locally finite refinement which is a Q-cover of l,,, also. 

3.14. THEOREM. For every regular weakly induced fts (X, LT) the 
following conditions are equivalent: 

(i) (X, Y) is S-paracompact. 

(ii) For every a E (0, 11, every a-open Q-cover of X has a o-locally 
finite open refinement which is an a-Q-cover of X also. 

(iii) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a a-localy finite open refinement which is an a-Q-cover of X also. 

(iv) For every a E (0, 11, every a-open Q-couer of X has a focally 
finite refinement which is tin a-Q-cover of X also. 
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(v) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a locally finite refinement which is an a-Q-cover of X also. 

(vi) For every a E (0, 11, every a-open Q-cover of X has a locally 
finite closed refinement which is an a-Q-cover of X also. 

(vii) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a locally finite closed refinement which is an a-Q-cover of X also. 

Proof (i) * (ii) - (iii) Obvious. 
(iii) * (v) From 3.12. 
(v) * (vii) From 2.17. 
(vii) * (i) From 3.10 and 3.6. 
(i) * (iv) Obvious. 
(iv) * (vi) From 2.17. 
(vi) =z. (i) Clarly, we have (vi)= (vii). On the other hand, we have 

proved (vii)=+ (i). So (vi)= (i). 1 

3.15. THEOREM. For every regular weakly induced fts (X, Y) the 
following conditions are equivalent; 

(i) (X, 5) is S*-paracompact. 

(ii) For every a E (0, 11, every a-open Q-cover of X has a a*-locally 
finite open rejmement which is an a-Q-cover of X also. 

(iii) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a @-locally finite open refinement which is an a-Q-cover of X also. 

(iv) For every a E (0, 11, every a-open Q-cover of X has a *-locally 
finite refinement which is an a-Q-cover of X also. 

(v) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a *-locally finite refinement which is an a-Q-cover of X also. 

(vi) For every a E (0, 11, every a-open Q-cover of X has a *-locally 
finite closed refinement which is an a-Q-cover of X also. 

(vii) There exists an a E (0, 1) such that every a-open Q-cover of X has 
a *-locally finite closed refinement which is an a-Q-cover of X also. 

Proof (i) = (ii) =z- (iii) Obvious. 
(iii) =+ (i) Clearly we have: (iii) =z. 3.14(iii) * 3.14(i) 3 (i). 
(iv) * (vi) From 2.22. 
(vi) * (iv) Clearly we have: (vi) a 3.14(vi) * 3.14(i) * (i) - (iv). 1 

The following lemma can be proved easily: 

3.16. LEMMA. Let 9 be a subbase of an fts (X, 5). Iffor each point e in 
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(X, .f 1 and each UE~ n Q(e) there exists a VE Q(e) such that rc U, then 
(X, .U ) is regular. 

3.17. EXAMPLE. There exist an fts (X, Y) such that: 

(i) (X, Y) is regular; 
(ii) (X, 9) satisfies condition (vi) of 3.15; 
(iii) (X, Y) is not a-paracompact for every c( E (0, 11. 

Take X= ol. For each c( E (0, l), each /? E (0, 11, and each x E X, let 

then we use ?? as a subbase to generate a fuzzy topology F on X. 

Proof of (i). Take x E X, 3, E (0, 11, and UE B n Q(x,) arbitrarily. If 
U E Pi, then 0 = U hilds naturally. If U E ~9” and U = U,, , then x = 0 or 
x=y. If x=0, take cc~(O, 1) such that l-A<a<fi; then we have 
U, E Q(x,) and 0, = U, c U. If x =y, take CI E (0, l] such that 
O<l-cr<fl; then we have V;,x = UI - oL,x E Q(xj.1 and 
c = K,, = u, - a,x c U. If UEY* and U= I/,,, then x=0 or x#O. If 
x = 0, take c( E (0, 1) such that 1 - A< c( < fi; than we have U, E Q(x,) and 
O,=U,cU. If x#O, take cc~(O, l] such that O<cr<B; then we have 
K.,, E QW and 6, = u,, c U. So we have proved that (X, 5) satisfies 
the condition in 3.16; hence (X, .Y) is regular indeed. 

Proof of (ii). Let 42 be an open Q-vector of 1,. Since V,,, E F for each 
=X\{Oj, so vi,, is a closed set. Take U. E % such that U. E Q( (0),) and 
fi E (0, 1) such that 1 - CI < /? < Uo(0); then U, E Q((O),) is a closed set too. 
so 8= {U,}u {v;,x:xEX\{O}} is a closed refinement of $2 which is a 
Q-cover of 1, also. Clearly, 9 is *-locally finite. 

Proof of (iii). ?A! = { U,,x: x E X} us an open Q-cover of 1, for each 
tl E (0, 11. From the structure of 9 we can know that U(0) > 0 holds for 
every U E .Y indeed, so if Y is both an open refinement of %! and a Q-cover 
of 1 oL, then there must exist a crisp set {a,: x E X\(O) } c (0, l] such that 
{ uw : x~X\(O})c”lr. Since IX\{O}l =ol, there exists a keN and an 
uncountable crisp subset C of X\(O) such that {a,: x E C} c (l/k, 11. 
Then for each U E Q( (0),,,) and each x E C we always have 

u(o)+ u,x,,(o)> 1-t+;= 1, 



68 MAO-KANGLUO 

which means that every Q-neighborhood of point (O),,, is quasi-coincident 
with every member of the uncountable subfamily { Ua,,x: XE C} of V, V is 
not locally finite. 1 

4. PARACOMPACTNESS AND LINDEL~FF PROPERTIES 

4.1. DEFINITION. Let a~ (0, 1). We say that a set A in fts (X, 5) is 
cr-Lindeloff if every a-open Q-cover of A has a countable subfamily which is 
a Q-cover of A also. We say that A is S-Lindeloff if A is a-Lindeloff for 
every a E (0, I]. 

We say that (X, Y) is a-Lindeloff (resp. S-Lindeloff) if set X is 
a-Lindeloff (resp. S-Lindeloff). 

4.2. THEOREM. Ultra-fuzzy compact spaces, N-compact spaces, and 
strong fuzzy compact spaces are S-LindeltifJ 

Being similar to 2.24, we have 

4.3. THEOREM. If A is an a-Lindeliiff set in an fts (X, Y), then for every 
closed set B in (X, F), set B n A is a-Lindelcff too. 

4.4. COROLLARY. Every closed set in an a-LindelGff is a-Lindelii,ff: 

4.5. THEOREM. If A is an S-Lindeltiff set in an fts (X, F), then for every 
family of sets 59 which is locally finite in A, %? is countable when Cn A # @ 
for every CE W. 

ProoJ: For each n EN and each x E supp(A(,,,,), take U,,, E Q(x~,,,) 
such that U,,, is quasi-coincident with only a finite number of members of 
%?. From the S-Lindeliiff property of A, for each n E N, there exists a coun- 
table subfamily %,, of { U,,+: x E supp(A,,,,>)} which is a Q-cover of 
A<yn>. So Q= Unciv %n is countable; hence u S is quasi-coincident with 
at most a countable number of members of K On the other hand, since 
supp(A),c U 43 and Cn A # a for every CE %, we know that 
Cn(IJQ))#@foreveryCE%,so%?iscountable. 1 

4.6. EXAMPLE. A locally finite family in a l-Lindeloff fts which consists 
of nonempty sets need not be countable. Let X be the set of all the real 
numbers. For each x E X and each E > 0, let U,, = xtx) u (+x~~-~,~+~)) and 
use {Uxs: x E X, E > 0} as a subbase to generate a fuzzy topology Y on X. 
Then it is obvious that (X, Y) is 1-Lindeloff. Take V = (ix{,): XE X}; then 
%’ is locally finite but is uncountable. 
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4.7. THEOREM. If a weakly induced fts (X, 9) is regular, then so is its 
original topological .space (X, [S] ). 

Proof: For each x E X, let N[,,(x) denote the neighborhood system of 
x in (X, [Y]); then x,~Q,(x,) for every iY~Nt~,(x). Take VoQr(xl) 
such that Pcxv and take c1 such that O<cr< V(x), then 
V(a) = (~),,, = xv. Since (X, r) is weakly induced, from 3.5 it follows that 
there exists an x E supp( V,,,) E [S] and sup(( V)r%,) c U is a closed set in 
(X, [S]). So if we let W= supp( I/,,,), then the following relation holds in 
(X CT]): 

XEWCWCU. 1 

4.8. EXAMPLE. A weakly induced fts (X, 7) of a crisp T,-topological 
space (X, YO) need not be regular. Let (X, YO) be the usual real number 
space and 2Y = {xU, fxv: U E YO}; then we can use 2 as a base to generate 
a fuzzy topology Y on X, and we can see that (X, Y) is a weak 
inducement of (X, YO). But for each x, X, and the Q-neighborhood 1 2,,3 of 
x,/2 there does not exist any VE Q(xli2) such that PC lzil. 

4.9. THEOREM. Zf a regular S-LindelGff fts (X, F) is (1 - cc)-crisp, then 
(X, 5) is cc-paracompact. 

Proof. Let % be an open Q-cover of 1,. From the S-Lindeloff property 
we know that 42 has a countable subfamily { Ui}ieN which is a Q-cover of 
1 a. So there exists a mapping f: X + N such that 

f(x)=min{iEN: U,(x)> 1 -N}. 

For each n E N and each XE X, from the (1 - cc)-crispness and regularity, 
we can take Vn,x~ Q(xI,,J such that Vn,x~ (U~.(lj)Cl~orj. Take a countable 
subfamily { I/n,+,: je N) of { Vn.x: x E X} such that it is a Q-cover of 1 ,,nr 
let VnJ denote V,,xn,j, and for each iE N let 

wi= uin u {P,,: 
( 

n<i,j<i,f(x”j)<i} ; 
> 

then W = { Wi}isN is an open refinement of 92. For each x E X we have 
UYCx,(x) > 1 - u, from the demtiition we have P,,, c ( UfC.pjj)Cl _ aI, and when 

f(x”j)<f(x) we have 

Wf&) = ufc&) > 1 - a, 

where W is a Q-cover of 1,. On the other hand, for each x E X and each 
1 E (0, 11, take n EN such that l/n < I; then there exists a .j~ N such that 
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VJx) > 1 - l/n 3 1 - 1, so Vnje Q(x). Hence when i> max [fl,j,f(xflJ)} 
we have 

Vnjc pnJc u { r,,,k: m< i, k<i,f(Pk)<i) c W:, 

where V,,J and Wi are not quasi-coincident and -ly- is locally finite. 1 

4.10. COROLLARY. Every weakly induced regular S-LindelGff fts is 
S-paracompact. 

4.11. EXAMPLE. There exists a regular T,-fts (X, F) which has a coun- 
table base (so it is S-Lindeloff), but it is not 1-paracompact. 

We take X= [0, + co), let F0 denote the usual crisp topology on X, and 
let 

Uo=fX(o)v ~,=(fX~o))“Xx\(:O]“{I/n:nEN])~ 

P= {U,, U&, U,} u {xl): Ue%}; 

then we can use 9 as a subbase to generate a fuzzy topology F on X. 
Thereupon we have 

(i) (X, Y) is T&s. It is obvious. 
(ii) (X, F) is regular. In fact, for each fuzzy point e, from the way 

we take 9 we can know that for each UE 9 n Q(e), there exists a VE Q(e) 
such that BC U. Hence we know from 3.16 that (X, 9) is regular. 

(iii) (X, F) has a countable base. Since F. has a countable base, we 
can see that F has a countable subbase Pi c B and so F has a countable 
base. 

(iv) The open Q-cover @ = l u1 > u hln - 1/2n(n + l),lln + 1/2n(n + ,)I: 
n E N} of X does not have any open refinement V which both is a Q-cover 
of X and locally finite on point (O),,,. In fact, for each n E N, let V,, E 9’” 
such that V,( l/n) > 0, then from that V is a refinement of % we can know 
vn = x ) so V,,,nV,=@ when m#n, so the (l/n ~ 1/2n(il+ I), I/n + 1/2n(n + 1) 3 

correspondence l/n++ V, is one to one. On the other hand, we have 
U(0) > i for each U E Q((0,,2), so from the structure of 9 we know that 
there exists a U. E To such that U 1 xUO. Hence U is quasi-coincident with 
an infinite number of V,. 

4.12. EXAMPLE. O-crisp regular I-Lindeltiff fts need not be l-paracom- 
pact. Let X = [0, + co) and 

q={uEzX:3xEX, l{yE[O,X]: U(y)#;}I<o, 

UC@, +“O)lm-% VH>~ 

92 = { u(0): UE %}>, 
P=C$;vsp2; 

then we can use 9 as a subbase to generate a O-crisp fuzzy topology y. 
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Take a fuzzy point x1 from (X, 9) arbitrarily; for each UE~$ n Q(x,), 

let W~X,~,,,) u xix) and V=Un W. Then v~Q(xJn9),, V is an 
open-closed set, and we have 8= V c U; and for each U E PI n Q(x~), U is 
closed, and certainly we have DC U. So from 3.16 we know that (X, Y) is 
regular. 
Now we will prove that (X, Y) is 1-Lindeliiff. For each U E F-, let 

X,=inf(xEX: U[(x, +a~)]= (O)}, 

F,= {XE [O, xu): U(x)=O); 

here the intimum of the empty set is defined as + co. Let 

then $8 is the base of Y. For each U E F-, suppose that U = U d, d c 68, 
then from the properties of real number space we know that there exists a 
countable subfamily &r of d such that 

sup(x,: VE &/,} = xu. (*I 

Since 1 FJ < o for each VE g’, it also does for each V E &r. From the 
equality (*) and IdI] < w we have 

Let 42 be an open Q-cover of X; then sup{ xU: UE %2} = + co. Take a coun- 
table subfamily { Ui}icN of @ such that sup{x,: in N} = + GO; then from 
the inequality (**) we have I U {F,, : i E N} I < o and from the definition of 
F, we can easily find that 42 has a countable subfamily which is a Q-cover 
of X also, so that (X, Y) is 1-Lindeliiff. 

At last, we will prove that (X, Y) is not 1-paracompact. Let 
Y = {txr,,, Xj: x E X}, then Y is an open Q-cover of X. Suppose that an 
open refinement W of V is a Q-cover of X, then from the l-Lindeliiff 
property we have proved we can suppose that W is countable. For each 
UE F-, let CU = {x E [0, xU): U(x) < $}; then we can see that lCUl 6 w for 
every UE 99. Similar to the proof of (**) we can prove that IC,( <w for 
every U E Y. Hence C = U {C,: WE W > is countable. Take x0 E X\ C; 
then for each WE W, when xW > x0, we have W(x”) = 4. So from 
sup{x,: WE W} = + co and the fact that W is both an open refinement of 
Y and a Q-cover of X, we know that there are an infinite number of mem- 
bers of W which take the value 4 at point x and each Q-neighborhood of 
(x0) l,Z is quasi-coincident with an infinite number of members of W. 
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4.13. THEOREM. For every weakly induced fts (X, Y) the following 
conditions are equivalent: 

(i) (X, Y) is S-Lindelii,ff: 

(ii) There exists an c( E (0, l] such that (X, Y) is a-LindelGfJ 

(iii) (X, [S]) is Lindeliijj? 

Proof (i) + (ii) Obvious. 
(ii)+(iii) Let SC [9] be a cover of X, then {xc/: UE%!~C.Y is a 

Q-cover of 1 a ; it has a countable subfamily {x U, : i E N} which is a Q-cover 
of 1, also. Then {UiJiEN is a countable subcover of a’. 

(iii)=(i) For each C(E (0, 11, let % c .Y be a Q-cover of 1,; then 
pl,ul: UE%‘) = CSI is a cover of X and it has a countable subcover 

, c,-aJ: ieN}, here {Uj}i.,~%. Hence {Ui}rGN is a Q-cover of 1, 
too. 1 

From 4.13, 4.10, and 3.6 we have 

4.14. THEOREM. Zf there exists an c1 E (0, l] such that a weakly induced 
regular fts (X, Y) is a-LindelifA then (X, Y) is S-paracompact. 

5. PARACOMPACT IN METRIC SPACES 

5.1. DEFINITION [ 121 Let L be a completely distributive lattice with 
order reversing involution a I--+ a’: 

(a) A mapping p: Lx x Lx + [0, cc ] is called a fuzzy p. q. metric on 
X if p satisfies following conditions: 

CM11 ~(4,~) = ~0, nELX\b% 

P(A 1) = 0, lELX, 

PC& 4) = 0, /lELX; 

EM21 ~(4 ,uL) GP(~ P) +P(B, cl), 4 B, P E LX; 

[M3] (i) if I c p, then p(l, fi) >p(p, /I?) for every /I E Lx, 
(ii) P(P, U, &I = V, PM &I; 

[M4] let r be a positive real number, p E Lx, A is a set of 
indexes, and 1, E Lx for every a E A. If 

or~A, figLX, p(LB)<r*BcP, 
then 
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(b) Let 11 be a fuzzy p. q. metric on X. For each r > 0 and each 
2 E Lx, let / 

D,(A) = U {P E Lx: z-d& pu) < r}. 

(Or: r > 0} is called the associated neighborhood maps of p and (LX, p, D,) 
is called a fuzzy p. q . metric space. 

We often omit the word “fuzzy” in the discussion about metric. 

5.2. THEOREM [ 131. Let (Lx, p, D,) be a p. q. metric space, then the 
associated neighborhood map {D,: r > 0} satisfies: 

(Al > D,(d) = 1zI; 

(A2) ;1 c D,(A); 

(A5) D,= v D,. 
s < r 

Proof See also [13 or 123. 1 

5.3. THEOREM [ 131. Let {Or 1 D,: Lx -+ Lx, r >O} be a family of 
mappings which satisfies conditions (Al )-(A5 ). For each %, p E Lx, let 

P(& p) = A {r: p = D,(l)}, 

then p is a p. q. metric on X and {D,: r > 0} is exactly the associated 
neighborhood map of p. 

Proof: See also [13 or 121. 1 

5.4. Remark. From 5.2 and 5.3 we know that a p ’ q. metric and its 
associated neighborhood maps are decided by each other, so we can con- 
sider only one of them. For example, a p. q. metric space can be considered 
as (Lx, D,), where the D,‘s satisfy (Al )-(AS). 

5.5. DEFINITION [12]. A p. q- metric space (Lx, D,) is called a 
pseudometric space if {D, : r > 0} better satisfies the condition: 

(A6) D,= D,‘, 
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where D ~ ’ is defined as r 

D;‘(I) = n {p: D,($) C A’}. 

5.6. DEFINITION [12]. For a p. q. metric space (LX, D,), a topology on 
X which is generated from the base {D,(A): RE Lx, r >O> is called the 
p. q. metric topology of (Lx, D,). Fts (X, Y) is called p. q * metrizable 
(resp. pseudometrizable) if there exist a p. q. metric (resp. pseudometric) 
on X such that the topology it genertes is exactly Y. 

5.7. Remark. As [ 121 has proved, in a p. q. metric space (LX, D,), the 
family {D,(A): ,I E Lx, r > 0 j is a base for a topology indeed. 

5.8. LEMMA [ 133. Let (Ix, D,) be a p. q. metric space and xi. is a fuzzy 
point, then 

s(X,t) = {Dr(xcx): r>O,aE(l-2, l]} 

is a base of the Q-neighborhood system of xi. 

Proof: From (A2) and 5.6 we have 3(x,) c Q(x,). For each UE Q(xJ, 
from [12] we know U= u {A E I*: 3 > 0, D,(A) c U}, so we have an 
A E IX and an r > 0 such that A(x) > 1 - 1 and D,(A) c U. Take c1= A(x), 
then from (A3 ) we have 

D,(x,)cD,(A)c U. I 

5.9. LEMMA. In every pseudometric space (Ix, D,) we have 

h@,(B) 3 Dr,,(A 1 @r,,(B). 

Proof: Since 

Dr,~(D&)) = D,, 0 D,,(B) = D,(B), 

so from A c D,(B)’ we have 

c D,(B)} = D,,(B’). n 

5.10. DEFINITION. Let & be a family of sets and B be a set in fts 
(X, Y). We say that &’ is discrete (resp. *-discrete) in B if for each point e 
in B, there exists a UE Q(e) such that U is quasi-coincident (resp. inter- 
sects) with at most one member of -01; we say that JX? is a-discrete (resp. 
o*-discrete (resp. cr*-discrete) in B if & can be represented as a countable 
union of subfamilies and each of these subfamilies is discrete (resp. 
*-discrete) in B; we often omit the word “in B” when B= X. 
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5.11, THEOREM. If a weakly inducedfts (X, 5) is pseudometrizable, then 
for each u E (0, 11, each a-open Q-cover of X has an open refinement which is 
both a-discrete and locally finite in X, and it is an u-Q-cover of X also. 

ProoJ Let {U,},,, be an open Q-cover of la. Taking a wel-ordering 
relation < on the index set T, we can take a mapping 

f:X+T, f(x)=min{tE T:x,qU,}. 

Let d = {xi.: XE X, I E (0, l)}, then for each x1 Ed we have 
(u/c,,)(,-.,~Q(x,-,), so from 5.8 we know that there exist an r > 0 and a 
/A E (A, l] such that D,(x~) c D,(x,) c ( UrC,,)(i -@,; we can take a mapping 

g:d+N, &J = minb E N: 4,&J c Wfcx,)cl -J 

Let B=i V(1 -a), then /?E [4, 1). We also denote D(A, r) D,(A) for 
convenience. For each i E N and each t E T. let 

wit = u VW, W’h?,: xi E d, f (x) = t, g(xA) = i}; 

then for the same reason used to prove the existence of g, we can take the 
mapping 

hi,r: {Xj. E d: Xj. E Wi,,} ~ N, 

h,,(x,) = min{n E N: D(x,, l/2”) c Wi,,}. 

For i, jE N, we inductively define: 

Ci,rj = (x2 E d: x1 E Wj.r, f (x) = t, g(xA) = i, hi,,(xJ = j, Vs E T, 

Vk<ivj,Vl<ivj,x,qV,,3,,}, 

Vj,,J = u, n u {D(x,, l/2’+‘): xi E Ci,,J, i,jeN, JET, 

KJ= { Vi,Jrc 7-Y i, jEN, 

v= u “y;,. 
ijE N 

Then we have following results: 

(1) V is an open refinement of %. 
(2) V’” is an cc-open Q-coer of X. In fact, for every x E X, let I =f (x), 

sincex,qU,, sox~(U;)(,-~), (U,)C,-.,~Q(x,-,),andthereexistsani’~N 
and a AE (/?, 1) such that D(xl, 2/2’)~ (U,),,-,,. Then let i=g(xJ and we 
have D(X,, 2/2’) c (U,),, pa)r x1 E D(xA, l/2&) c W,,,. Let j= h,,(x,); now 
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if there exists s E T, k < i v j, 1 < i v j such that x~~V~,~,,, then we have no 
thing to prove. If not, then X~E Ci,,j, D(x,, 1/2i+j)(x)>l >/?a 1 -c(, 
Vi,lj(X) 3 U,(X) A D(X,, 1/2’+‘)(X) > 1 -cI, X,qV;,,J. 

(3) For every ie N and every pair of t, t’ E T, and t # t’, we have 
IV,,, n II’i,t, = 0. Suppose this is not so, and there is no harm in supposing 
t < t’, then there exist xj. E d, y, E d, and z E X such that g(xl) = g(y,) = i, 
f(x) = t, f(y) = t’, zI E Wx,, W),p, n D(yp, W’),8,. Since P 2 f, 

D(X,, 1/2’)(z) + D(y,, 1/2’)(z) > p + j3 2 + + += 1. 

D(x)., l/2’) and D(yP, l/2’) are quasi-coincident at the point z. But from 
f(.v)>f(x)= t we have (u,),,-.,(~)=o, from WA, W’)c (U,),, -+ and 
from 5.9 we know that D(x,, l/2’) i not quasi-coincident with D(y,, l/2’); 
this is a contradiction. 

(4) For each X~.E d such that D(x,, l/2”) c ( Vk,s,,)c,--a) 
(k,I,m=l,2 ,... ), we have that if i,jEN, ivj<k+I+m, teT, then 
ax,> l/2 ‘+‘+“‘) 4Vi,,J. In fact, for each yP~ Ci,tJ, we have y,qV,,,, and 
Y c (VkJ(l --I). Then from D(x,, l/2”) c ( Vk,s,l)cl -a) we know 
y,qD(xi., l/2”) and from 5.9 we know D(x,, 1/2k+‘+m) @(y,, l/2’+‘). So 
from the definition of Vi,tj we know D(x,, 1/2k+‘f”) gVi,,j. 

(5) Y is a-discrete. Let i, j E N, x E X, and A E (0, 11, take a 
,u E (1 - 1, 1); then from (3) we know that xlr intersects with at most one 
member of the family of sets 

i 
u { D(z~, l/2’): ~6 E C’i,tj}: t E T 

I 
. 

So from 5.9 we know that D(x,, l/zi’j)~ Q(xl) is quasi- 
coincident with at most one member of the family of sets 

u {D(z,, l/2’+‘): zg E C& t E T . 

Hence from the definition of Vi,,J we know that the Q-neighborhood 
0(x,, l/2’+‘) of x1 is quasi-coincident with at most one member of %$. 

(6) V is locally finite. Let XE X, I E (0, 11, from (2) we know that 
there exist k, 1 E N, s E T such that vk,&(x) > - 01, so (vk,&)(i -E) E Q(xd). 
From 5.8 we know that there exists a Jo E (1 - c(, 1) and an m E N such that 
D(x,> 1/2”) = ( vk,s,l)(l -a)~ so from (4) and (5) we know that only at that 
time iv j<k+l+m, D(x,, l/2 k+‘+m) has the possibility to be quasi-coin- 
cident with one and at most one member of YiJ. Hence the 
Q-neighborhood D(x,, l/2 k+‘fm) of x2 is quasi-coincident with at most 

~{(i,j)~NxN:ivj<k+I+m}l=(k+I+m-1)2 

members of V and V is locally finite. 1 
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From 5.11 and 3.6 we have 

5.12. THEOREM. If weakly induced fts (A’, 5) is pseudometrizable, then 
(X, F) is S-baracompact. 
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