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In this paper, we introduce two kinds of fuzzy paracompactnesses which are
defined on general fuzzy subsets. Each of them is a good extension of crisp
paracompactness. They are all hereditary with respect to closed subsets and take
N-compactness and some other compactnesses in fuzzy topological spaces as special
cases of them. Furthermore, in a class of spaces (so-called “weakly induced spaces™)
which connects crisp spaces with fuzzy spaces, both a fuzzy regular Lindeloff
property and a fuzzy pseudo-metric property imply these two kinds of paracom-
pactnesses. © 1988 Academic Press, Inc.

1. INTRODUCTION

Paracompactness describes the relation between a locally finite property
and an entire property of spaces, occupies an important position in general
topology, and is a problem in fuzzy topology which attracts the attention
of all of us. But up until now, fuzzy paracompactness has not had a better
or more ideal definition. There were some works about this problem [1, 27,
but the definitions of them used the rather special “B set” or depended
upon the concepts of covers; all have many limitations. In fact, neither
takes one of the N-compactnesses [3] or some other compactness in fuzzy
topological space as a special case and is not a good extension [4] of crisp
paracompactness. One of the purposes of setting up fuzzy paracom-
pactnesses in this paper is to overcome these limitations. Moreover, there
exist close relations among the metric property, the Lindeldff property, and
paracompactness, and trying to set up or discover these relations within
the scope of fuzzy topology is also a purpose of this paper.

The complex nature of the neighborhood structure in fuzzy topological
space makes the relation between the local property and the entire
property of fuzzy topological space more difficult to handle. On the other
hand, the essential difference between fuzzy and crisp topological spaces

* The work of this paper was supported by the Conference of Scientific Funds of The
Academy of Sciences of China.

55
0022-247X/88 $3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.



56 MAO-KANG LUO

lies in the differences and connections among each horizontal level of space.
It is also an important point for deep study of fuzzy topology. In view of
these situations, after analyzing the above-mentioned purposes, from the
difference between two kinds of neighborhood structures, this paper has set
up two kinds of fuzzy paracompactnesses to describe the properties of
every horizontal level of space. They have the advantages stated in the
abstract of this paper. We have studied the basic properties of these two
kinds of paracompactnesses in greater depth, e.g., the problem of
equivalent description etc. and used full counterexamples to explain the
relations among the conditions of the theorems and the differences between
these conditions and crisp situations carefully. By using this paper as a
foundation, we can study the problems of fuzzy paracompactness more
fully.

We let ¢ denote the quasi-coincident relation [5], Q(A4) denote the
QO-neighborhood system of fuzzy set A [5], x denote the characteristic
function, and |C| denote the cardinality of a crisp set C. The concepts of
base and subbase for a fuzzy topological space and other concepts which
have not been defined in this paper are taken from [5]. We let fts denote
fuzzy topological space for convenience. For every real number « and every
fuzzy set 4 on X, we let a4 denote a function such that («A4)(x) = aA4(x) for
every x e X; we let 4> o denote the relation 4(x)> « for every xe X. If it
will not cause any confusion, we will call the fuzzy set the set and the fuzzy
point, the point directly, and we will not often differentiate a crisp set from
its characteristic function.

The author is indebted to Professor Liu Ying-Ming for his careful
nstruction.

2. DEFINITIONS AND BAsiC PROPERTIES

2.1. DeFINITION. Let o/, # be two families of sets in fts (X, 7). & is
called a refinement of # if for any A € .o/, there exist a Be # such that
AcB.

2.2. DEFINITION. Let o7 be a family of sets and B be a set in fts (X, 7).
We say that o7 is locally finite (resp. *-locally finite) in B if for each point e
in B, there exists a Ue Q(e) such that U is quasi-coincident (resp. inter-
sects) with at most a finite number of sets of .&/; we often omit the word
“in B” when B= X.

2.3. DEFINITION. Let A be a set in fts (X, 7 ) and let a€e(0,1],
pe [0, 1); we define
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A1 =X ixex: a)>a}>
Ap = Aixex: ac>p3>
Ay =0dr.,,
l,=oxy.
2.4. DEFINITION. A family of sets o/ is called a Q-cover [6] of a set B if
for each x e supp(B), there exist an A€ .o/ such that 4 and B are quasi-

coincident at x. Let ae(0,1]. o is called an a-Q-cover of B if & is a
Q-cover of B, .

2.5. DeFINITION.  Let a€(0, 1], 4 be a set in fts (X, 7). We say that 4
is a-paracompact (resp. a*-paracompact) if for each x-open Q-cover of A4
there exists an open refinement of it which is both locally finite (resp.
x-locally finite) in 4 and an a-Q-cover of 4. A is called S-paracompact
(resp. S*-paracompact) if for every e (0, 1], 4 is a-paracompact (resp.
o*-paracompact).

We say that (X,7) is o-paracompact (resp. o*-paracompact,
S-paracompact, S*-paracompact) if set X is a-paracompact (resp.
a*-paracompact, S-paracompact, S*-paracompact).

2.6. Remark. 1Tt is obvious that

x-locally finite = locally finite,

so we get the relations
o*-paracompact = g-paracompact,
S*-paracompact = S-paracompact;

but it is easy to find that the inverses of these relations are not true.

2.7. THEOREM. Ultra-fuzzy compact [4] spaces, N-compact spaces, and
strong fuzzy compact [4] spaces are S*-paracompact.

Proof. 1t is obvious that strong fuzzy compact spaces are S*-paracom-
pact. On the other hand, from [3] we know that for each fts there exists
the relation

ultra-fuzzy compact = N-compact = strong fuzzy compact,

so the theorem is true. |

2.8. THEOREM. Q-compact [6] fts is 1*-paracompact.
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2.9. ExaMPLE. There exists a fuzzy compact [7] fts which is not
1-paracompact. Let X =[0, + o), for each x € X, let

e’ O0<y<x,
0, y<x,

Ux(y)={

Ug(y)=e™, yeXx,
T ={U,,X}u{U, xeX},

then it is easy to know that (X,J) is a fuzzy compact fts. Let
U={U,: xeX}, % is an open Q-cover of X. Let ¥ be both an open
refinement of % and an open Q-cover of X, then from the structure of
we know ¥ c4%. Furthermore we have sup{x:U,e¥ }=+w, so
|7"| = w. Hence ¥ is not locally finite at the fuzzy point (0),, and (X, J)
is not 1-paracompact.

2.10. DerFiNiTION [5]. An fts (X, ) is called a T,-fts if for each pair of
fuzzy points x;, y,, x#y, there exist Ue Q@(x,) and Ve Q(y,) such that
UnV=g.

2.11. THEOREM. If T,-fts (X, J) is fuzzy compact, then (X, J) is
S*-paracompact.

Proof. From [3] we know that every fuzzy compact T,-fts is strong
fuzzy compact, hence we know from 2.7 that the theorem is true. |

2.12. THEOREM. If a family of sets {A,},.r of fts (X, T) is locally finite
in a set A, then

U A.na=) (4,nA)

teT teT

Proof. 1t need only to show that (J,.;4,nA<{,.r(4,nA4). Let
B=,.r A, and ec BN 4; then from [5] we know that e is an adherence
point of B. Since {4,},. s is locally finite in A, so there exists a V'€ Q(e)
which is quasi-coincident with only a finite number of members 4, ,..., 4,,
of {A,},.7. Ife€7_, 4,, then there exists a ¥, Q(e) which is not quasi-
coincident with 4, (i=1,..,n). Let Vo=(N}_, V)V, we have Vye Q(e)
and V, is not quasi-coincident with any A,, so V, is not quasi-coincident
with B. This is in contradiction with the fact that e is an adherence point of
B, hence ec U (A, nA)cU,cr(4,nA). |
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2.13. COROLLARY. [f a family of sets {A,},.r of fis (X, T) is locally
finite in a set A and \), rA,c A, then

U4.= 4.
teT teT

2.14. THEOREM. If a family of sets {A,},.r of fts (X, T) is locally finite
in a set A, then the family of sets {4,},. 1 is also locally finite in A.

2.15. DEFINITION. An fts (X, ) is called to be regular if for each
point e in (X, 7 ) and each Ue Q(e), there exists a Ve Q(e) such that
VeU.

2.16. Remark. [8] has proved that 2.15 is an equivalence form of the
definition of regularity in [9].

2.17. THEOREM. Let A, B be sets in a regular fts (X, 7') and each open
Q-cover of A have a refinement which is both locally finite in B and a
Q-cover of A. Then for each open Q-cover {U,}, v, when U,cr U, B, there
exists a closed Q-cover {F,},.r of A which is locally finite in B such that for
each te T we have F,c U,.

Proof. From the regularity, 4 has an open Q-cover #  such that
{W.Wew)} is a refinement of {U,},.,. Take a Q-cover {4,},.s of 4
such that {4,},.s is both a refinement of #" and locally finite in B. From
the way we get %~ we know that there exists a mapping f: S — T such that
A,c Uy, Let F,=\) {4,:f(r)=1t}; then from 2.13 we know that F, is
closed set, and it is easy to know from 2.14 that the closed Q-cover {F,},.
of A is locally finite in B. Furthermore, for each te T we have F,c U,. |

If we et the A4,’s in the proof of 2.16 be open, then next theorem is
obvious.

2.18. THEOREM. Let A be an a-paracompact set in a regular fts (X, ),
then for each a-open Q-cover {U,},.r of A, when \),.+ U, < A, there exists
an a-open Q-cover {V,},.r of A which is locally finite in A and for each
teT we have V,c U,.

2.19. DEFINITION. Let ae [0, 1). We say that fts (X, ) is a-crisp if for
each Ue J we have U, e 7.
The proof of next theorem is direct.

2.20. THEOREM. If a family of sets {A,},.; in a O-crisp fts (X, T) is
x-locally finite in a set A, then so is the family of sets {4,},cr.
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The example below explains that why O-crispness is a condition which
cannot be eliminated from 2.20.

2.21. ExaMpPLE. Let X [0, 1). For each ae X and each ne N, we let
Uy,=0xr0.. and A,=(1—1/n),, then I ={U,:0e X} U {X} is a fuzzy
topology on X and {A4,:ne N} is a »-locally finite family of sets in (X, 7).
But the family of sets {A,:ne N} is not *-locally finite in X, because we
have 4,=(U,_,,) >0.

Being similar to 2.17 and 2.18, we have two theorems below:

2.22. THEOREM. Let A, B be two sets in O-crisp regular fts (X, T). Sup-
pose that each open Q-cover of A has a refinement which is both *-locally
finite in B and a Q-cover of A, then for each open Q-cover {U,},.r of A,
when \J,. U, B, there exists a closed Q-cover {F},.r of A which is
x-locally finite in B and for each te T we have F,= U,.

2.23. THEOREM. Let A be an a*-paracompact set in a O-crisp regular fts
(X, T). Then for each a-open Q-cover {U,}, .y of A, when \J, ., U,c A,
there exists an a-open Q-cover {V,},.r of A which is =-locally finite in A
such that for each te T we have V,c U,.

2.24. THEOREM. If A an a-paracompact (resp. a*-paracompact) set in fts
(X, J), then for each closed set B in (X, 7 ), each a-open Q-cover of set
B A has an open refinement which is both an %-Q-cover of BN A and
locally finite (resp. *-locally finite) in A.

Proof. We only prove the case of a-paracompactness. Let % be an
a-open Q-cover of C=Bn A; then % u {B'} is an open Q-cover of 4 ,,
and it has an open refinement ¥~ which is both locally finite in 4 and a
Q-cover of A.,,. Let ¥,={Ve¥:3Ue%, V< U}, then ¥; is an open
refinement of % which is locally finite in 4. We say with certainty that ¥ is
a Q-cover of C,,,. Suppose that it does not hold, then there exists a
x esupp(C,) such that (U ¥5)(x)<1—a. But ¥ is a Q-cover of 4 ,,, so
from C.,<A4.,, we know that there exists a Ve¥ such that
V(x)>1—a. Since ¥ is a refinement of % U {B’} we know V< B’; from
C(x) = a we know B(x)>a. Hence

l—a<V(x)SB(x)<1—q
this is a contradiction. ||

2.25. COROLLARY. Fvery closed set of an o-paracompact (resp.
a*-paracompact) fts is a-paracompact (resp. a*-paracompact).
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2.26. DeriNiTION [10]. Let xe€(0,1]. A set 4 in fts (X, .7 ) is called a
Q. -compact set if each a-open Q-cover of 4 has a finite subfamily which is
an a-Q-cover of A. 4 is called a strong Q-compact set if 4 is @, -compact
for each 2 (0,1].

2.27. THEOREM. Both N-compact sets and strong Q-compact sets are
S*-paracompact.

Proof. It is obvious that strong (-compact sets are S*-paracompact.
On the other hand, from [10] we know that N-compact sets are strong
Q-compact, so the theorem is true. |

3. PARACOMPACTNESS IN WEAKLY INDUCED Fuzzy TOPOLOGICAL SPACES

3.1. DermITION. For each fts (X, 77), the family of crisp sets
[(T]={Ad<X:y,eT}

is called the original topology of 7 and the crisp topological spaces
(X, [Z7]) are called original topological spaces of (X, 7).

3.2. Remark. The fact that {.97] is a crisp topology on X is certain.

3.3. DeriNmTION [11]. We say that fts (X, 7 ) is a weak inducement of
crisp topological space (X, %) if [T ]=9,, and every Ue T is lower
semi-continuous when we regard it as a mapping between (X, J;) and
[0, 1]. We say (X, ) is weakly induced if there exists a crisp topological
space (X, J,) such that (X, 7) is a weak inducement of (X, 7).

3.4. Remark. Clearly, every induced fts is weakly induced, but the
inverse is not true. Hence the concept of weak inducement is a real exten-
sion of the concept of inducement. Since the concept of induced fts is an
extension of the concept of crisp topological space, hence so is the concept
of weak inducement.

From the properties of lower semi-continuous functions which are well
known by us, we have

3.5. THEOREM. (X, J") is a weakly induced fts if and only if (X, T) is
a-crisp for every ac [0, 1).

3.6. THEOREM. For every weakly induced fts (X, T) the following con-
ditions are equivalent:

(1) (X, 7)is S*-paracompact.
(ii) There exist a a € (0, 1) such that (X, J) is a*-paracompact.



62 MAO-KANG LUO

(i) (X, J) is S-paracompact.
(iv) There exist a «€(0, 1) such that (X, ) is a-paracompact.
(v) (X, [7)) is paracompact.

Proof. (i)=>(iii)= (iv) Obvious.

(iv)=(v) Let % c[J ] be an open cover of X; then {y,: Ue#} is an
open Q-cover of 1, and it has a locally finite open refinement ¥~ which is a
Q-cover of 1, also. Let #" = {V, ,,: Ve¥"}; then # is both a refinement
of % and a cover of X. From the properties of weak inducement we know
W <[], so we need only to prove that #” is locally finite. For each
xe X, take 0,€Q,(x,_,) such that O, is quasi-coincident with only a
finite number of members V...V, of ¥. Let O= (01)(); then
xeOel[J ). For each Ve¥', if OnV,_, # &, we have a crisp point
yeOnVy ., hence O\(y)>a, V(y)>1—a, O,(y)+¥V(y)>1, and O
and V are quasi-coincident, so Ve {V,,.., V,}. Hence the neighborhood O

of x intersects with only a finite number of members (V) s s (Vo)1 s
of W

(v)=(i) Foreach ae(0,1], let #=J be a Q-cover of 1,. Then from
the properties of weak inducement we know that the family of crisp sets
{U_a:Ue} is an open cover of (X, [7 ]) and it has a locally finite
open refinement ¥ < [J ] which is a cover of X. For each Ve ¥ take a
Uye such that Ve (Uy), _, and let # ={y,nU,:Ve¥ }. Then
W < 7 is both a refinement of % and a Q-cover of 1,. For each xe X and
each 1€ (0, 1], take a O € Ny (x) such that O intersects with only finite
number of members of ¥". Then y,e Q. (x;) intersects with only a finite
number of members of #°. So we know from the arbitrariness of a that
(X, 7) is S*-paracompact.

(i)« (i) Clearly (ii) = (iv); furthermore we have proved (iv) = (i), so
we can know (ii)<> (i) from (i)=>(ii). |]

3.7. COROLLARY. Both S-paracompactness and S*-paracompactness are
good extensions [4] of crisp paracompactness.

3.8. ExampLE. The open interval (0, 1) in 3.6 cannot be substituted by
the half open interval (0, 1]. Let X= [0, 1) and

P={1,:0e(0,17} U {x[ox): x€ X},

then we can use % as a subbase to generate a weakly induced fuzzy
topology 7 on X.

Let % = 9 be a Q-cover of 1, = X. Generally, we can suppose that every
member of % is not empty and cannot consist of a Q-cover of X by itself.
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Then we can see from the structure of 2 that for each Ue % there exists a
Xy € X such that

(U110, x,)>0,  UL[Xy, 1)]={0}.

Since % is a Q-cover of X, so sup{x,: Ue% } = 1. Take a countable family
{U};en<% such that sup{X,:ieN}=1 and let V,=1,,nU,; then
¥ ={V,};cn is both an open refinement of % and a Q-cover of X. For
each xeX and each Ae(0,1], take ke N such that 1/k<A; then
1, 1, €Q(x,;) and is not quasi-coincident with I, when i> k. Hence ¥~ is
locally finite in X and (X, J7) is l-paracompact.

But it is easy to show that

[7]={¢, X} U{[0, x):xeX},

so # = {[0, x): xe X} is an open cover of (X, [ ]). Clearly, #  has not
any locally finite open refinement which is a cover of X, so (X, [ ]) is not
paracompact.

3.9. Remark. We can know from 3.6 and 3.8 that there exists a
1-paracompact fts which is not a-paracompact for every ae (0, 1).

3.10. LeMMA. For every weakly induced fis (X, T ), if there exist an
ae (0, 1) such that every a-open Q-cover of X has a locally finite closed
refinement which is a o-Q-cover of X, then (X, 9°) is a-paracompact.

Proof. Let % be an open Q-cover of 1,. Take a locally finite refinement
of ={A},.r of U such that o/ is a Q-cover of 1,. We let § denote
min{a, 1 —a}, then fe (0, 1). Take U, € Q(x;4) such that U, is quasi-coin-
cident with only a finite number of members of ./ and let

U,=(U)i_ayn U,; then % = {l7x: x€ X} is an open Q-cover of 1, and it
has a locally finite closed refinement % which is Q-over of 1, also. For
each te T let

W=\ {F:FeF,Fo(4)4 _u}
then W,e J and, for each Fe #, we have
W.qF < (A4,)4_u9F. (*)
Take U,e % for each re T such that A, U, and let
Vi=(W)u-pnU,.

Then ¥ = {V,},. ris an open refinement of %. For each xe X, take a te T

409/130:1-5
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such that 4,(x)>1—a. Since W,2(4,), ., we have W (x)=1>1-§,
50

V,(x): U,(x)?A,(x)> 1 —a;

hence ¥ is a Q-cover of 1, also.

At last we prove that ¥~ is locally finite. For each xe X and each
A€(0,1], let y=min{4, B}, take Ue Q(x,) such that U is quasi-coincident
with only a finite number of members F, ..., F, of #. For each i€ {1,..., n},
take a x’€ X such that F,c U ; then from the way we get %, we know the
set To={teT: A,qUr_, U} is finite. It can be said with certainty that for

each te T and each ie !l vy n} we have

(A)i_anqFi=1teT,. (%x)

(4)a - u);,F,-, then there exis ¥ ch -
Udy)z F(y)>0 Tdy)+A(y)>1—f+1—a>a+1—-a=1, and
A,qUF1 Ux,, teT,. So take V=U, ,,nU, then VeQ x,l) If VqV,,
then there exists a ye X such that V{yj>1—-y=1—-p§, V{yj>0. Take
Fe & such that F(y)>1—a<f, then VqF, Fe {F,,.., F,}. On the other
hand, since V,(y)>0, so W,(y)>1—pf, W,qF. From relation (x) we have
(4,)1- 4 gF and from relation (**) we know that te T,. So V is quasi-
coincident only with the members of the finite subfamily {V,:re T,} of ¥
and 7" is locally finite. |

3.11. DeFINITION. Let o/ be a family of sets and B be a set in fts
(X, 7). We say that .« is g-locally finite (respectively: 6 *-locally finite) in
B if o/ can be represented as a countable union of subfamilies and each of
these subfamily is locally finite (respectively: =-locally finite) in B; we often
omit the word “in B” when B=X. |}

3.12. LEMMA. Let a€(0,1]. If (X, T) is a (1 —a)-crisp fts, then each
a-locally finite a-open Q-cover of X has a locally finite refinement which is a
a-Q-cover of X also.

Proof. Let ¥ =), ‘f/,. be an open Q-cover of 1,; here every
o= }V 1 is locally f‘ in X and T, mT &f when i#j. For each

7= t§teT; JROL07:5 2 A 3 3 4 n il A &’ vilgl

ieNand each te T we let

A=V,N (U U (Foda - )
k<ireTy
T={) T,
ieN
"dz{Al}leTy

then « is a refinement of ¥".
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For each xe X, let iy=min{ie N: |J ¥;e Q(x,)} and take t,e T, such
that V, € Q(X,). Then from the fact that for each k < i, and each te T, we
have V,(x)<1—a and we have 4,(x)=V,(x)>1—« and & is a Q-cover
of 1,. On the other hand, for each Ae (0, 1] and i=1,..,, iy, take U;e Q(x,)
such that U, is quasi-coincident with only a finite number of members of
;. Let

U'——Ulﬂ ot mUiOn(Vto)(lAa);

then Ue Q(x,) and, for each ie N, i>i,, and each te T,, we have

A;=Vu U U (Vr)(ua)D(Vto)(x—a)DU-

k<ireTy
U and 4, are not quasi-coincident. Since for each i€ {l1,.., iy}, U is quasi-
coincident with only a finite number of members of {4,},. r,, so U is quasi-
coincident with only a finite number of members of &/ and & is locally
finite. |

3.13. ExamPLE. (1 —a)-crispness is the condition which cannot be
eliminated from 3.12. Take X=[0, + ), let J, denote usual crisp
topology on X. For each fe[0, 1] let

Ug= (BX{O})U(%X{l/n:neN})UXX\({O)u{l/n:neN})’
P={Uy, Up: Be[0, 11} U {xv: UeF};

then we can use 2 as a subbase to generate a fuzzy topology on X. Since
J, has a countable base, we can see easily that 7 has a countable subbase
2%, =P and hence 7 has a countable base. Hence every open Q-cover of 1,
has a ¢-locally finite open refinement for every « e (0, 1]. Furhermore, we
can know that (X, 7 ) is a T,fts from J,c 7. But the open Q-cover
{Us3} U {(yn— yann+ tham+ 120+ 1y): NEN} of 1;, does not have any
locally finite refinement which is a Q-cover of 1,,, also.

3.14. THEOREM. For every regular weakly induced fts (X, T ) the
following conditions are equivalent:
(1) (X, 7)) is S-paracompact.
(i) For every ae(0, 1], every a-open Q-cover of X has a o-locally
finite open refinement which is an a-Q-cover of X also.

(iii) There exists an a € (0, 1) such that every a-open Q-cover of X has
a o-localy finite open refinement which is an a-Q-cover of X also.

(iv) For every ae(0,17], every a-open Q-cover of X has a locally
finite refinement which is dn o-Q-cover of X also.
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(v) There exists an o€ (0, 1) such that every a-open Q-cover of X has
a locally finite refinement which is an a-Q-cover of X also.

(vi) For every ae(0,1], every a-open Q-cover of X has a locally
finite closed refinement which is an a-Q-cover of X also.

(vii) There exists an a € (0, 1) such that every a-open Q-cover of X has

a locally finite closed refinement which is an a-Q-cover of X also.

Proof. (i)= (ii) = (iii) Obvious.

(iii) = (v) From 3.12.

(v)=>(vii) From 2.17.

(vi) = (i) From 3.10 and 3.6.

(i) = (iv) Obvious.

(iv)= (vi) From 2.17.

(vi)= (i) Clarly, we have (vi)= (vii). On the other hand, we have
proved (vii)=>(i). So (vi)=(i). |

3.15. THEOREM. For every regular weakly induced fts (X, T ) the
Sfollowing conditions are equivalent:

(i) (X, 7)) is S*-paracompact.

(ii) For every ae (0, 1], every a-open Q-cover of X has a o*-locally
finite open refinement which is an a-Q-cover of X also.

(iii) There exists an a € (0, 1) such that every a-open Q-cover of X has
a a*-locally finite open refinement which is an o-Q-cover of X also.

(iv) For every ae(0, 1], every a-open Q-cover of X has a =-locally
finite refinement which is an a-Q-cover of X also.

(v) There exists an a € (0, 1) such that every a-open Q-cover of X has
a *-locally finite refinement which is an a-Q-cover of X also.

(vi) For every o€ (0,1], every a-open Q-cover of X has a *-locally
finite closed refinement which is an a-Q-cover of X also.

(vii) There exists an o€ (0, 1) such that every a-open Q-cover of X has
a *-locally finite closed refinement which is an a-Q-cover of X also.

Proof. (i)= (ii) = (iii) Obvious.

(ili)=> (i) Clearly we have: (iii) = 3.14(iii) = 3.14(i) = (i).
(iv)=(vi) From 2.22.

(vi)=(iv) Clearly we have: (vi)=3.14(vi) = 3.14(i) = (i) = (iv). ||

The following lemma can be proved easily:

3.16. LEMMA. Let P be a subbase of an fts (X, T). If for each point e in
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(X, 7 ) and each Ue P n Q(e) there exists a Ve Q(e) such that V< U, then
(X, .7) is regular.

3.17. ExampLE. There exist an fts (X, ) such that:
(1) (X,J) is regular;
(1) (X, 9) satisfies condition (vi) of 3.15;
(iii) (X, 9} is not a-paracompact for every ae (0, 1].

Take X =w,. For each ae (0, 1), each fe(0, 1], and each xe X, let

Ua=°fX{0}, Uﬁ,x=(BX{O})UX{x)’ Vﬁ,xz(:Bx{O})UXX\{O,x}7
P={U,, U, a€e(0,1)}, Pr={Us,., Vg, Be(0,1], xeX},
P=A0VP,

then we use £ as a subbase to generate a fuzzy topology J on X.

Proof of (1). Take xeX, ie(0,1], and UeZ?n Q(x,) arbitrarily. If
Ue%,, then U=U hilds naturally. If Ue % and U= Uy, then x=0 or
x=y. If x=0, take ae(0,1) such that 1—-A<a<f; then we have
U,eQ(x;) and U,=U,cU. If x=y, take «e(0,1] such that
O<l—a<p; then we have Vee=U,_..€0Q(x;) and
Vix=Vix=Ui_,.,cU If Ue% and U=V, then x=0 or x#0. If
x=0, take ae (0, 1) such that 1 — 4 <a < f§; than we have U, e Q(x;) and
U,=U,cU. If x#0, take ae(0,1] such that 0 <a < f; then we have
U,.€Q(x;)and U, ,=U,,c U. So we have proved that (X, 7) satisfies
the condition in 3.16; hence (X, ) is regular indeed.

Proof of (ii). Let % be an open Q-vector of 1,. Since V, .€ Z for each
xe X\{0}, so V', is a closed set. Take Uye % such that Uye Q((0),) and
Be(0, 1) such that 1 —a < B < Uy(0); then Uze Q((0),) is a closed set too.
So F ={Uz}u{Vi,. xeX\{0}} is a closed refinement of # which is a
Q-cover of 1, also. Clearly, & is *-locally finite.

Proof of (iii). % ={U,,:xeX} us an open Q-cover of 1, for each
o€ (0, 1]. From the structure of 2 we can know that U(0)>0 holds for
every Ue J indeed, so if ¥ is both an open refinement of # and a Q-cover
of 1,, then there must exist a crisp set {o,:xe X\{0}} < (0, 1] such that
{Uyx:xeX\{0}} =7 Since |X\{0}| =w,, there exists a ke N and an
uncountable crisp subset C of X\{0} such that {a,.:xeC}c(1/k, 1].
Then for each Ue Q((0),,) and each x e C we always have

1 1
0 NO>1—=+-=1
U(O)+ Uy (0> 1=+ 7= 1,
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which means that every Q-neighborhood of point (0),, is quasi-coincident
with every member of the uncountable subfamily {U, ,:xeC} of ¥, ¥ is
not locally finite. |

4. PARACOMPACTNESS AND LINDELOFF PROPERTIES

4.1. DEFINITION. Let ae(0,1]. We say that a set 4 in fts (X, 7 ) is
a-Lindeloff if every a-open Q-cover of A has a countable subfamily which is
a Q-cover of 4 also. We say that A is S-Lindel6ff if 4 is a-Lindeloff for
every e (0, 1].

We say that (X,7) is a-Lindel6ff (resp. S-Lindeloff) if set X is
a-Lindeloff (resp. S-Lindelof).

4.2. THEOREM. Ultra-fuzzy compact spaces, N-compact spaces, and
strong fuzzy compact spaces are S-Lindeldff.

Being similar to 2.24, we have

4.3. THEOREM. If A is an o-Lindeloff set in an fts (X, ), then for every
closed set B in (X, 7), set B A is a-Lindeloff too.

4.4. COROLLARY. Every closed set in an a-Lindeloff is o-Lindeldff.

4.5. THEOREM. If A is an S-Lindeloff set in an fis (X, T ), then for every
Sfamily of sets € which is locally finite in A, € is countable when Cn A # &
for every Ce&.

Proof. For each ne N and each xesupp(4y,,), take U, e Q(x,,)
such that U, , is quasi-coincident with only a finite number of members of
%. From the S-Lindeloff property of A4, for each ne N, there exists a coun-
table subfamily #, of {U,,:xesupp(4.,,,)} which is a Q-cover of
A¢iny. SO U =) en U, is countable; hence | % is quasi-coincident with
at most a countable number of members of €. On the other hand, since
supp(A)c Y% and CnAd# for every Ce¥, we know that
Cn(J %))+ & for every Ce ¥, so € is countable. ||

4.6. ExaMPLE. A locally finite family in a 1-Lindeloff fts which consists
of nonempty sets need not be countable. Let X be the set of all the real
numbers. For each xe X and each £¢>0, let U, , = x(; U (3X(x—ex+¢)) and
use {U,,:xe X, ¢e>0} as a subbase to generate a fuzzy topology 4 on X.
Then it is obvious that (X, J7) is 1-Lindeloff. Take € = {4x,,: x€ X}; then
% is locally finite but is uncountable.
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47. THEOREM. [f a weakly induced fts (X, T) is regular, then so is its
original topological space (X, [T ]).

Proof. For each xe X, let N ,4(x) denote the neighborhood system of
x in (X, [7]); then x, € Q-(x,) for every Ue N ,4(x). Take Ve Q. (x,)
such that Vcy, and take o such that O<a<V(x), then
Viar < (P)a1 < xu- Since (X, 7) is weakly induced, from 3.5 it follows that
there exists an x esupp(V,))e [7 ] and sup((V),;) = U is a closed set in
(X, [7 1) So if we let W =supp(V,,), then the following relation holds in
(X, [71): )

xeWcWclU |

48. ExaMPLE. A weakly induced fts (X, ) of a crisp T,-topological
space (X, J,) need not be regular. Let (X, ;) be the usual real number
space and B = {xy, 3xu: Ue J,}; then we can use % as a base to generate
a fuzzy topology J on X, and we can see that (X,7) is a weak
inducement of (X, 7,). But for each x, X, and the Q-neighborhood 1,,; of
x), there does not exist any Ve Q(x,,,) such that V< 1,,.

4.9. THEOREM. If a regular S-Lindeloff fts (X, T) is (1 — a)-crisp, then
(X, 7)) is a-paracompact.

Proof. Let % be an open Q-cover of 1,. From the S-Lindeloff property
we know that % has a countable subfamily {U,},. 5 which is a Q-cover of
1,. So there exists a mapping f* X — N such that

f(x)=min{ie N: U(x)>1~a}.

For each ne N and each xe X, from the (1 —a)-crispness and regularity,
we can take V, e Q(x,,) such that ¥, < (Uy,,))q . Take a countable
subfamily {V, .,:je N} of {¥V,,:xeX} such that it is a Q-cover of 1,,,
let V,; denote V, .n,j, and for each ie N let

W.= U,-m(U {17,,J:n<i,j<i,f(x"-’)<i}>;

then # = {W,},.n is an open refinement of %. For each xe X we have
Uy (x)> 1 ~—a, from the demfiition we have V,; = (Usn)) _ o), and when
f(x™) < f(x) we have

V;J(X) 2 ((Uf(x'u‘))(l Aa)),(x) =1,
SO

where # is a Q-cover of 1,. On the other hand, for each xe X and each
A€(0, 1], take ne N such that 1/n< A; then there exists a je N such that
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V,(x)>1—1/n>1—4, so V,;eQ(x). Hence when i>max{n,j, f(x™)}
we have B
Vo Ve (Pppm<isk<i, f(x™)<i}c W],

where V,; and W, are not quasi-coincident and #~ is locally finite. |}

4.10. CoROLLARY. Every weakly induced regular S-Lindeloff fts is
S-paracompact.

4.11. ExampLE. There exists a regular T,-fts (X, 7 ) which has a coun-
table base (so it is S-Lindeloff), but it is not 1-paracompact.
We take X = [0, + o), let F, denote the usual crisp topology on X, and
let
Uy=132(0}> Uy =(3210)) Y Xx\((0} o {1mine N})s
P={Uy, Uy, U} v {xv:UeTs};

then we can use 2 as a subbase to generate a fuzzy topology 7 on X.
Thereupon we have

(i) (X, 7)is T,-fits. It is obvious.
(ii) (X, ) is regular. In fact, for each fuzzy point e, from the way

we take & we can know that for each Ue £ n Q(e), there exists a Ve Q(e)
such that ¥ < U. Hence we know from 3.16 that (X, ) is regular.

(iii) (X, .7} has a countable base. Since 7, has a countable base, we
can see that g has a countable subbase # = £ and so J has a countable
base.

(iv) The open Q-cover #={U}u {X(n— y2nn+ D+ 200+ 1))
ne N} of X does not have any open refinement ¥~ which both is a Q-cover
of X and locally finite on point (0),,,. In fact, for each neN, let V,e ¥
such that V,(1/n) >0, then from that ¥ is a refinement of # we can know
VoS Xin— 12nn+ Outm+ 120+ 1)) 80 VNV, = when m#n, so the
correspondence 1/n— ¥V, is one to one. On the other hand, we have
U(0) >4 for each Ue Q((0,,), so from the structure of 2 we know that
there exists a U, € 7, such that U> x,,. Hence U is quasi-coincident with
an infinite number of V,,.

4.12. ExaMPLE. O-crisp regular 1-Lindeloff fts need not be 1-paracom-
pact. Let X=[0, +o0) and

P ={Uel*:Ixe X, |{yel0,x]: U(y)#}}| <,
UL(x, +0)]e {{0}, {1}}},
%={U(0)1 Ue#},

P=R VP,
then we can use Z as a subbase to generate a O-crisp fuzzy topology 7.
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Take a fuzzy point x; from (X, ) arbitrarily; for each Ue & n Q(x,),
let W(ixrox) Vi and V=UnW. Then VeQ(x;)n#, V is an
open-closed set, and we have V=V < U; and for each Ue & n Q(x;), U is
closed, and certainly we have U< U. So from 3.16 we know that (X, 9) is
regular.

Now we will prove that (X, 7) is 1-Lindel6ff. For each Ue 7, let

X,=inf{xe X: Ul(x, +0)]={0}},
Fy={x€e[0,x,): Ux)=0};

here the infimum of the empty set is defined as + o0. Let

ga:{m oA oA =P, |M|<w},

then 4 is the base of 7. For each Ue 7, suppose that U=|) &/, o c &,
then from the properties of real number space we know that there exists a
countable subfamily .7, of &/ such that

sup{x,: Ve }=x,. (%)

Since |F,|<w for each Ve 4, it also does for each Ve.o/. From the
equality () and || < we have

|Fyl S |F ] <

U{FU:VE&KI}ISCU. (%x)

Let % be an open Q-cover of X; then sup{x,: Ue %} = + o0. Take a coun-
table subfamily {U,},. y of % such that sup{x,:ie N} = + co; then from
the inequality () we have ||) {F,,:ie N}| <w and from the definition of
F,; we can easily find that # has a countable subfamily which is a Q-cover
of X also, so that (X, 7 ) is 1-Lindeldff.

At last, we will prove that (X,J) is not 1-paracompact. Let
¥ = {310 : x€ X}, then ¥ is an open Q-cover of X. Suppose that an
open refinement %~ of ¥ is a Q-cover of X, then from the 1-Lindel6ff
property we have proved we can suppose that #° is countable. For each
Ue7,let Cy={xe[0, x,): U(x)<1i}; then we can see that |C,| < for
every Ue . Similar to the proof of (x*) we can prove that |C,l < for
every UeJ. Hence C=\) {Cy: We# '} is countable. Take x"e X\ C;
then for each We#, when x, >x°% we have W(x°)=4 So from
sup{x,: We# } = + oo and the fact that #" is both an open refinement of
¥ and a Q-cover of X, we know that there are an infinite number of mem-
bers of #” which take the value 4 at point x and each Q-neighborhood of
(x%),, is quasi-coincident with an infinite number of members of #.
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4.13. THEOREM. For every weakly induced fts (X, T ) the following
conditions are equivalent:.

(i) (X,9) is S-Lindeloff.
(ii) There exists an a € (0, 1] such that (X, 7) is a-Lindeliff.
(i1} (X, [Z]) is Lindelff.
Proof. (i)=(ii) Obvious.

(ii)=(iii) Let 4 <[7 ] be a cover of X, then {y,:Ue%}<=T is a
Q-cover of 1,; it has a countable subfamily {y,.:ie N} which is a Q-cover
of 1, also. Then {U,},.» is a countable subcover of #.

; then

(iit)= (i) For each ae(0,1], let <= be a Q-cover of I;
{Ui_o:UeU}c [T ] is a cover of X and it has a countable subcover
{(U)—s: i€N}, here {U,},.y<%. Hence {U,},.n is a Q-cover of 1,
too. ||

From 4.13, 4.10, and 3.6 we have

4.14. THEOREM. If there exists an a€ (0, 1] such that a weakly induced
regular fts (X, T ) is a-Lindeloff, then (X, ) is S*-paracompact.

5. PARACOMPACT IN METRIC SPACES

5.1. DeFiNiTION [12] Let L be a completely distributive lattice with
order reversing involution g+ a’:

(a) A mapping p: LY x L* - [0, oo ] is called a fuzzy p- g - metric on
X if p satisfies following conditions:

[Ml] P(¢,i)=°0s AELX\{qf},
p(4, 1)=0, AeL*
pl4, ¢)=0, ielL*;
[M2] p(4 w)<p(i B)+p(B, 1), 4 B, pnel”;

[M3] (i) if Acy, then p(4, B)>p(u, B) for every e L”,
(i) p(B, Uado) =Vap(B, 4,);

[M4] let r be a positive real number, e L*, 4 is a set of
indexes, and A, € L* for every ae 4. If

aed, fel*, p(d,, B)<r=Pcy,
then

yel”, p(U la,Y><r=>yCu~
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{(b) Let p be a fuzzy p-q-metric on X. For each r>0 and each
ieL¥ let /

D (W)= {neL*:p(4, u)<r}.

{D,:r>0} is called the associated neighborhood maps of p and (L*, p, D,)
is called a fuzzy p- g - metric space.

We often omit the word “fuzzy” in the discussion about metric.

5.2. THEOREM [13]. Let (L%, p,D,) be a p-q-metric space, then the
associated neighborhood map {D,:r >0} satisfies:

(A1) D.(¢)=;
(A2) i< D,(4)

(A3) D, (U lu) = U D,(4,);

<A4> DrODssDr*—S;

(ASY D,=\/ D,

s<r

Proof. See also [13 or 127]. |

5.3. THEOREM [13]. Let {D,|D,:L* - L* r>0} be a family of
mappings which satisfies conditions {A1Y—{A5>. For each i, ue L%, let

p(,w)=N\{rrucD,(A)},
then p is a p-q-metric on X and {D,:r>0} is exactly the associated
neighborhood map of p.
Proof. See also [13 or 12]. ||

5.4. Remark. From 5.2 and 5.3 we know that a p-g-metric and its
associated neighborhood maps are decided by each other, so we can con-
sider only one of them. For example, a p- g metric space can be considered
as (L*, D,), where the D,’s satisfy (Al1>-(A5).

5.5. DEFINITION [12]. A p-g-metric space (L¥ D,) is called a
pseudometric space if {D,:r>0} better satisfies the condition:

(A6> D,=D,',
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where D! is defined as
DAY= {w: D)=}

5.6. DEFINITION [12]. For a p- ¢ - metric space (L%, D,), a topology on
X which is generated from the base {D,(1):4eL”, r>0} is called the
p-q-metric topology of (L*, D,). Fts (X, .7) is called p-q-metrizable
(resp. pseudometrizable) if there exist a p-¢- metric (resp. pseudometric)
on X such that the topology it genertes is exactly 7.

5.7. Remark. As [12] has proved, in a p- q- metric space (L¥, D,), the
family {D,(4): A€ L*, r>0} is a base for a topology indeed.

5.8. LeMmMa [13]. Let (I*, D,) be a p- q- metric space and x; is a fuzzy
point, then

2Ax;)={D(x,):r>0,2e(1-4,1]}

is a base of the Q-neighborhood system of x ;.

Proof. From (A2) and 5.6 we have 2(x,) < Q(x;). For each Ue Q(x,),
from [12] we know U=|) {4el*:3r>0, D,(A)c U}, so we have an
AelI* and an r>0 such that A(x)>1—4 and D,(4)c U. Take a = A(x),
then from (A3> we have

D/(x)cD(4)cU. |
59. LEMMA. In every pseudometric space (I*, D,) we have
A4D(B)=>D,,(A4) GD,,(B).
Proof. Since
D.p(D,2(B)) =D, D, (B)< D,(B),

so from A < D,(B) we have
D, (4) = D,p(D,(B))=D,,;(D,(B))=[) {C": D,,(C)

c D,(B)}=D,n(B). 1

5.10. DeFINITION. Let o/ be a family of sets and B be a set in fts
(X, 7). We say that o/ is discrete (resp. *-discrete) in B if for each point e
in B, there exists a Ue Q(e) such that U is quasi-coincident (resp. inter-
sects) with at most one member of of; we say that o is o-discrete (resp.
o*-discrete (resp. o*-discrete) in B if o/ can be represented as a countable
union of subfamilies and each of these subfamilies is discrete (resp.
x-discrete) in B; we often omit the word “in B” when B=X.
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5.11. THEOREM. If a weakly induced fts (X, T ) is pseudometrizable, then
for each a € (0, 1], each a-open Q-cover of X has an open refinement which is
both o-discrete and locally finite in X, and it is an a-Q-cover of X also.

Proof. Let {U,},.r be an open Q-cover of 1,. Taking a wel-ordering
relation < on the index set 7, we can take a mapping

fX->T, f(x)=min{reT: x,qU,}.

Let &/ ={x;,:xeX, A€(0,1)}, then for each x,es/ we have
(Usy) -y € @(x ), so from 5.8 we know that there exist an r >0 and a
pe (4, 17 such that D (x;) = D(x,) < (Us)) 1 -« WE can take a mapping

g o —N, g(x;)=min{ne N: Dypnlx;) (U/(x))(l—-a)}'

Let f=4V(1—ua), then fe[4,1). We also denote D(4,r) D,(A) for
convenience. For each ie N and each re T, let

We= U {D(x;, 1/2) ) %, € A, () =1, g(x;) = i};

then for the same reason used to prove the existence of g, we can take the
mapping
hio{x,esd:x,e W, } >N,
h,(x;)=min{ne N: D(x,, 1/2")c W, }.

For i, je N, we inductively define:

Cij={ix,ed:x;e W, , flx)=tg(x;)=1ih,(x;)=)j,VseT,
Vk <i Vj, Vl< i Vj’ xquk,s,l}’

Vi,r,j= Uth {D(X)_, 1/2””)3 x;ECi',J}, i,jeN, teT,
Vij={Viijtier i, jeN,

=\ %,

ijeN
Then we have following results:

(1) ¥ is an open refinement of %.

(2) 7 is an a-open Q-coer of X. In fact, for every xe X, let 1 =f(x),
since x,qU,, s0 x € (U,)(1 4y (U,)1 o € @(x,_p), and there exists an i'e N
and a A€ (B, 1) such that D(x,, 2/2") = (U,);_.,. Then let i =g(x,) and we
have D(X, 2/2°) = (U ) _ay» X1 € D(x4, 1/27) 5= W,,. Let j=h, (x;); now
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if there exists se T, k<i v j, 1 <i v j such that x,qV,,, then we have no
thing to prove. If not, then x,€C,,;, D(x;,1/2,, }x)=2i>p>1—a,
Viifx) 2 U x) A D(x;, 1/2°7)(x)>1—a, x,qV,

(3) For every ie N and every pair of 7, '€ T, and t#¢, we have
W..n W, = . Suppose this is not so, and there is no harm in supposing
t<t', then there exist x; € .9/, y, € .o/, and z€ X such that g(x,)=g(y,) =1,
fxy=¢t f(»)=1t, z,e D(x;, 1/2") 5y D(y,, 1/2")4,. Since p =>4,

D(X;, 1/2)(2)+ D(y,, 12N2) >+ B> 3+3=1

D(x,;,1/2") and D(y,, 1/2) are quasi-coincident at the point z. But from
S(y)>fx)=1 we have (U,);_,)(y)=0, from D(x,, /2= (U and
from 5.9 we know that D(x,, 1/2’) i not quasi-coincident with D(y,, 1/2°);
this is a contradiction.

(4) For each x,es such that D(x,,1/2")c(Visda—a
(k,I,m=1,2,..), we have that if i jeN, ivj<k+I!/+m, teT, then
D(x,, 1/2**'*™) gV, .. In fact, for each y,eC,,,, we have y,gV, ,, and
YE(Visida—w. Then from D(x;,1/2")c(Vi,)u_» Wwe know
y,.GD(x;,1/2™) and from 5.9 we know D(x;, 1/2**'+*™)gD(y,, 1/2"*/). So
from the definition of V;,; we know D(x,, 1/2**'*™) gV ..

Lty

(5) ¥ is o-discrete. Let i, jeN, xeX, and Ae€(0,1], take a
pe(1—4,1); then from (3) we know that x, intersects with at most one
member of the family of sets

{U {D(z5,1/27): 25€ C; ;) L€ T}.

So from 59 we know that D(x,, 1/2"*)eQ(x;) is quasi-
coincident with at most one member of the family of sets

ity

{U {D(z5, 12'"*):z;€C,, ) tE T}.
Hence from the definition of V;,; we know that the Q-neighborhood
D(x,, 1/2'*7) of x, is quasi-coincident with at most one member of 7.
{6} 7 is locally finite. Let xe X, Ae(0, 1], from {2) we know that
there exist k,/e N, se T such that V. (x)> —a, 50 (Vi /)i —a€ Q(X,)
From 5.8 we know that there exists a ue (1 —«, 1) and an m e N such that
D(x,, 12"y (Vi) —ay» S0 from (4) and (5) we know that only at that
time i v j <k +14+m, D(x,, 1/2**'*™) has the possibility to be quasi-coin-
cident with one and at most one member of ¥ ,,., Hence the
Q-neighborhood D(x,, 1/2¥*/*™) of x, is quasi-coincident with at most

H{(iL,))e NxN:ivj<k+Il+m}l=(k+{+m—1)
members of ¥” and ¥~ is locally finite. ||
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From 5.11 and 3.6 we have

5.12. THEOREM. If weakly induced fis (X, T) is pseudometrizable, then

(X, T) is S*-paracompact.

10.

12.
13.
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